Statewide LID Training Program
Statewide LID Training Program

INSTRUCTORS

Alice Lancaster, PE
Associate Engineer
Key project experience:
Specialized expertise in the design and hydrologic/hydraulic analysis of LID.

Curtis Hinman
Senior Scientist
Key project experience: Research specialist in the performance and design of LID applications.
LEARNING OBJECTIVES

1. Gain an intermediate level knowledge necessary for proper entry level design of bioretention systems.

2. Learn skills necessary for basic site assessment and locating bioretention areas in residential and commercial settings.

3. Learn practical skills necessary for construction of basic bioretention systems.
Statewide LID Training Program

LOGISTICS

SCHEDULE
8-hour training
Lunch on your own
45 minute site visit

OTHER LOGISTICS
• Restrooms
• Food
• Turn off cell phones
• Sign in and sign out
Statewide LID Training Program

PROGRAM OVERVIEW

• 2012: Public and private partners engage state legislature to fund program

• June 2012: LID Training Steering Committee convened

• 2012-2013: Washington State LID Training Plan developed: www.wastormwatercenter.org/statewide-lid-training-program-plan

• 2014: Training program built from state LID Training Plan.
Statewide LID Training Program

PROGRAM OVERVIEW

- Implement first phase of trainings (September 2014 through May 2015)
- 64 trainings offered in first phase
- Three levels: Introductory, Intermediate, and Advanced
- Train the Trainer program for service providers and LID topic experts
- Anticipate two more years of funding.
Statewide LID Training Program

TEAM

<table>
<thead>
<tr>
<th>PROJECT LEAD</th>
<th>CORE TEAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERRERA</td>
<td>CASCADIA Veda</td>
</tr>
</tbody>
</table>

ADDITIONAL TRAINING SUPPORT

- [CH2MHILL](#)
- [Aspect](#)
- [Leaping FROG FILMS](#)
- [SvR](#)
- [Washington State Stormwater](#)
- [StormwaterONE](#)
Statewide LID Training Program

