Statewide LID Training Program

INSTRUCTORS

CHRIS WEBB, PE
LEED FELLOW

Associate Engineer
Key project experience: permeable pavement, bioretention, rainwater harvesting

Curtis Hinman
Senior Scientist
Key project experience: Research specialist in the performance and design of LID applications.
AGENDA

1. introduction

2. water quality treatment

3. bioretention siting and design

4. construction, inspection & verification

5. wrap-up
LEARNING OBJECTIVES

1. Gain an intermediate level knowledge necessary for proper entry level design of bioretention systems.

2. Learn skills necessary for basic site assessment and locating bioretention areas in residential and commercial settings.

3. Learn practical skills necessary for construction of basic bioretention systems.
Statewide LID Training Program

LOGISTICS

SCHEDULE
8-hour training
Lunch on your own
45 minute site visit

OTHER LOGISTICS
• Restrooms
• Food
• Turn off cell phones
• Sign in and sigh out
Statewide LID Training Program

PROGRAM OVERVIEW

- 2012: Public and private partners engage state legislature to fund program
- June 2012: LID Training Steering Committee convened
- 2014: Training program built from state LID Training Plan.
Statewide LID Training Program

PROGRAM OVERVIEW

- Implement first phase of trainings (September 2014 through May 2015)
- 64 trainings offered in first phase
- Three levels: Introductory, Intermediate, and Advanced
- Train the Trainer program for service providers and LID topic experts
- Anticipate two more years of funding.
Statewide LID Training Program

Program Overview

<table>
<thead>
<tr>
<th>Project Lead</th>
<th>Core Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herrera</td>
<td>Cascadia</td>
</tr>
<tr>
<td></td>
<td>Veda</td>
</tr>
</tbody>
</table>

Additional Training Support

- CH2M Hill
- Kindred Hydro
- Leaping Frog Films
- SvR Design Company
- MUTUAL MATERIALS®
- StormwaterONE®
- Abbotsford Concrete Products
Statewide LID Training Program

TRAINING SEQUENCE

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Introduction to LID for Eastern Washington</td>
<td>Intermediate LID – NPDES Phase I & II Requirements</td>
<td>Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>2.1</td>
<td>3.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Introduction to LID for Inspection & Maintenance Staff</td>
<td>Intermediate LID Design: Bioretention</td>
<td>Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>2.2</td>
<td>3.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Introduction to LID for Developers & Contractors: Make Money be Green</td>
<td>Intermediate LID Design: Permeable Pavement</td>
<td>Advanced Topics for LID Operations: Bioretention</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>Advanced Topics for LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate LID Design: Hydrologic Modelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.1</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Service Providers</td>
<td>LID Topic Experts</td>
</tr>
</tbody>
</table>

TRAIN THE TRAINERS

- 9.1 Service Providers
- 9.2 LID Topic Experts

6/3/2015
Statewide LID Training Program

TRAINING SEQUENCE

INTRODUCTORY

1. Introduction to LID for Eastern Washington

2.1 Introduction to LID for Inspection & Maintenance Staff

2.2 Introduction to LID for Developers & Contractors: Make Money be Green

INTERMEDIATE

3. Intermediate LID – NPDES Phase I & II Requirements

3.1 Intermediate LID Design: Bioretention

3.2 Intermediate LID Design: Permeable Pavement

3.3 Intermediate LID Design: Site Assessment, Planning & Layout

3.4 Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs

4. Intermediate LID Design: Hydrologic Modelling

ADVANCED

5. Advanced Topics in LID Design:

 5.1 Bioretention

 5.2 Permeable Pavement

 5.3 Site Assessment, Planning & Layout

 5.4 Permeable Pavement

6. Advanced Topics in LID Design:

 6.0 Hydrologic Modeling

 7.0 Site Assessment, Planning & Layout

 8.0 Rainwater Collection Systems & Vegetated Roofs

 8.1 Bioretention Media

TRAIN THE TRAINERS

9. Service Providers

 9.1 LID Topic Experts

 9.2 Advanced Topics in LID Design: Bioretention Media
introduction

water quality treatment

bioretention siting and design

construction, inspection & verification

wrap-up
Statewide LID Training Program

LID REGULATORY STATUS

• New Permit Requirements for local governments on 3 levels:
 • Building site and subdivision
 • Municipal (codes)
 • Watershed

• New & Redevelopment
 • Site & subdivision - S5.C.4.a.i. & ii. (S5.C.5 in Phase I)
 • Development Codes - S5.C.4.f.
 • Watershed Scale - S5C.4.g.
Statewide LID Training Program

LID REGULATORY STATUS

• **Phase I Permittees**
 - Snohomish, King, Pierce, Clark Counties
 - Seattle, Tacoma
 - WSDOT

• **Phase II Permittees**
 - WWA: 80 cities, 5 counties
 - EWA: 18 cities, 6 counties

• **Secondary Permittees:**
 - Approximately 45 such as ports and universities
Statewide LID Training Program

LID REGULATORY TIMELINE

Adopt new site & subdivision stormwater codes

Phase I: June 30, 2015
Phase II: December 31, 2016*

Review and revise development-related codes, rules & standards

Phase I: June 30, 2015
Phase II: December 31, 2016*

* Or GMA update deadline, whichever is later
Statewide LID Training Program

LID REGULATORY STATUS: New Development Thresholds

Min. Requirements #1 - #9:

- > 5,000 sq. ft. new and replaced hard surface area, or
- > 3/4 acre vegetation to lawn/landscape, or
- > 2.5 acres native vegetation to pasture

Min. Requirements #1 - #5:

- > 2,000 sq. ft. new and replaced hard surface area, or
- > 7,000 sq. ft. land disturbance

Min. Requirement #2 - Erosion control

- All projects (No submittal for projects < 2,000/7,000)
Statewide LID Training Program

LID REGULATORY STATUS: Minimum Requirements

<table>
<thead>
<tr>
<th>#1 Preparation of Stormwater Site Plans</th>
<th>#2 Construction Stormwater Pollution Prevention</th>
<th>#3 Source Control of Pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4 Preservation of Natural Drainage Systems and Outfalls</td>
<td>#5 On-site Stormwater Management</td>
<td>#6 Runoff Treatment</td>
</tr>
<tr>
<td>#7 Flow Control</td>
<td>#8 Wetlands Protection</td>
<td>#9 Operation and Maintenance</td>
</tr>
</tbody>
</table>
WHAT IS LOW IMPACT DEVELOPMENT

• A land use development strategy that emphasizes protection and use of on-site natural features to manage stormwater.

• Careful assessment of site soils and strategic site planning to best use those soils for stormwater management.

• Integrates engineered and non-engineered, small scale stormwater controls into the site design to closely mimic pre-development hydrologic processes.
Statewide LID Training Program

WHAT IS LOW IMPACT DEVELOPMENT

• Used at the parcel and subdivision scale. Site scale necessary but not sufficient. Regional land use planning critical for effective stormwater management.

• Primary goal: no measurable impacts to receiving waters by maintaining or approximating pre-development surface flow volumes and durations.
Undeveloped - Forest

- During winter months evaporation continues to be active while the transpiration component is minimal.
- Storm events moderated by infiltration, evaporation, and evapotranspiration.
- Water is available in substrata to sustain stream base flows during summer months.
- As winter progresses, the interflow component of stream flow increases.
- During the Summer and Fall streams are maintained primarily by glacial melt water and/or groundwater flow.
Developed Conditions

- Overland flow increases and time of concentration decreases
- Less water in substrata available to sustain base stream flows
- Interflow highly variable depending on development

Precipitation

Evapotranspiration 20-30%

Water table

Interflow 0-30%

Groundwater 10-20%
Statewide LID Training Program

WHAT IS LOW IMPACT DEVELOPMENT

Objectives
• Protect and restore native soils/vegetation.
• Reduce development envelope.
• Reduce impervious surfaces and eliminate effective impervious area.
WHAT IS LOW IMPACT DEVELOPMENT

Objectives

- Manage stormwater as close to its origin as possible.
- Integrate stormwater controls into the design—create a multifunctional landscape.
INTRODUCTION

COMPONENTS

• Flow Entrance
• Pre-Settling
• Ponding Area
• Bioretention Soil
• Mulch/Compost
• Vegetation
• Filter Fabric (?)
• Liner (optional)
• Underdrain (optional)
• Overflow
INTRODUCTION

BIORETENTION AND RAIN GARDENS

- Bioretention will often include surface and subsurface infrastructure
- Bioretention = designed soil mix
- Bioretention meets requirements for MR 6 and 7 and required for MR 5 if MR 1-9 required

