Determine the long-term infiltration rate of the bioretention soil mix (BSM) using ONE of three methods below depending on contributing area and BSM used.

1. If NOT using BSM in section 4.4.2.2 and contributing area is <5,000 square feet of pollution-generating impervious area; and is <3/4 of lawn and landscaping.
 - Use 0.5 as the infiltration reduction factor to estimate the long-term infiltration rate. (Multiply measured KSAT by correction factor.)
 - Enter long-term infiltration rate in sizing model.

2. If NOT using BSM in section 4.4.2.2 and contributing area is >5,000 square feet of pollution-generating impervious area; and is >3/4 of lawn and landscaping.
 - Use 0.25 as the infiltration reduction factor to estimate the long-term infiltration rate. (Multiply measured KSAT by correction factor.)
 - Enter long-term infiltration rate in sizing model.

3. If USING the BSM in section 4.1.2.2 - Assume a measured Ksat of 6in/hr.
 - Enter long-term infiltration rate in sizing model.

If contributing area meets criteria in Box 1 use correction factor of 0.5.

If contributing area meets criteria in Box 2 use correction factor of 0.25.

Enter long-term infiltration rate in sizing model.

Determine correction factor for site variability. Correction factors range from 0.33-1 (no CF). See Section 4.1.2.1 above.

Enter long-term infiltration rate in sizing model.

Determine the long-term infiltration rate of the soil underlying the bioretention area using ONE of the two methods

- If soils are compressed by glacial advance use in-situ small-scale pilot infiltration test.
- If soils are NOT consolidated by glacial advance use a correlation to grain size distribution (ASTM D422-63).

No correlation fact or applied for siltation or bio-buildup.

Enter long-term infiltration rate in sizing model.