Training Sequence

<table>
<thead>
<tr>
<th>Introductory</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Introduction to LID for Eastern Washington</td>
<td>Intermediate LID – NPDES Phase I & II Requirements</td>
<td>Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>2.1</td>
<td>3.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Introduction to LID for Inspection & Maintenance Staff</td>
<td>Intermediate LID Design: Bioretention</td>
<td>Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>2.2</td>
<td>3.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Introduction to LID for Developers & Contractors: Make Money be Green</td>
<td>Intermediate LID Design: Permeable Pavement</td>
<td>Advanced Topics for LID Operations: Bioretention</td>
</tr>
<tr>
<td>3.4</td>
<td>5.4</td>
<td>8.1</td>
</tr>
<tr>
<td>4.1</td>
<td>5.5</td>
<td>8.2</td>
</tr>
<tr>
<td>4.2</td>
<td>5.6</td>
<td>8.3</td>
</tr>
<tr>
<td>Intermediate LID Design: Hydrologic Modelling</td>
<td>6.0</td>
<td>8.4</td>
</tr>
<tr>
<td>5.1</td>
<td>6.1</td>
<td>8.5</td>
</tr>
<tr>
<td>5.2</td>
<td>6.2</td>
<td>8.6</td>
</tr>
<tr>
<td>5.3</td>
<td>6.3</td>
<td>8.7</td>
</tr>
<tr>
<td>5.4</td>
<td>6.4</td>
<td>8.8</td>
</tr>
<tr>
<td>5.5</td>
<td>6.5</td>
<td>8.9</td>
</tr>
<tr>
<td>5.6</td>
<td>6.6</td>
<td>8.10</td>
</tr>
<tr>
<td>5.7</td>
<td>6.7</td>
<td>8.11</td>
</tr>
<tr>
<td>5.8</td>
<td>6.8</td>
<td>8.12</td>
</tr>
<tr>
<td>5.9</td>
<td>6.9</td>
<td>8.13</td>
</tr>
<tr>
<td>5.10</td>
<td>6.10</td>
<td>8.14</td>
</tr>
<tr>
<td>5.11</td>
<td>6.11</td>
<td>8.15</td>
</tr>
<tr>
<td>5.12</td>
<td>6.12</td>
<td>8.16</td>
</tr>
<tr>
<td>5.13</td>
<td>6.13</td>
<td>8.17</td>
</tr>
<tr>
<td>5.14</td>
<td>6.14</td>
<td>8.18</td>
</tr>
<tr>
<td>5.15</td>
<td>6.15</td>
<td>8.19</td>
</tr>
<tr>
<td>5.16</td>
<td>6.16</td>
<td>8.20</td>
</tr>
<tr>
<td>5.17</td>
<td>6.17</td>
<td>8.21</td>
</tr>
<tr>
<td>5.18</td>
<td>6.18</td>
<td>8.22</td>
</tr>
<tr>
<td>5.19</td>
<td>6.19</td>
<td>8.23</td>
</tr>
<tr>
<td>5.20</td>
<td>6.20</td>
<td>8.24</td>
</tr>
<tr>
<td>5.21</td>
<td>6.21</td>
<td>8.25</td>
</tr>
<tr>
<td>5.22</td>
<td>6.22</td>
<td>8.26</td>
</tr>
<tr>
<td>5.23</td>
<td>6.23</td>
<td>8.27</td>
</tr>
<tr>
<td>5.24</td>
<td>6.24</td>
<td>8.28</td>
</tr>
<tr>
<td>5.25</td>
<td>6.25</td>
<td>8.29</td>
</tr>
<tr>
<td>5.26</td>
<td>6.26</td>
<td>8.30</td>
</tr>
<tr>
<td>5.27</td>
<td>6.27</td>
<td>8.31</td>
</tr>
<tr>
<td>5.28</td>
<td>6.28</td>
<td>8.32</td>
</tr>
<tr>
<td>5.29</td>
<td>6.29</td>
<td>8.33</td>
</tr>
<tr>
<td>5.30</td>
<td>6.30</td>
<td>8.34</td>
</tr>
<tr>
<td>5.31</td>
<td>6.31</td>
<td>8.35</td>
</tr>
<tr>
<td>5.32</td>
<td>6.32</td>
<td>8.36</td>
</tr>
<tr>
<td>5.33</td>
<td>6.33</td>
<td>8.37</td>
</tr>
<tr>
<td>5.34</td>
<td>6.34</td>
<td>8.38</td>
</tr>
<tr>
<td>5.35</td>
<td>6.35</td>
<td>8.39</td>
</tr>
<tr>
<td>5.36</td>
<td>6.36</td>
<td>8.40</td>
</tr>
<tr>
<td>5.37</td>
<td>6.37</td>
<td>8.41</td>
</tr>
<tr>
<td>5.38</td>
<td>6.38</td>
<td>8.42</td>
</tr>
<tr>
<td>5.39</td>
<td>6.39</td>
<td>8.43</td>
</tr>
<tr>