- Rain gardens will usually not include under-drains and may use less restrictive soil mix guidelines (e.g. existing soil augmented with compost and sand). Meets MR 5 requirements.
INTRODUCTION

BIORETENTION AND RAIN GARDENS

- Primary functions
 - Hydrologic benefits
 - Water quality treatment
 - Aesthetic amenity
BIORETENTION: Treatment Category

- Bioretention is a “bio-infiltration” BMP
 - Ponding system
 - Treatment via vertical flow through treatment soils while being infiltrated
 - Treatment goal = % volume infiltrated
- Bioretention is NOT a “bio-filtration” BMP
 - Flow-through system (ex. biofiltration swale)
 - Treatment via lateral flow through vegetation while being conveyed
 - Treatment goal = hydraulic residence time
BIORETENTION: Definition and Types

- Shallow landscaped depressions that are engineered (bioretention) or non-engineered (rain gardens) to receive stormwater from small contributing areas
- Small scale, dispersed facilities

Types:
- Bioretention cells
- Bioretention swales
- Bioretention planters
- Bioretention planter boxes
- Online and offline
Cells

- Shallow vegetated depressions
- Gentle side slopes typical
- Not designed as conveyance system
- Optional underdrains/control structures
Bioretention swales

- Same design features as cells
- Interconnected series of cells
- Provide conveyance (overflow directed to downstream cell)
BIORETENTION: Types

Bioretention planters
- Vertical walled reservoir (typically concrete)
- Often used in ultra-urban settings
- Open bottom to allow infiltration to native soil
- Optional underdrains/control structures
BIORETENTION: Types

Bioretention planter boxes
- Same design features as planters
- Closed, impermeable bottom
- Must include underdrain
- Optional control structure
1. Introduction to course and bioretention
2. Water quality treatment
3. Bioretention siting and design
4. Construction, inspection & verification
5. Wrap-up
All primary pathways for removing pollutants from storm flows active in bioretention

- Stormwater volume reduction
- Sedimentation
- Filtration
- Phytoremediation
- Thermal attenuation
- Adsorption
- Volatilization

Note that rain gardens can provide these pollutant capture pathways, but not approved for WQ treatment (MR6) in SWMMWW.
WATER QUALITY TREATMENT

VOLUME REDUCTION

<table>
<thead>
<tr>
<th>Project</th>
<th>Completed</th>
<th>Infiltration</th>
<th>Sizing</th>
<th>Volume Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siskiyou Green Street</td>
<td>Oct 2003</td>
<td>1.5 - 2.0 in/hr</td>
<td>6%</td>
<td>*(1/04 – 12/05) 83%</td>
</tr>
<tr>
<td>Glencoe Rain Garden</td>
<td>Oct 2003</td>
<td>1.8 - 3.0 in/hr</td>
<td>6%</td>
<td>(1/04 – 12/05) 94%</td>
</tr>
<tr>
<td>Greensboro NC</td>
<td>2001</td>
<td>0.2 – 0.6 in/hr</td>
<td>5%</td>
<td>(2002) 78%</td>
</tr>
<tr>
<td>Sea Street</td>
<td>2001</td>
<td>variable</td>
<td>~2%</td>
<td>(2001 – present) 98%</td>
</tr>
<tr>
<td>110th Cascade</td>
<td>2003</td>
<td></td>
<td></td>
<td>(10/04 – 06) 74%</td>
</tr>
<tr>
<td>Meadow on the Hylebos</td>
<td>2006</td>
<td>0.0 – 0.8 in/hr</td>
<td>15%</td>
<td>(10/07 – 5/08) 99.99%</td>
</tr>
</tbody>
</table>

Statewide LID Training Program

INTERMEDIATE LID DESIGN
<table>
<thead>
<tr>
<th>Project</th>
<th>e. Coli (mpn/g)</th>
<th>Cu (mg/kg)</th>
<th>Pb (mg/kg)</th>
<th>Hg (mg/kg)</th>
<th>Zn (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siskiyou Green Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6”</td>
<td>280</td>
<td>34.4</td>
<td>56.8</td>
<td>0.103</td>
<td>170</td>
</tr>
<tr>
<td>6-12”</td>
<td>--</td>
<td>17.0</td>
<td>12.2</td>
<td>0.032</td>
<td>100</td>
</tr>
<tr>
<td>12-18”</td>
<td>--</td>
<td>17.6</td>
<td>10.9</td>
<td>0.054</td>
<td>96</td>
</tr>
<tr>
<td>SW 12th & Montgomery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6”</td>
<td>7</td>
<td>30.1</td>
<td>29.9</td>
<td>0.043</td>
<td>120</td>
</tr>
<tr>
<td>12-18”</td>
<td>--</td>
<td>22.2</td>
<td>18.9</td>
<td>0.082</td>
<td>92</td>
</tr>
</tbody>
</table>

MTCA
Pb: 250 mg/kg
Hg: 2 mg/kg
WATER QUALITY TREATMENT

PERCENT REMOVAL OF NUTRIENTS

<table>
<thead>
<tr>
<th></th>
<th>TKN (mg/L)</th>
<th>NO3 (mg/L)</th>
<th>TP (mg/L)</th>
<th>Hydrocarbons (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis et al 2006*</td>
<td>38% (u) 68% (l)</td>
<td>-96% (u) 24% (l)</td>
<td>1% (u) 81% (l)</td>
<td></td>
</tr>
<tr>
<td>Greenbelt</td>
<td>57%</td>
<td>16%</td>
<td></td>
<td>65%</td>
</tr>
<tr>
<td>Largo</td>
<td>67%</td>
<td>15%</td>
<td></td>
<td>87%</td>
</tr>
<tr>
<td>Mass removal</td>
<td>97%</td>
<td>97%</td>
<td></td>
<td>99%</td>
</tr>
<tr>
<td>Hunt et al 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greensboro</td>
<td>-4.9%</td>
<td>75%</td>
<td>-240%</td>
<td></td>
</tr>
<tr>
<td>Chapel Hill</td>
<td>45%</td>
<td>13%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Hsieh 2005</td>
<td></td>
<td></td>
<td>>97%</td>
<td></td>
</tr>
<tr>
<td>PNW Bioswales (Herrera 2006)</td>
<td></td>
<td></td>
<td></td>
<td>18% -10%</td>
</tr>
<tr>
<td>Nat’l Bioswales**</td>
<td></td>
<td></td>
<td></td>
<td>-88%</td>
</tr>
</tbody>
</table>

Event mean concentrations

* Percent reduction at 18 cm (upper) and 61 cm (lower) depths (lab)

Herrera from Barrett
Percent Removal of TSS & Metals

<table>
<thead>
<tr>
<th>Source</th>
<th>TSS (mg/L)</th>
<th>Cu (µg/L)</th>
<th>Pb (µg/L)</th>
<th>Zn (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis et al 2001*</td>
<td>89% (u) 92% (l)</td>
<td>>98% (u) >98 (l)</td>
<td>>98% (u) >98 (l)</td>
<td></td>
</tr>
<tr>
<td>Davis et al 2003**</td>
<td>>99%</td>
<td>>99%</td>
<td>>99%</td>
<td></td>
</tr>
<tr>
<td>Greenbelt</td>
<td>97%</td>
<td>>95%</td>
<td>>95%</td>
<td></td>
</tr>
<tr>
<td>Largo</td>
<td>43%</td>
<td>70%</td>
<td>64%</td>
<td></td>
</tr>
<tr>
<td>Hunt et al 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greensboro</td>
<td>-180%</td>
<td>99%</td>
<td>81%</td>
<td>98%</td>
</tr>
<tr>
<td>Chapel Hill</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hsieh, Davis 2005</td>
<td>91%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNW Bioswales (Herrera 2006)</td>
<td>64%</td>
<td></td>
<td></td>
<td>47%</td>
</tr>
<tr>
<td>National Bioswales (Herrera from Barrett)</td>
<td>43%</td>
<td></td>
<td></td>
<td>53%</td>
</tr>
</tbody>
</table>

Event mean concentrations

* Percent reduction at 18 cm (upper) and 61 cm (lower) depths (lab)
** Percent mass removal (lab)
BIORETENTION FLUSHING

City of Redmond study: Herrera
WATER QUALITY TREATMENT
BIORETENTION FLUSHING

City of Redmond study: Herrera
Water Quality Treatment

BioRetention Flushing Experiments

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Median Influent</th>
<th>Min</th>
<th>Median Effluent</th>
<th>Max</th>
<th>n</th>
<th>Sand Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>mg/L</td>
<td>4.9</td>
<td>1</td>
<td>5.3</td>
<td>22.5</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Diss Zn</td>
<td>µg/L</td>
<td>71</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Diss Cu</td>
<td>µg/L</td>
<td>3</td>
<td>1.7</td>
<td>8.6</td>
<td>15.9</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>PO4</td>
<td>mg/L</td>
<td>0.016</td>
<td>0.086</td>
<td>0.236</td>
<td>0.461</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>NO3-NO2</td>
<td>mg/L</td>
<td>0.361</td>
<td>0.05</td>
<td>0.145</td>
<td>1.03</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>CFU/100mL</td>
<td>229</td>
<td>5</td>
<td>22.5</td>
<td>65</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

WSU large-scale lysimeter study (unpublished)

Statewide LID Training Program

Interpretation of LID Performance

3.2 BioRetention

Intermediate LID Design 42
WATER QUALITY TREATMENT
DISSOLVED COPPER CAPTURE

WSU large-scale lysimeter study (unpublished)
Filtration: bioretention provides excellent sediment filtration...

Does not appear to be concentration dependent.
WSU large-scale lysimeter study (unpublished)
WATER QUALITY TREATMENT

SUMMARY

• Initial flushing of nitrogen, phosphorus and low levels of copper at low influent concentrations.

• Excellent zinc at installation and very good copper capture at typical influent concentrations after initial flushing.

• Reasonable TN capture at typical influent concentrations.

• Very good TSS capture

• TP and PO4 remain challenges

• Overall, very good performance in relation to other treatment technologies
Break
introduction

water quality treatment

bioretention siting and design

construction, inspection & verification

wrap-up
BIORETENTION SITING, DESIGN & CONSTRUCTION

1. Siting

2. Design

3. Construction

Top Width

Inlet Protection

Bottom Width
(See Note 1)

Design Ponding Depth
BIORETENTION SITING, DESIGN & CONSTRUCTION

INFILTRATING SITING CONSIDERATIONS

Bioretention with Underdrain Planter with Underdrain

All bioretention facilities infiltrate water through bioretention soil for treatment
Infiltration siting considerations apply to facilities that ALSO:
infiltrate water into underlying native soils

Notes:
1. Bottom width shall be a minimum of 2 feet and bottom area shall be flat (0% slope).
2. Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).
BIORETENTION SITING, DESIGN & CONSTRUCTION

INFEASIBILITY CRITERIA: Infiltration Restrictions

• Insufficient vertical separation from bottom of facility to hydraulic restriction layer (water table, bedrock, compacted soil layer)
 • 1 foot clearance if the contributing area is less than:
 • 5,000 square feet of pollution-generating impervious surface
 • 10,000 square feet of impervious area
 • ¾ acres of lawn and landscaped area
 • 3 foot clearance for larger contributing areas

Restrictions (sources: SWMMWW Volume III, Section 3.4)
INFEASIBILITY CRITERIA: Infiltration

Infiltration not required in:

• Areas that geotechnical evaluation deems imprudent
 • Erosion, slope failure, flooding

• Erosion/landslide hazard areas

• Groundwater protection area

Restrictions (sources: SWMMWW Infeasibility Criteria)
INFEASIBILITY CRITERIA: Infiltration Setbacks

<table>
<thead>
<tr>
<th>Feature</th>
<th>Setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking water well</td>
<td>100 feet</td>
</tr>
<tr>
<td>Spring used for drinking water</td>
<td>100 feet</td>
</tr>
<tr>
<td>Known deep soil contamination</td>
<td>100 feet</td>
</tr>
<tr>
<td>Closed or active landfill</td>
<td>100 feet</td>
</tr>
<tr>
<td>Small on-site septic drainfield</td>
<td>10 feet</td>
</tr>
</tbody>
</table>

Setbacks (source: SWMMWW Infeasibility Criteria)
INFEASIBILITY CRITERIA: Infiltration Setbacks

<table>
<thead>
<tr>
<th>Feature</th>
<th>Setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Growth Protection Easement</td>
<td>≥ 20 feet</td>
</tr>
<tr>
<td>Top of slopes >20% and over 10 feet of relief</td>
<td>≥ 50 feet</td>
</tr>
<tr>
<td>Underground storage tanks</td>
<td>10-100 feet</td>
</tr>
<tr>
<td>Wellheads, basements, foundations, utilities, slopes, contaminated areas, and property lines</td>
<td>Consult local jurisdiction guidelines</td>
</tr>
</tbody>
</table>

Setbacks (source: SWMMWW Infeasibility Criteria)
• Understand fate of infiltrated water
 • Intent is to infiltrate to native underlying soil
 • Arterial ROW with dense underground infrastructure (preferential pathway → utility trenches)
 • Potential for excessive shallow interflow emerging at slopes, development cuts, or in basements
• Use engineering controls
 • Ex. trench water stops to prevent re-infiltration to pipes
 • Ex. liners to protect adjacent infrastructure
BIORETENTION SITING, DESIGN & CONSTRUCTION

SITING CONSIDERATIONS

- Native soil and vegetation preservation
- Site Slopes
 - Cross & Longitudinal Slopes
 - Positive Drainage from drainage area to BR to overflow
- Setbacks (e.g., utilities & other infrastructure, wetland and streams)
- Public acceptance/participation (retrofits)
- Transportation/pedestrian safety

2012 LID Technical Guidance Manual for Puget Sound
SITING CONSIDERATIONS: Soils

• Why soils affect siting
• Soil variability
• Initial infiltration rates
• Design infiltration rates
BIORETENTION SITING, DESIGN & CONSTRUCTION

SITING CONSIDERATIONS: Native Soils

• Important for Infiltrating facilities ONLY

• Infiltrating facilities sized based on infiltration rates

• Minimum “feasible” initial infiltration rate of 0.3 in/hr

• Locate infiltrating BMPs in areas with best soils
SITEING CONSIDERATIONS: Soil Variability

Broadview Green Grid, Seattle, WA
SITING CONSIDERATIONS: Soil Variability

Site 1: Loam

Broadview Green Grid, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

SITING CONSIDERATIONS: Soil Variability

Site 2: Sand

Broadview Green Grid, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

SITING CONSIDERATIONS: Soil Variability

Site 3: Glacial till

Broadview Green Grid, Seattle, WA
INFILTRATION RATES: Overview

Measure or estimate initial saturated hydraulic conductivity

Apply correction factor

Long-term (design) infiltration rate
BIORETENTION SITING, DESIGN & CONSTRUCTION

INfiltration RATES: Bioretention Methods

• Estimate based on soil properties
 • USDA Soil Textural Classification
 • Soil Grain Analysis

• In-situ field measurements
 • EPA Falling Head
 • Double ring infiltrometer test
 • Small Scale Pilot Infiltration Test (PIT)
 • Large Scale PIT

Eliminated in 2012 SWMMWW

Allowed for soils unconsolidated by glacial advance (in-situ soil investigation may still be advised)

Not in SWMMWW (inaccurate)
INfiltration Rates: Bioretention Methods

- Estimate based on soil properties
 - USDA Soil Textural Classification
 - Soil Grain Analysis
- In-situ field measurements
 - EPA Falling Head
 - Double ring infiltrometer test
 - Small-Scale Pilot Infiltration Test (PIT)
 - Large Scale PIT

Allowed for soils unconsolidated by glacial advance (in-situ soil investigation may still be advised)

Use for all other soils
• Excavate pit
 • Depth ~surface elevation of native soil (before BSM placement)
 • Horizontal bottom area ~12 to 32 sf
 • Side slopes laid back, but vertical to test ponding depth (6 – 12in)
• Install vertical measuring rod
• Install splash plate
 • Reduce side wall erosion and disturbance of bottom (clogging)
• Fill pit for pre-soak period
 • Standing water (at least 12 inches) for 6 hours

• Adjust flow rate for steady state period
 • Constant water depth (6 – 12 inches) for 1 hour

• Turn off water and record rate of infiltration every 30 - 60 minutes until one hour after the flow has stabilized

• Lowest hourly flow rate is the initial (measured) infiltration rate
ECOLOGY SMALL-SCALE PIT METHOD

- Depth to groundwater
 - Over excavate 3 feet below pit bottom to check for hydraulic restrictive layers (e.g., bed rock, till/clay lenses) or groundwater
 - Alternatively, monitor groundwater through wet season
BIORETENTION SITING, DESIGN & CONSTRUCTION