<td>5.40</td>
<td>6.40</td>
<td>8.44</td>
</tr>
<tr>
<td>5.41</td>
<td>6.41</td>
<td>8.45</td>
</tr>
<tr>
<td>5.42</td>
<td>6.42</td>
<td>8.46</td>
</tr>
<tr>
<td>5.43</td>
<td>6.43</td>
<td>8.47</td>
</tr>
<tr>
<td>5.44</td>
<td>6.44</td>
<td>8.48</td>
</tr>
<tr>
<td>5.45</td>
<td>6.45</td>
<td>8.49</td>
</tr>
<tr>
<td>5.46</td>
<td>6.46</td>
<td>8.50</td>
</tr>
<tr>
<td>5.47</td>
<td>6.47</td>
<td>8.51</td>
</tr>
<tr>
<td>5.48</td>
<td>6.48</td>
<td>8.52</td>
</tr>
<tr>
<td>5.49</td>
<td>6.49</td>
<td>8.53</td>
</tr>
<tr>
<td>5.50</td>
<td>6.50</td>
<td>8.54</td>
</tr>
<tr>
<td>5.51</td>
<td>6.51</td>
<td>8.55</td>
</tr>
<tr>
<td>5.52</td>
<td>6.52</td>
<td>8.56</td>
</tr>
<tr>
<td>5.53</td>
<td>6.53</td>
<td>8.57</td>
</tr>
<tr>
<td>5.54</td>
<td>6.54</td>
<td>8.58</td>
</tr>
<tr>
<td>5.55</td>
<td>6.55</td>
<td>8.59</td>
</tr>
<tr>
<td>5.56</td>
<td>6.56</td>
<td>8.60</td>
</tr>
<tr>
<td>5.57</td>
<td>6.57</td>
<td>8.61</td>
</tr>
<tr>
<td>5.58</td>
<td>6.58</td>
<td>8.62</td>
</tr>
<tr>
<td>5.59</td>
<td>6.59</td>
<td>8.63</td>
</tr>
<tr>
<td>5.60</td>
<td>6.60</td>
<td>8.64</td>
</tr>
<tr>
<td>5.61</td>
<td>6.61</td>
<td>8.65</td>
</tr>
<tr>
<td>5.62</td>
<td>6.62</td>
<td>8.66</td>
</tr>
<tr>
<td>5.63</td>
<td>6.63</td>
<td>8.67</td>
</tr>
<tr>
<td>5.64</td>
<td>6.64</td>
<td>8.68</td>
</tr>
<tr>
<td>5.65</td>
<td>6.65</td>
<td>8.69</td>
</tr>
<tr>
<td>5.66</td>
<td>6.66</td>
<td>8.70</td>
</tr>
<tr>
<td>5.67</td>
<td>6.67</td>
<td>8.71</td>
</tr>
<tr>
<td>5.68</td>
<td>6.68</td>
<td>8.72</td>
</tr>
<tr>
<td>5.69</td>
<td>6.69</td>
<td>8.73</td>
</tr>
<tr>
<td>5.70</td>
<td>6.70</td>
<td>8.74</td>
</tr>
<tr>
<td>5.71</td>
<td>6.71</td>
<td>8.75</td>
</tr>
<tr>
<td>5.72</td>
<td>6.72</td>
<td>8.76</td>
</tr>
<tr>
<td>5.73</td>
<td>6.73</td>
<td>8.77</td>
</tr>
<tr>
<td>5.74</td>
<td>6.74</td>
<td>8.78</td>
</tr>
<tr>
<td>5.75</td>
<td>6.75</td>
<td>8.79</td>
</tr>
<tr>
<td>5.76</td>
<td>6.76</td>
<td>8.80</td>
</tr>
<tr>
<td>5.77</td>
<td>6.77</td>
<td>8.81</td>
</tr>
<tr>
<td>5.78</td>
<td>6.78</td>
<td>8.82</td>
</tr>
<tr>
<td>5.79</td>
<td>6.79</td>
<td>8.83</td>
</tr>
<tr>
<td>5.80</td>
<td>6.80</td>
<td>8.84</td>
</tr>
<tr>
<td>5.81</td>
<td>6.81</td>
<td>8.85</td>
</tr>
<tr>
<td>5.82</td>
<td>6.82</td>
<td>8.86</td>
</tr>
<tr>
<td>5.83</td>
<td>6.83</td>
<td>8.87</td>
</tr>
<tr>
<td>5.84</td>
<td>6.84</td>
<td>8.88</td>
</tr>
<tr>
<td>5.85</td>
<td>6.85</td>
<td>8.89</td>
</tr>
<tr>
<td>5.86</td>
<td>6.86</td>
<td>8.90</td>
</tr>
<tr>
<td>5.87</td>
<td>6.87</td>
<td>8.91</td>
</tr>
<tr>
<td>5.88</td>
<td>6.88</td>
<td>8.92</td>
</tr>
<tr>
<td>5.89</td>
<td>6.89</td>
<td>8.93</td>
</tr>
<tr>
<td>5.90</td>
<td>6.90</td>
<td>8.94</td>
</tr>
<tr>
<td>5.91</td>
<td>6.91</td>
<td>8.95</td>
</tr>
<tr>
<td>5.92</td>
<td>6.92</td>
<td>8.96</td>
</tr>
<tr>
<td>5.93</td>
<td>6.93</td>
<td>8.97</td>
</tr>
<tr>
<td>5.94</td>
<td>6.94</td>
<td>8.98</td>
</tr>
<tr>
<td>5.95</td>
<td>6.95</td>
<td>8.99</td>
</tr>
<tr>
<td>5.96</td>
<td>6.96</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Train the Trainers