ECOLOGY SMALL-SCALE PIT METHOD

• PIT Timing
 • Test between December 1 and April 1

• Number of PITs
 • Recommend one PIT at each bioretention site
 • For larger site, one PIT every 5,000 sf
 • For long narrow facilities, one PIT every 200 lineal feet (unless borings indicate consistent soil characteristics)
ECOLOGY SMALL-SCALE PIT METHOD

- Hydrant
- Flow Meter
- Fire Hose
- Garden Hose
- Regulate flow (Ex. Ball Valve)
- To Pit
BIORETENTION SITING, DESIGN & CONSTRUCTION
ECOLOGY SMALL-SCALE PIT METHOD

Vertical Measuring Rod

Pit (lay back side slopes)

5 gal. Bucket (energy dissipation)

Water level recorded every 15 minutes
BIORETENTION SITING, DESIGN & CONSTRUCTION
ECOLOGY SMALL-SCALE PIT METHOD

Statewide LID Training Program
3.2 BIORETENTION
INTERMEDIATE LID DESIGN
BIORETENTION SITING, DESIGN & CONSTRUCTION
ECOLOGY SMALL-SCALE PIT METHOD

Initial rate = 0.25 in/hr

1.5 in/hr

March 8 and 9, 2012
BIORETENTION SITING, DESIGN & CONSTRUCTION

DESIGN INFILTRATION RATES

• Correction factors applied to initial rate to estimate long-term rate for design

• Partial Correction factors:
 • CFv (Site variability and number of locations tested) = 0.33 to 1
 • CFt (Test method) = 0.4 to 0.75
 • CFm (Degree of influent control to prevent siltation and bio-buildup) = 1 (overlying BSM provides excellent protection)

• Total Correction Factor (CF) = CFv x CFt x CFm

• Design rate = Initial Rate x CF
INfiltration Rates: Rain Garden Methods

Small-scale test hole

- Dig hole 1 to 2 ft in diameter
- Bottom should be depth of rain garden sub-grade
- Examine soil texture
- Place measuring rod and fill to design ponding depth
- Time how long it takes to drain down
- Repeat 3 times if in dry season
- Best to perform test in wet season
BIORETENTION SITING, DESIGN & CONSTRUCTION

APPLICABILITY

• Residential Parcels
 • Landscaped areas
 • Planters

• Right-of-Way
 • Planting strip
 • Curb bulbs
 • Medians

• Commercial Parcels
 • Landscaped areas
 • Planters
 • Parking Lots
BIORETENTION SITING, DESIGN & CONSTRUCTION

SINGLE FAMILY: Rain Gardens/Bioretention

Note that rain gardens meet requirements for MR 1-5, but not for MR 6 or 7.
BIORETENTION SITING, DESIGN & CONSTRUCTION

SINGLE FAMILY: Stormwater Planters

Inflow Conveyance

Overflow
BIORETENTION SITING, DESIGN & CONSTRUCTION

RIGHT OF WAY: Seattle SEAstreets

Before

After
BIORETENTION SITING, DESIGN & CONSTRUCTION

RIGHT OF WAY: Seattle SEAstreets

Before

After
BIORETENTION SITING, DESIGN & CONSTRUCTION

RIGHT OF WAY: Curb Bulbs

NE Siskiyou Green Street Portland, OR

23rd Ave SE & 171st Pl SE
BIORETENTION SITING, DESIGN & CONSTRUCTION

RIGHT OF WAY: Planters

New Seasons Market, Portland

SW 12th Avenue Green St

Photos courtesy of Portland BES
BIORETENTION SITING, DESIGN & CONSTRUCTION
MULTI-FAMILY DEVELOPMENTS

High Point, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

MULTI-FAMILY DEVELOPMENTS: Block Level Design

High Point, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

MULTI-FAMILY DEVELOPMENTS: Block Level Design

High Point, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Conveyance

Downtown CSO Demand Management, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Parking Lots

Northgate Mall, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Parking Lots

Northgate Mall, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Parking Lots

Northgate Mall, Seattle, WA

Curb Cut Inflow

Beehive Structure Overflow
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Parking Lots

Lewis Creek Park, Bellevue, WA

Combining landscape requirements with bioretention
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Parking Lots

Combining conveyance with bioretention

Bagley Elementary, Seattle, WA
COMMERCIAL PARCELS: Bioretention and Rain Gardens

YMCA Silverdale, WA

Villanova Campus
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Stormwater Planters

Taylor 28 Apartments
Seattle, WA
Q&A
Lunch
Field Exercise
Infiltration Tests
BIORETENTION SITING, DESIGN & CONSTRUCTION

1. Siting

2. Design

3. Construction

Statewide LID Training Program

3.2 BIORETENTION

INTERMEDIATE LID DESIGN
BIORETENTION SITING, DESIGN & CONSTRUCTION

PERFORMANCE STANDARDS

• On-site Stormwater Management (MR #5)
 • Use BMP List 1
 or
 • Meet LID Performance Standard (match flow durations to pre-developed condition from 8% to 50% of the 2-year peak flow)

• Runoff Treatment (MR #6)
 • Infiltrate 91 percent of the total runoff volume through soil meeting Ecology treatment criteria (for infiltration BMPs)

• Flow Control (MR #7)
 • Match flow durations to pre-developed condition from 50% of the 2-year to the full 50-year peak flow

• Other Flow Control Standards
 • Combined Sewer or Capacity Constrained Basins (peak-based standards)
INTRODUCTION

COMPONENTS

- Flow Entrance
- Pre-Settling
- Ponding Area
- Bioretention Soil
- Mulch/Compost
- Vegetation
- Filter Fabric (?)
- Liner (optional)
- Underdrain (optional)
- Overflow
FLOW ENTRANCE: Design Criteria

- Flow entering should be non-erosive
 - Velocity less than 1.0 fps

- **Dispersed flow entrance** → Preferred!
 - Vegetated buffer strip
 - Sheet flow across pavement/gravel
 - Sheet flow b/t wide wheel stops

- **Concentrated flow entrance** → Requires erosion protection (e.g., rock)
 - Piped flow
 - Curb cuts
 - Trench drains
BIORETENTION SITING, DESIGN & CONSTRUCTION

FLOW ENTRANCE: Design Criteria

High Point, Seattle, WA
Wheel stops prevent vehicle entry and restrict vehicle loading at edge while allowing sheet flow to bioretention

Bagley Elementary, Seattle, WA

Coupeville High School, Coupeville, WA
Depressed gutter at inlet

Finish grade should be 2-3” lower than curb line to allow for unobstructed inflow. Armor flow entrance with concrete pad or stone.
Do not use woody plants at inlet (can restrict or concentrate flows)
Trench Drain

For higher/surface elevation inlets

2012 LID Technical Guidance Manual for Puget Sound
FLOW ENTRANCE

- Finish grade is 2-3” lower than curb line to allow for settling.

- Armored flow entrance with concrete pad and stone.
BIORETENTION SITING, DESIGN & CONSTRUCTION

FLOW ENTRANCE

Seattle Standard Details

Curb cut

Channel with grate
BIORETENTION SITING, DESIGN & CONSTRUCTION

PRE-SETTLING

• To capture debris/sediment and reduce potential for clogging of BSM

• May be required for:
 • For concentrated flow entrances
 • For larger drainage areas
 • Where sediment loading is expected (e.g., high-use parking lots and roadways)
BIORETENTION SITING, DESIGN & CONSTRUCTION

PRE-SETTLING

• Pre-settling methods:
 • Vegetated filter strip
 • Fore bay
 • Catch basin

Photo from alice
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA

Earthen Depression
High Point, Seattle, WA

Rockery Walls
Pinehurst, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design/Performance

• **Without underdrain**
 - Earthen depression (w/o liner) or open-bottomed planter
 - Relies on infiltration to native soil
 - Can provide effective on-site stormwater management, flow control and WQ treatment

Notes:
1. Bottom width shall be a minimum of 2 feet and bottom area shall be flat (0% slope).
2. Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).
PONDING AREA: Design/Performance

- With underdrain
 - Some infiltration to native soil
 - Can provide effective WQ treatment for some pollutants
 - Cannot meet forest duration flow control alone, but can contribute as part of a system to achieve flow control goals (orifice improves performance)
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design/Performance

- With underdrain & liner/impermeable container
 - No infiltration to native soil
 - Typically provides minimal flow control (orifice improves performance)
 - Can provide effective WQ treatment
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Sizing Criteria