<table>
<thead>
<tr>
<th>9.1</th>
<th>9.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Providers</td>
<td>LID Topic Experts</td>
</tr>
</tbody>
</table>
Statewide LID Training Program

TRAINING SEQUENCE

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Introduction to LID for Eastern Washington</td>
<td>Intermediate LID – NPDES Phase I & II Requirements</td>
<td>Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>2.1</td>
<td>3.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Introduction to LID for Inspection & Maintenance Staff</td>
<td>Intermediate LID Design: Bioretention</td>
<td>Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>2.2</td>
<td>3.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Introduction to LID for Developers & Contractors: Make Money be Green</td>
<td>Intermediate LID Design: Permeable Pavement</td>
<td>Advanced Topics for LID Operations: Bioretention</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>Advanced Topics for LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate LID Design: Hydrologic Modelling</td>
<td></td>
</tr>
</tbody>
</table>

TRAIN THE TRAINERS

<table>
<thead>
<tr>
<th>9.1</th>
<th>9.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Providers</td>
<td>LID Topic Experts</td>
</tr>
</tbody>
</table>
introduction

water quality treatment

bioretention siting, design and construction

inspection & verification

wrap-up
Statewide LID Training Program

LID REGULATORY STATUS

• New Permit Requirements for local governments on 3 levels:
 • Building site and subdivision
 • Municipal (codes)
 • Watershed

• New & Redevelopment
 • Site & subdivision - S5.C.4.a.i. & ii. (S5.C.5 in Phase I)
 • Development Codes - S5.C.4.f.
 • Watershed Scale - S5C.4.g.
Statewide LID Training Program

LID REGULATORY STATUS

• Phase I Permittees
 • Snohomish, King, Pierce, Clark Counties
 • Seattle, Tacoma
 • WSDOT

• Phase II Permittees
 • WWA: 80 cities, 5 counties
 • EWA: 18 cities, 6 counties

• Secondary Permittees:
 • Approximately 45 such as ports and universities
Statewide LID Training Program

LID REGULATORY TIMELINE

Adopt new site & subdivision stormwater codes

Phase I: June 30, 2015
Phase II: December 31, 2016*

Review and revise development-related codes, rules & standards

Phase I: June 30, 2015
Phase II: December 31, 2016*

* Or GMA update deadline, whichever is later
Statewide LID Training Program

LID REGULATORY STATUS: New Development Thresholds

Min. Requirements #1 - #9:

• >5,000 sq. ft. new and replaced hard surface area, or
• > 3/4 acre vegetation to lawn/landscape, or
• > 2.5 acres native vegetation to pasture

Min. Requirements #1 - #5:

• > 2,000 sq. ft. new and replaced hard surface area, or
• > 7,000 sq. ft. land disturbance

Min. Requirement #2 - Erosion control

• All projects (No submittal for projects < 2,000/7,000)
Statewide LID Training Program

<table>
<thead>
<tr>
<th>#1 Preparation of Stormwater Site Plans</th>
<th>#2 Construction Stormwater Pollution Prevention</th>
<th>#3 Source Control of Pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4 Preservation of Natural Drainage Systems and Outfalls</td>
<td>#5 On-site Stormwater Management</td>
<td>#6 Runoff Treatment</td>
</tr>
<tr>
<td>#7 Flow Control</td>
<td>#8 Wetlands Protection</td>
<td>#9 Operation and Maintenance</td>
</tr>
</tbody>
</table>
WHAT IS LOW IMPACT DEVELOPMENT

• A land use development strategy that emphasizes protection and use of on-site natural features to manage stormwater.

• Careful assessment of site soils and strategic site planning to best use those soils for stormwater management.

• Integrates engineered and non-engineered, small scale stormwater controls into the site design to closely mimic pre-development hydrologic processes.
WHAT IS LOW IMPACT DEVELOPMENT

- Used at the parcel and subdivision scale. Site scale necessary but not sufficient. Regional land use planning critical for effective stormwater management.

- Primary goal: no measurable impacts to receiving waters by maintaining or approximating pre-development surface flow volumes and durations.
Undeveloped - Forest

- During winter months evaporation continues to be active while the transpiration component is minimal.
- Storm events moderated by infiltration, evaporation, and evapotranspiration.
- Water is available in substrata to sustain stream base flows during summer months.
- As winter progresses, the interflow component of stream flow increases.
- During the Summer and Fall streams are maintained primarily by glacial melt water and/or groundwater flow.
Developed Conditions

- Overland flow increases and time of concentration decreases
- Less water in substrata available to sustain base stream flows
- Interflow highly variable depending on development
Statewide LID Training Program

WHAT IS LOW IMPACT DEVELOPMENT

Objectives

• Protect and restore native soils/vegetation.
• Reduce development envelope.
• Reduce impervious surfaces and eliminate effective impervious area.
WHAT IS LOW IMPACT DEVELOPMENT

Objectives

• Manage stormwater as close to its origin as possible.

• Integrate stormwater controls into the design—create a multifunctional landscape.
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMPONENTS

- Flow Entrance
- Pre-Settling
- Ponding Area
- Bioretention Soil
- Mulch/Compost
- Vegetation
- Filter Fabric (?)
- Liner (optional)
- Underdrain (optional)
- Overflow
INTRODUCTION

BIORETENTION AND RAIN GARDENS

- Bioretention will often include surface and subsurface infrastructure
- Bioretention = designed soil mix
- Bioretention meets requirements for MR 6 and 7 and required for MR 5 if MR 1-9 required
- Rain gardens will usually not include under-drains and may use less restrictive soil mix guidelines (e.g. existing soil augmented with compost and sand). Meets MR 5 requirements.
INTRODUCTION

BIORETENTION AND RAIN GARDENS

• Primary functions
 • Hydrologic benefits
 • Water quality treatment
 • Aesthetic amenity
BIORETENTION: Definition and Types

- Shallow landscaped depressions that are engineered (bioretention) or non-engineered (rain gardens) to receive stormwater from small contributing areas
- Small scale, dispersed facilities
- Types:
 - Bioretention cells
 - Bioretention swales
 - Infiltration planters
 - Flow-through planters
 - Online and offline
Break
1. Introduction to course and bioretention
2. Water quality treatment
3. Bioretention siting, design and construction
4. Inspection & verification
5. Wrap-up
All primary pathways for removing pollutants from storm flows active in bioretention

- Stormwater volume reduction
- Sedimentation
- Filtration
- Phytoremediation
- Thermal attenuation
- Adsorption
- Volatilization

Note that rain gardens can provide these pollutant capture pathways, but not approved for WQ treatment in SWMMWW.
WATER QUALITY TREATMENT
VOLUME REDUCTION

<table>
<thead>
<tr>
<th>Project</th>
<th>Completed</th>
<th>Infiltration</th>
<th>Sizing</th>
<th>Volume Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siskiyou Green Street</td>
<td>Oct 2003</td>
<td>1.5 - 2.0 in/hr</td>
<td>6%</td>
<td>*(1/04 – 12/05) 83%</td>
</tr>
<tr>
<td>Glencoe Rain Garden</td>
<td>Oct 2003</td>
<td>1.8 - 3.0 in/hr</td>
<td>6%</td>
<td>(1/04 – 12/05) 94%</td>
</tr>
<tr>
<td>Greensboro NC</td>
<td>2001</td>
<td>0.2 – 0.6 in/hr</td>
<td>5%</td>
<td>(2002) 78%</td>
</tr>
<tr>
<td>Sea Street</td>
<td>2001</td>
<td>variable</td>
<td>~2%</td>
<td>(2001 – present) 98%</td>
</tr>
<tr>
<td>110th Cascade</td>
<td>2003</td>
<td></td>
<td></td>
<td>(10/04 – 06) 74%</td>
</tr>
<tr>
<td>Meadow on the Hylebos</td>
<td>2006</td>
<td>0.0 – 0.8 in/hr</td>
<td>15%</td>
<td>(10/07 – 5/08) 99.99%</td>
</tr>
</tbody>
</table>
SOIL CONTAMINANT LEVELS