• Size to meet performance standards
 • Use hydrologic modeling to size for LID performance (MR#5), flow control (MR#7) or WQ (MR#6) standards
 • For on-site List (MR #5) horizontal projected surface area below overflow = 5% of impervious drainage area

• Max. surface pool drawdown time (24-48 hours)
 • Soil allowed to dry out periodically
 • Restore hydraulic capacity of system
 • Maintain adequate soil oxygen levels
 • Prevent conditions supportive of mosquito breeding

*Surface Pool Drawdown = Ponding Depth ÷ Design Infiltration Rate
PONDING AREA: Sizing Criteria

- **Size to meet performance standards**
 - Use hydrologic modeling to size for LID performance (MR#5), flow control (MR#7) or WQ (MR#6) standards
 - For on-site List (MR #5) horizontal projected surface area below overflow = 5% of impervious drainage area

- **Max. surface pool drawdown time (24-48 hours)**
 - Soil allowed to dry out periodically
 - Restore hydraulic capacity of system
 - Maintain adequate soil oxygen levels
 - Prevent conditions supportive of mosquito breeding

*Surface Pool Drawdown=
Example: 6 inch ÷ 0.25 inch/hour = 24 hours*
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Footprint Area

- Larger footprint area for:
 - Larger contributing area
 - Higher site precipitation
 - Lower native soil infiltration rate
 - Shallower ponding depth
 - Shallower BSM depth
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Cross-Section Criteria*

- Max ponding depth (12 inches)
- Min bottom width (1 foot)
- Max planted side slope (2.5:1)
- Min freeboard?
- Max contributing area or bottom area?

* Seattle requirements provided for example design criteria

Max contributing area to single cell is 5,000 sf impervious*

2’ recommended (1’ min) (to prevent channelization)

Inflow

Overflow

2.5
1

2’ or 6’ min Freeboard*

12” max

* Seattle requirements provided for example design criteria
PONDING AREA: Roadway Facility Criteria*

- 2-foot shoulder
- Grade at 3H:1V
- Grade at 4H:1V for intersections (Seattle)
- Compact shoulder to 90 percent standard proctor

*Seattle requirements provided for example design criteria
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Roadway Facility Criteria*

• Rockery >1’ high, min 10’ from curb/edge of road

• Rockery <1’ high min 5’ from curb/edge of road

*Seattle requirements provided for example design criteria
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Roadway Facility Criteria*

Max 4’ drop from vehicular lane

*Seattle requirements provided for example design criteria
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design Resources

Bioretention with curb

Seattle Standard Details

- Conc Curb
- Soil, compacted to 90% density
- Bottom Swale EL
- Top of Bank EL
- Bottom Swale Width
- 3.9' Max
- 1' Min
- 2'-0' Min
- VAR
- 1'-0' Min
- VAR
- 1'-0' Min
- 3' Depth of shredded bark mulch (medium or coarse) or composted material
- 3' Depth of composted material
- Bioretention soil, landscape mix
- Depth over 4' require guard rail.

W/Curb

NTS
Bioretention without curb

Seattle Standard Details

- 2'-0" min
- Top of bank el
- Bottom swale width
- 3.9' max
- 1'-0" min
- Bioretention turf soil, compacted to 90% density
- Conc band or gutter
- Bioretention soil, landscape mix
 - 3" depth of shredded bark mulch (medium or coarse) or composted material
 - 3" depth of composted material
 - Bioretention soil, landscape mix

* Depth over 4' require guard rail.
** 4:1 max when within 50-feet from intersections
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design Resources

Rockery wall

2012 LID Manual
PONDING AREA: Design Resources

Roadside Planter

2014 San Francisco Typical Details

Statewide LID Training Program

Intermediate LID Design 126
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design Resources

Roadside Planter
FILTER FABRIC

- Typically NOT recommended between existing soil and BSM because of clogging potential
- Gradation difference between existing soil and BSM is typically small so no migration of fines

2009 Seattle Stormwater Manual
• Geomembranes on vertical walls
• For facilities adjacent to roads, foundations, etc.
HYDRAULIC RESTRICTION LAYER

- Where infiltration is prohibited or not prudent
- Must use underdrain

Clay (bentonite) or geomembrane

Impermeable reservoir (concrete, metal)

Notes:
1. Bottom width shall be a minimum of 2 feet and bottom area shall be flat (0% slope).
2. Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).

2009 Seattle Stormwater Manual
UNDERDRAINS: Purpose

• Where liner is used
• Where infiltration is prohibited or not prudent
• Near sensitive infrastructure with high flood potential
• Soil infiltration rates not adequate to meet pool and system drawdown time

Broadview Green Grid, Seattle, WA
UNDERDRAINS: Types of Pipes

- **Slotted, thick-walled plastic pipe**
 - Minimum 4” diameter Schedule 40 PVC

- **Slot openings**
 - Smaller than smallest aggregate gradation of filter material
 - Slots perpendicular to long axis of pipe
BIORETENTION SITING, DESIGN & CONSTRUCTION

UNDERDRAINS: Types of Pipes

• Slotted PVC Pipe with Aggregate Filter/bedding material
 - Prevent migration of fine material into drain
 - City of Seattle Mineral Aggregate Type 26 (sandy gravel)
 - Do not wrap in filter fabric

Note: If using City of Seattle Mineral Agg 26, slots shall be 0.069 inches by 1-inch long, spaced 0.25 inches apart. Slots arranged in four rows spaced on 45-degree centers.
UNDERDRAINS: Slotted Pipe Placement

- Slotted pipe placement within aggregate filter/bedding material (Seattle)
 - 6” under pipe
 - 12” on top of pipe
 - 12” each side

2009 Seattle Stormwater Manual
UNDERDRAINS: Slotted Pipe Benefits

• Increased media area provides better filtering
 • Reduced potential for clogging (versus perforated pipe wrapped in filter fabric)

• More durable and easier to clean (rotary root cutter or water jet)
 • Versus perforated PVC or flexible slotted HDPE
UNDERDRAINS: Slotted Pipe Guidance

- Observation pipe/clean out
 - Rigid non-perforated
 - Every 250 to 300 feet
 - Clean out port
 - Observation well for dewatering rates

- Raised under-drain
 - Maximize infiltration
 - Fluctuating aerobic/anaerobic conditions → Denitrification
UNDERDRAINS: Slotted Pipe Guidance

• Minimum underdrain slope = 0.5%
• Orifice/control structures
 • Improve flow control performance
 • Minimum 0.5” orifice diameter
 • Maintenance access to orifice required
• Design with access for future modification
 • “Adaptive management”
 • Cap drain pipe
 • Throttle flows with orifice

Photo courtesy of Seattle Public Utilities
BIORETENTION SITING, DESIGN & CONSTRUCTION

UNDERDRAINS: Design Resources

Seattle Standard Details

Bioretention with curb

Statewide LID Training Program

INTERMEDIATE LID DESIGN 138
OVERFLOW: Design Criteria/Types

- Necessary to safely convey flows that exceed capacity
 - Protect downstream property and resources
 - Overflow configuration depends on design objectives
- Overflow elevation set at max. ponding depth
- Directed to downstream BMP or approved discharge point

Photo courtesy of Seattle Public Utilities
OVERFLOW: Design Criteria/Types

• Sizing
 • Conveyance sized for local jurisdiction level of service
 • Consider larger overflows (e.g., grade so overflows to ROW)

• Surface overflow
 • Sheet flow
 • Gravel level spreader
 • Exit curb cut/ trench drain
OVERFLOW: Subsurface Overflow

- Catch basin
- Vertical stand pipe
- Horizontal pipe
- Can be connected to underdrain system
LAYOUT OPTIONS

Series of Connected Cells

Single Cell

Broadview Green Grid, Seattle, WA
ELEVATIONS AND GRADE: Considerations

- Cross Slope
- Longitudinal Slope
- Positive Grade
- Series of Cells
- Check Dams
• Larger footprint area and berming or wall(s) to achieve ponding area
ELEVATIONS AND GRADE: Cross Slope

Required width on slope

Cross Slope

Berm
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Longitudinal Slope

• For long, linear configurations, create series of flat-bottomed cells

• Optimum slope is 2% Maximum slope = 8%

• Steep slopes: control gradient with intermittent weirs or berms or standpipe overflow to provide ponding and dissipate energy

• Flat slopes: may need weir to create ponding

Photo courtesy of Seattle Public Utilities
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Series of Cells