<table>
<thead>
<tr>
<th>Project</th>
<th>e. Coli (mpn/g)</th>
<th>Cu (mg/kg)</th>
<th>Pb (mg/kg)</th>
<th>Hg (mg/kg)</th>
<th>Zn (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siskiyou Green Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6”</td>
<td>280</td>
<td>34.4</td>
<td>56.8</td>
<td>0.103</td>
<td>170</td>
</tr>
<tr>
<td>6-12”</td>
<td>--</td>
<td>17.0</td>
<td>12.2</td>
<td>0.032</td>
<td>100</td>
</tr>
<tr>
<td>12-18”</td>
<td>--</td>
<td>17.6</td>
<td>10.9</td>
<td>0.054</td>
<td>96</td>
</tr>
<tr>
<td>SW 12th & Montgomery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6”</td>
<td>7</td>
<td>30.1</td>
<td>29.9</td>
<td>0.043</td>
<td>120</td>
</tr>
<tr>
<td>12-18”</td>
<td>--</td>
<td>22.2</td>
<td>18.9</td>
<td>0.082</td>
<td>92</td>
</tr>
</tbody>
</table>

- **MTCA**: Pb: 250 mg/kg, Hg: 2 mg/kg
WATER QUALITY TREATMENT

PERCENT REMOVAL OF NUTRIENTS

<table>
<thead>
<tr>
<th>Study / Location</th>
<th>TKN (mg/L)</th>
<th>NO3 (mg/L)</th>
<th>TP (mg/L)</th>
<th>Hydrocarbons (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis et al 2006*</td>
<td>38% (u) 68% (l)</td>
<td>-96% (u) 24% (l)</td>
<td>1% (u) 81% (l)</td>
<td></td>
</tr>
<tr>
<td>Greenbelt</td>
<td>57%</td>
<td>16%</td>
<td></td>
<td>65%</td>
</tr>
<tr>
<td>Largo</td>
<td>67%</td>
<td>15%</td>
<td></td>
<td>87%</td>
</tr>
<tr>
<td>Mass removal</td>
<td>97%</td>
<td>97%</td>
<td></td>
<td>99%</td>
</tr>
<tr>
<td>Hunt et al 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greensboro</td>
<td>-4.9%</td>
<td>75%</td>
<td>-240%</td>
<td></td>
</tr>
<tr>
<td>Chapel Hill</td>
<td>45%</td>
<td>13%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Hsieh 2005</td>
<td></td>
<td></td>
<td></td>
<td>>97%</td>
</tr>
<tr>
<td>PNW Bioswales (Herrera 2006)</td>
<td></td>
<td></td>
<td>18%</td>
<td>-10%</td>
</tr>
<tr>
<td>Nat’l Bioswales**</td>
<td></td>
<td></td>
<td></td>
<td>-88%</td>
</tr>
</tbody>
</table>

Event mean concentrations

* Percent reduction at 18 cm (upper) and 61 cm (lower) depths (lab)

** Herrera from Barrett
WATER QUALITY TREATMENT

PERCENT REMOVAL OF TSS & METALS

<table>
<thead>
<tr>
<th>Source</th>
<th>TSS (mg/L)</th>
<th>Cu (µg/L)</th>
<th>Pb (µg/L)</th>
<th>Zn (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis et al 2001*</td>
<td></td>
<td>89% (u) 92% (l)</td>
<td>>98% (u) >98% (l)</td>
<td>>98% (u) >98% (l)</td>
</tr>
<tr>
<td>Davis et al 2003**</td>
<td></td>
<td>>99%</td>
<td>>99%</td>
<td>>99%</td>
</tr>
<tr>
<td>Greenbelt</td>
<td></td>
<td>97%</td>
<td>>95%</td>
<td>>95%</td>
</tr>
<tr>
<td>Largo</td>
<td></td>
<td>43%</td>
<td>70%</td>
<td>64%</td>
</tr>
<tr>
<td>Hunt et al 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greensboro</td>
<td>-180%</td>
<td>99%</td>
<td>81%</td>
<td>98%</td>
</tr>
<tr>
<td>Chapel Hill</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hsieh, Davis 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNW Bioswales (Herrera 2006)</td>
<td></td>
<td>64%</td>
<td></td>
<td>47%</td>
</tr>
<tr>
<td>National Bioswales (Herrera from Barrett)</td>
<td>43%</td>
<td></td>
<td>53%</td>
<td></td>
</tr>
</tbody>
</table>