- Check dams / weirs or vertical stand pipe overflow

- Reduce flow velocities & erosion potential/dissipates energy

- Create ponding to promote infiltration

Photo courtesy of Seattle Public Utilities
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Series of Cells

• Types of check dams / weirs
 • Compacted earthen berms covered with vegetation
 • Vegetated hedgerows
 • Rock
 • Wood
 • Concrete

• Optimum spacing determined by longitudinal slope, performance goals and cost

Photo courtesy of Seattle Public Utilities
ELEVATIONS AND GRADE: Mild Longitudinal Slope

Earthen berms

High Point, Seattle, WA
ELEVATIONS AND GRADE: Mild Longitudinal Slope

Rock berms

Wood berms
ELEVATIONS AND GRADE: Moderate Longitudinal Slope
ELEVATIONS AND GRADE: Steeper Longitudinal Slope

Concrete weirs for longitudinal slopes

Walls for cross slopes

110th Street Cascade, Seattle, WA

107th Street Cascade, Seattle, WA
ELEVATIONS AND GRADE: Steeper Longitudinal Slope

Beehive grate over vertical pipe/structure

Broadview Green Grid, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Design Resources

Check Dams

2014 San Francisco Typical Details

CONSTRUCTION NOTES:
5. Check Dams shall be constructed for hydrologic performance. Refer to 2014 MCEC 5.2.0.0.0.2.0.0 for design guidelines.
6. Concrete Check Dams shall be constructed with minimum reinforcement for ease of installation and repair.
7. Check Dams shall be constructed with a minimum of 8” of concrete.
8. Check Dams shall be constructed with a minimum of 12” of concrete.
9. Check Dams shall be constructed with a minimum of 18” of concrete.
10. Check Dams shall be constructed with a minimum of 24” of concrete.
11. Check Dams shall be constructed with a minimum of 30” of concrete.
12. Check Dams shall be constructed with a minimum of 36” of concrete.
13. Check Dams shall be constructed with a minimum of 42” of concrete.
14. Check Dams shall be constructed with a minimum of 48” of concrete.
15. Check Dams shall be constructed with a minimum of 54” of concrete.
16. Check Dams shall be constructed with a minimum of 60” of concrete.
17. Check Dams shall be constructed with a minimum of 66” of concrete.
18. Check Dams shall be constructed with a minimum of 72” of concrete.
19. Check Dams shall be constructed with a minimum of 78” of concrete.
20. Check Dams shall be constructed with a minimum of 84” of concrete.
21. Check Dams shall be constructed with a minimum of 90” of concrete.
22. Check Dams shall be constructed with a minimum of 96” of concrete.
23. Check Dams shall be constructed with a minimum of 102” of concrete.
24. Check Dams shall be constructed with a minimum of 108” of concrete.
25. Check Dams shall be constructed with a minimum of 114” of concrete.
26. Check Dams shall be constructed with a minimum of 120” of concrete.
27. Check Dams shall be constructed with a minimum of 126” of concrete.
28. Check Dams shall be constructed with a minimum of 132” of concrete.
29. Check Dams shall be constructed with a minimum of 138” of concrete.
30. Check Dams shall be constructed with a minimum of 144” of concrete.
31. Check Dams shall be constructed with a minimum of 150” of concrete.
32. Check Dams shall be constructed with a minimum of 156” of concrete.
33. Check Dams shall be constructed with a minimum of 162” of concrete.
34. Check Dams shall be constructed with a minimum of 168” of concrete.
35. Check Dams shall be constructed with a minimum of 174” of concrete.
36. Check Dams shall be constructed with a minimum of 180” of concrete.
37. Check Dams shall be constructed with a minimum of 186” of concrete.
38. Check Dams shall be constructed with a minimum of 192” of concrete.
39. Check Dams shall be constructed with a minimum of 198” of concrete.
40. Check Dams shall be constructed with a minimum of 204” of concrete.
41. Check Dams shall be constructed with a minimum of 210” of concrete.
42. Check Dams shall be constructed with a minimum of 216” of concrete.
43. Check Dams shall be constructed with a minimum of 222” of concrete.
44. Check Dams shall be constructed with a minimum of 228” of concrete.
45. Check Dams shall be constructed with a minimum of 234” of concrete.
46. Check Dams shall be constructed with a minimum of 240” of concrete.
47. Check Dams shall be constructed with a minimum of 246” of concrete.
48. Check Dams shall be constructed with a minimum of 252” of concrete.
49. Check Dams shall be constructed with a minimum of 258” of concrete.
50. Check Dams shall be constructed with a minimum of 264” of concrete.
51. Check Dams shall be constructed with a minimum of 270” of concrete.
52. Check Dams shall be constructed with a minimum of 276” of concrete.
53. Check Dams shall be constructed with a minimum of 282” of concrete.
54. Check Dams shall be constructed with a minimum of 288” of concrete.
55. Check Dams shall be constructed with a minimum of 294” of concrete.
56. Check Dams shall be constructed with a minimum of 300” of concrete.
57. Check Dams shall be constructed with a minimum of 306” of concrete.
58. Check Dams shall be constructed with a minimum of 312” of concrete.
59. Check Dams shall be constructed with a minimum of 318” of concrete.
60. Check Dams shall be constructed with a minimum of 324” of concrete.
61. Check Dams shall be constructed with a minimum of 330” of concrete.
62. Check Dams shall be constructed with a minimum of 336” of concrete.
63. Check Dams shall be constructed with a minimum of 342” of concrete.
64. Check Dams shall be constructed with a minimum of 348” of concrete.
65. Check Dams shall be constructed with a minimum of 354” of concrete.
66. Check Dams shall be constructed with a minimum of 360” of concrete.
67. Check Dams shall be constructed with a minimum of 366” of concrete.
68. Check Dams shall be constructed with a minimum of 372” of concrete.
69. Check Dams shall be constructed with a minimum of 378” of concrete.
70. Check Dams shall be constructed with a minimum of 384” of concrete.
71. Check Dams shall be constructed with a minimum of 390” of concrete.
72. Check Dams shall be constructed with a minimum of 396” of concrete.
73. Check Dams shall be constructed with a minimum of 402” of concrete.
74. Check Dams shall be constructed with a minimum of 408” of concrete.
75. Check Dams shall be constructed with a minimum of 414” of concrete.
76. Check Dams shall be constructed with a minimum of 420” of concrete.
77. Check Dams shall be constructed with a minimum of 426” of concrete.
78. Check Dams shall be constructed with a minimum of 432” of concrete.
79. Check Dams shall be constructed with a minimum of 438” of concrete.
80. Check Dams shall be constructed with a minimum of 444” of concrete.
81. Check Dams shall be constructed with a minimum of 450” of concrete.
82. Check Dams shall be constructed with a minimum of 456” of concrete.
83. Check Dams shall be constructed with a minimum of 462” of concrete.
84. Check Dams shall be constructed with a minimum of 468” of concrete.
85. Check Dams shall be constructed with a minimum of 474” of concrete.
86. Check Dams shall be constructed with a minimum of 480” of concrete.
87. Check Dams shall be constructed with a minimum of 486” of concrete.
88. Check Dams shall be constructed with a minimum of 492” of concrete.
89. Check Dams shall be constructed with a minimum of 498” of concrete.
90. Check Dams shall be constructed with a minimum of 504” of concrete.
91. Check Dams shall be constructed with a minimum of 510” of concrete.
92. Check Dams shall be constructed with a minimum of 516” of concrete.
93. Check Dams shall be constructed with a minimum of 522” of concrete.
94. Check Dams shall be constructed with a minimum of 528” of concrete.
95. Check Dams shall be constructed with a minimum of 534” of concrete.
96. Check Dams shall be constructed with a minimum of 540” of concrete.
97. Check Dams shall be constructed with a minimum of 546” of concrete.
98. Check Dams shall be constructed with a minimum of 552” of concrete.
99. Check Dams shall be constructed with a minimum of 558” of concrete.
100. Check Dams shall be constructed with a minimum of 564” of concrete.
101. Check Dams shall be constructed with a minimum of 570” of concrete.
102. Check Dams shall be constructed with a minimum of 576” of concrete.
103. Check Dams shall be constructed with a minimum of 582” of concrete.
104. Check Dams shall be constructed with a minimum of 588” of concrete.
105. Check Dams shall be constructed with a minimum of 594” of concrete.
Q&A
Bioretention Media
BIORETENTION SITING, DESIGN & CONSTRUCTION

MEDIA: Media for Optimum Performance

• High enough infiltration rates to meet desired surface water drawdown and system dewatering

• Infiltration rates that are not too high in order to optimize pollutant removal capability

• A growth media to support long-term plant and soil health and water quality treatment capability

• Balance nutrient availability and retention and copper retention at low effluent levels
MEDIA: Common Soil Media Guidelines

- 40% topsoil, 30% sand, 30% compost common recommendation nationally and in (in the past) this region
- Issues with this and other guidelines
 - Fines (< 5% passing the #200 sieve)
 - Minimum organic matter content 10% by dry weight per ASTM D 2974
 - Material control
 - Contaminant flushing
Driver:

- Top soil specifications can be difficult to apply consistently.
- The need for relatively consistent materials that are readily available, affordable and meet necessary criteria.
MEDIA: Initial Soil Media Investigations

Hydraulic conductivity strongly related to percent fines (passing #200 sieve)
Hydraulic conductivity strongly related to coefficient of uniformity
MEDIA: Existing Soil Media Guidelines

- Current guideline in SWMMWW and LID manual 60% sand and 40% compost (this will likely be changing)

- For default media blend use 6”/hr initial infiltration rate (this may be changing with the 2014 SWMMWW update)

- 18” minimum soil depth for enhanced treatment. Minimum of 24” for improved nitrogen or phosphorus removal (2014 manual may eliminate 24” guideline)
MEDIA: Mineral Aggregate Specification

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8”</td>
<td>100</td>
</tr>
<tr>
<td>#4</td>
<td>95-100</td>
</tr>
<tr>
<td>#10</td>
<td>75-90</td>
</tr>
<tr>
<td>#40</td>
<td>25-40</td>
</tr>
<tr>
<td>#100</td>
<td>4-10</td>
</tr>
<tr>
<td>#200</td>
<td>2-5</td>
</tr>
</tbody>
</table>

The following gradation provides a relatively consistent Ksat and coefficient of uniformity for bioretention soil mixes. This is the primary mineral aggregate spec in 2012 LID manual and prescribed by SWMMWW.
MEDIA: Infiltration Rates

If not using the default media blend determine long-term infiltration rate for sizing and flow control capacity

- 1 in/hr minimum for acceptable ponding and system de-watering in typical setting (long-term hydraulic conductivity per ASTM D 2434 at 85% compaction per ASTM D 1557)
- If contributing area has <5,000 sf of PGS; and <10,000 sf TIA; and < ¾ acre landscaping then use correction factor of 2
- If over the above thresholds use correction factor of 4
MEDIA: Infiltration Rates

If not using the default media blend determine sizing and water quality treatment flow

- 2.4 in/hr was maximum rate...guideline likely established for existing native soils not designed soil mixes
- Research indicates that higher infiltration rates provide performance necessary to meet Ecology’s enhanced treatment
- DOE now accepts maximum measured (initial) WQ treatment rate of 12 in/hr with an OM content of 5-8% by weight, CEC ≥ 5 milliequivalents/100 grams dry soil, 2-5% mineral fines content, and 18” minimum soil depth
- Apply same correction factor as for flow control capacity
MEDIA: Recent Media Guideline Updates

- Recommended modifications to permeability testing (ASTM 2434) for bioretention soil media

- If 60% aggregate/40% compost specification in LID and SWMMWW manuals followed then use a measured Ksat of 6”/hr (1.4” to 3”/hr depending on correction factor)
 - 6”/hr may change depending on 2014 manual discussions (stay tuned)

- Previous recommendation of 10% OM content too high. Current recommendation 4% or 5% to 8% max
MEDIA SUMMARY: What Do We Think We Know

- Sandy bioretention soil mixes should provide excellent water quality performance for Zn, hydrocarbon and bacteria removal. Design with caution for systems with under-drains in P and N sensitive basins.
- 2 to 4 percent passing the 200 sieve ideal. Fines should not be above 5 percent for a proper functioning specification.
- Also important: coefficient of Uniformity (Cu) ≥ 4. Cu is the measure of variation in particle sizes of mineral aggregate (D_{60}/D_{10}).
- Small variations in grain size distributions and uniformity can result in large variations in K values.
BIORETENTION SITING, DESIGN & CONSTRUCTION

MEDIA SUMMARY: What Do We Think We Know

• Monitor carefully if topsoil used for mineral component.

• Sandy soil mixes are very well drained...select plants carefully.

• Question of best soil mixes for bio-available P retention unresolved. Increasing depth likely improves nutrient removal.

• Saturated zone improves nitrate removal.

• More work needed on Cu capture and retention.

• Likely that current compost guidelines in WAC did not consider use in stormwater filters. More research needed.
Bioretention Plants
PLANTS: Selection

- Soil moisture conditions
- Sun exposure
- Above and below ground infrastructure
- Site distances and setbacks along roadways
BIORETENTION SITING, DESIGN & CONSTRUCTION

PLANTS: Selection

- Pedestrian use
- Adjacent plant communities and potential invasive species control
- Visual buffering
- Aesthetics
PLANTS: Siting

Bioretention Planting Zones

Note: Vertical scale is exaggerated to show zones.
Emergents Species/ Common Name

<table>
<thead>
<tr>
<th>Plant</th>
<th>Exposure</th>
<th>Mature Size/ Spread</th>
<th>Time of Bloom</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carex obnupta* Slough sedge</td>
<td>Sun/Partial shade</td>
<td>1.5 feet</td>
<td></td>
<td>Moist to seasonally saturated soils; shiny foliage; excellent soil binder; drought-tolerant</td>
</tr>
<tr>
<td>Carex sibirica* Sawbeak sedge</td>
<td>Partial shade</td>
<td>10 inches-3 feet</td>
<td></td>
<td>Wet soils; excellent soil binder</td>
</tr>
<tr>
<td>Juncus effusus* Common rush</td>
<td>Sun/Partial shade</td>
<td>1.2 feet</td>
<td>Summer</td>
<td>Wet soils; evergreen perennial; hardy and adaptable; drought-tolerant; small, non-showy flowers</td>
</tr>
<tr>
<td>Juncus ensifolius* Daggerleaf rush</td>
<td>Sun</td>
<td>12-18 inches</td>
<td></td>
<td>Wet soils; shallow water; excellent soil binder</td>
</tr>
<tr>
<td>Juncus tenuis* Slender rush</td>
<td>Sun</td>
<td>.5-2.5 feet</td>
<td></td>
<td>Moist soils; tufted perennial</td>
</tr>
<tr>
<td>Scirpus acutus* Hardstem bulrush</td>
<td>Sun</td>
<td>4-8 feet</td>
<td></td>
<td>Wet soils; favors prolonged inundation; excellent soil binder</td>
</tr>
<tr>
<td>Scirpus microcarpus* Small-fruited bulrush</td>
<td>Sun/shade</td>
<td>2-4 feet</td>
<td></td>
<td>Wet soils; tolerates prolonged inundation; good soil binder; drought-tolerant</td>
</tr>
</tbody>
</table>
BIORETENTION SITING, DESIGN & CONSTRUCTION

PLANTS: Rhizosphere & Soil Structure

- Agricultural literature documents well the role of plants for building soil structure (Buckman and Brady 1969, Angers and Caron 1998)

- City of Portland OR documents increasing infiltration rates in 12-year old commercial parking bioretention areas. 1995~8”/hr, 2005~13”/hr (BES 2006)

- Lucas observes increased phosphate removal in vegetated vs non-vegetated bioretention... removal more than plant uptake
Mulch reduces weed establishment, regulates soil temperature and moisture, and adds OM to soil.

Mulch should be:

- 2-3 inches thick
- Chipped or shredded softwood or hardwood
- Coarse compost for bottom of facility
- Fine beauty bark not preferable
BIORETENTION SITING, DESIGN & CONSTRUCTION

1. Siting

2. Design

3. Construction

Statewide LID Training Program

INTERMEDIATE LID DESIGN
CONSTRUCTION CONSIDERATIONS: Minimize Site Disturbance

- Stream biota significantly reduced at SS levels of 50-80 mg/L (Corish 1995).

- Schueler reported median TSS concentrations of 4,145 mg/L leaving construction sites with no TESC and 283 mg/L with TESC.
BIORETENTION SITING, DESIGN & CONSTRUCTION

CONSTRUCTION CONSIDERATIONS

Through improved site design, construction planning and sequencing, operator training and proper equipment:

• Minimize site disturbance

• Protect trees

• Prevent over compaction of sub-grade and BSM

• Effective erosion and sediment control
CONSTRUCTION CONSIDERATIONS: Minimize Site Disturbance

- Site design
- Construction Planning
- Training
- Equipment
BIORETENTION SITING, DESIGN & CONSTRUCTION

CONSTRUCTION CONSIDERATIONS: Native Soil Variability

• Do cells look like test pit?

• If lower permeability:
 • Increase size
 • Over-ex and add more BR soil
 • Increase ponding depth (if drawdown can be maintained)
 • Add underdrain

Broadview Green Grid, Seattle, WA
CONSTRUCTION CONSIDERATIONS: Over-compaction

- Practical compaction techniques
- Prevent over compaction (CRITICAL FOR PERFORMANCE)
- No excavation, soil placement, or soil amendment during wet or saturated conditions
- Operate equipment adjacent to (not in) the facility
- If machinery must operate in the facility, use light weight, low ground-contact pressure equipment
CONSTRUCTION CONSIDERATIONS: Over-compaction

Vehicular loading prism – some compaction is necessary

For road or parking lot stability, need heavy compaction from road prism-2H:1V from edge

High Point, Seattle, WA
CONSTRUCTION CONSIDERATIONS: Subgrade Preparation

- Scarify subgrade to re-fracture soil and till in BSM at interface.
- Smeared and sealed by bucket.
• Inspection and verification timing and processes fall into three general phases of project:
 • Pre-construction reviews
 • Construction
 • Verification/repair and final permit
CONSTRUCTION OVERSIGHT: Pre-Construction Reviews

- Set guidelines, expectations and timing for inspections
- Discuss construction sequencing
- Review checklists
- Determine training needs
CONSTRUCTION OVERSIGHT: Pre-Construction Reviews

- Include developer, builder, utilities, plan review, inspectors in pre-construction
- Make sure everyone knows where and what the requirements are...for an LID project, there may be stormwater requirements in landscaping guidelines
CONSTRUCTION OVERSIGHT: Construction

First Visit: Pre-bioretention soil media (BSM) placement

- Certify native/existing soils comparable to design specs
- Temporary erosion and sediment control (TESC) correctly installed
- Rough grading to plans
- Under-drain(s) and overflow
- Field changes...process should have been covered at pre-construction
- Photo documentation?
CONSTRUCTION OVERSIGHT: Construction

Second Visit: Pre-mulch or planting

- Verify that BSM meets composition guidelines and depth
- For BSM composition: current lab report from physical submittal, truck ticket, visual/texture. If questions on depth, expose to subgrade
- TESC still installed correctly and upslope areas managed properly
INSPECTION & VERIFICATION

CONSTRUCTION OVERSIGHT: Post-Construction

Third Visit: Post-construction

• Verify final grade

• Verify contributing area as designed and stabilized

• Verify BSM not clogged and infiltration rate adequate

• Verify ponding depths, overflow, bottom swale area

• Verify plants (type and density)

• Verify mulch (type and depth)
CONSTRUCTION OVERSIGHT: Post-Construction

Third Visit: Post-construction (whole site)

• Final grades
• 30-45 day follow up to remove TESC
• Verify O&M plan in place
INSPECTION & VERIFICATION

CONSTRUCTION SEQUENCING

- Site flat or sloping away from facility likely ok to:
 - Complete bioretention area with roads, utilities and storm infrastructure
 - Install conventional TESC and barriers

Meadow on the Hylebos/Curtis Hinman
CONSTRUCTION SEQUENCING

- Construction activity sloping to bioretention facility
 - Divert flows around facility and treat during construction
 - Partially complete and allow storm flows through facility

Meadow on the Hylebos/Curtis Hinman
• Construction activity sloping to bioretention facility (w/o underdrain)
 • Delineate or partially grade to define facility. Keep construction traffic off area
 • Install TESC and stabilize upslope construction area as best as possible
 • Divert flows around facilities
 • If flows allowed through facility, leave at least 6” above final grade. Line or mulch?
 • Keep construction traffic off area
• Construction activity sloping to bioretention facility (w/underdrain)
 • Place infrastructure
 • If possible leave rest of facility at least 6” above grade
 • Install TESC and stabilize upslope construction area
 • If flows allowed through facility, leave or backfill at least 6” above final grade
 • Cover underdrain with plastic and fabric
 • Line or mulch whole facility?
 • Keep construction traffic off area
Partial excavation and completion of facility after homes are finished and landscaping stabilized requires clear agreement among developer, homebuilder and jurisdiction.
INSPECTION & VERIFICATION

REMEDIES FOR FAILING SITES

• Poor TESC and sediment to facility
 • Excavate to depth that sediment deposits and potential clogging not present (usually 6”)
 • Replace BSM, mulch, and plants

• Compaction of existing soils
 • Does the facility still infiltrate at design rate?
 • Perform infiltration test or verify pre-construction density
 • Remedy procedures if necessary
CONSTRUCTION COSTS

Cost Comparison – bioretention vs. filters for treatment only

Assumptions:
- Double loaded parking lot with perpendicular stalls & landscape strip
- 22’ travel lane / 9’x18’ parking stalls
- Exclude reduced detention benefits
Cost Comparison – bioretention vs. filters for treatment only

CONVENTIONAL:
1. 4’ wide landscape island between rows of stalls
2. Catch basins @ 150’o/c
3. 8” CPEP storm pipe continuous
4. Stormwater treatment provided by filter vaults sized @ 10 cartridges peracre

LID:
1. 4’ wide bioretention cell between rows of stalls, bioretention cells sized @ +/- 5% of tributary area for treatment only
2. Standpipe overflow with beehive grate in each bioretention cell 1 @ 150’

<table>
<thead>
<tr>
<th>CONVENTIONAL</th>
<th>LID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $5/ SF x 4’ = $20/LF</td>
<td>1. $30/SF x 4’ = $120/LF</td>
</tr>
<tr>
<td>2. $1,000 / 150’ = $6.67/LF</td>
<td>2. $1,000/150’ = $6.67/LF</td>
</tr>
<tr>
<td>3. $50/LF</td>
<td></td>
</tr>
<tr>
<td>4. $1.25/SF x (18’x2 +22’)=$72.50</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: ~ $149.17 / LF

TOTAL: ~ $126.67 / LF

Notes
- Reduced detention benefit in addition to the 15% savings shown for treatment only
CONSTRUCTION COSTS

Cost Comparison – conventional vs. LID project

No formal cost comparison, but contractor found LID project approximately 20% less than conventional.
CONSTRUCTION COSTS

- Present value of O&M + construction costs
- LCC for Pinehurst (47,290 ft²)
 - $1.2M + $5.2M = $6.4M
- Initial estimates
 - $4.8 million construction cost
- Comparable project to retrofit $8.9 million
- Total project cost 453K for 660 ft block
 - Includes all design, project management, construction cost
- Present value of O&M costs compared to traditional systems is significantly less
introduction to course and bioretention
flow control and water quality treatment
bioretention siting and design
construction, inspection & verification
wrap-up
Statewide LID Training Program

OTHER COURSE OFFERINGS

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Introduction to LID for Eastern Washington</td>
<td>Intermediate LID Topics: NPDES Phase I & II Requirements</td>
<td>Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>2.1</td>
<td>3.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Introduction to LID for Inspection & Maintenance Staff</td>
<td>Intermediate LID Design: Bioretention</td>
<td>Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>2.2</td>
<td>3.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Introduction to LID for Developers & Contractors: Make Money be Green</td>
<td>Intermediate LID Design: Permeable Pavement</td>
<td>Advanced Topics for LID Operations: Bioretention</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>Advanced Topics for LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td>4.1</td>
<td>4.2</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Topics in LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Topics in LID Design: Bioretention Media</td>
</tr>
</tbody>
</table>

TRAIN THE TRAINERS

<table>
<thead>
<tr>
<th>9.1</th>
<th>9.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Providers</td>
<td>LID Topic Experts</td>
</tr>
</tbody>
</table>
Statewide LID Training Program

ONLINE EVALUATION

- An on-line evaluation will be sent to you within 3 days following this training
- Feedback will help to refine future trainings
- Feedback is also important to pursue funding to support a long-term statewide LID training program
Two certificates:
• LID Design certificate
• Long-term LID Operations certificate
• Stay tuned for developing certificate policies

Sign out!
For information on training and other resources, visit the Washington Stormwater Center website:

http://www.wastormwatercenter.org

Stay connected through Social Media

• Come “Like” our Page
• Sign up to follow and get Tweets
Statewide LID Training Program

QUESTIONS

Additional questions contact:

training@cascadiaconsulting.com

(206) 449-1163