Event mean concentrations

* Percent reduction at 18 cm (upper) and 61 cm (lower) depths (lab)

** Percent mass removal (lab)
WATER QUALITY TREATMENT

BIORETENTION FLUSHING

Statewide LID Training Program

DEPARTMENT OF ECOLOGY
State of Washington
WATER QUALITY TREATMENT

BIORETENTION FLUSHING

![Graph showing dissolved copper levels over time with IN and OUT categories and various extraction dates and criteria](image-url)
WATER QUALITY TREATMENT
BIORETENTION FLUSHING EXPERIMENTS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Median Influent</th>
<th>Min</th>
<th>Median Effluent</th>
<th>Max</th>
<th>n</th>
<th>Sand Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>mg/L</td>
<td>4.9</td>
<td>1</td>
<td>5.3</td>
<td>22.5</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Diss Zn</td>
<td>µg/L</td>
<td>71</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Diss Cu</td>
<td>µg/L</td>
<td>3</td>
<td>1.7</td>
<td>8.6</td>
<td>15.9</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>PO4</td>
<td>mg/L</td>
<td>0.016</td>
<td>0.086</td>
<td>0.236</td>
<td>0.461</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>NO3-NO2</td>
<td>mg/L</td>
<td>0.361</td>
<td>0.05</td>
<td>0.145</td>
<td>1.03</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>CFU/100mL</td>
<td>229</td>
<td>5</td>
<td>22.5</td>
<td>65</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
WSU large-scale lysimeter study (unpublished)
TSS CAPTURE

Filtration: bioretention provides excellent sediment filtration...

Does not appear to be concentration dependent.
WSU large-scale lysimeter study (unpublished)
SUMMARY

• Initial flushing of nitrogen, phosphorus and low levels of copper at low influent concentrations.

• Excellent zinc at installation and very good copper capture at typical influent concentrations after initial flushing.

• Reasonable TN capture at typical influent concentrations.

• Very good TSS capture

• TP and PO4 remain challenges

• Overall, very good performance in relation to other treatment technologies
introduction

water quality treatment

bioretention siting, design and construction

inspection & verification

wrap-up
BIORETENTION SITING, DESIGN & CONSTRUCTION

1. Siting

2. Design

3. Construction

BIORETENTION SITING, DESIGN & CONSTRUCTION

Statewide LID Training Program

Department of Ecology
State of Washington

Intermediate LID Design
INFEASIBILITY CRITERIA: Infiltration Restrictions

- Insufficient vertical separation from bottom of facility to hydraulic restriction layer (water table, bedrock, compacted soil layer)
 - 1 foot clearance if the contributing area is less than:
 - 5,000 square feet of pollution-generating impervious surface
 - 10,000 square feet of impervious area
 - ¾ acres of lawn and landscaped area
 - 3 foot clearance for larger contributing areas

Restrictions (sources: SWMMWW Volume III, Section 3.4)
INFEASIBILITY CRITERIA: Infiltration Setbacks

<table>
<thead>
<tr>
<th>Feature</th>
<th>Setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking water well</td>
<td>100 feet</td>
</tr>
<tr>
<td>Spring used for drinking water</td>
<td>100 feet</td>
</tr>
<tr>
<td>Known deep soil contamination</td>
<td>100 feet</td>
</tr>
<tr>
<td>Closed or active landfill</td>
<td>100 feet</td>
</tr>
<tr>
<td>Small on-site septic drainfield</td>
<td>10 feet</td>
</tr>
</tbody>
</table>

Setbacks (source: SWMMWW Infeasibility Criteria)
INFEASIBILITY CRITERIA: Infiltration Setbacks

Feature

<table>
<thead>
<tr>
<th>Feature</th>
<th>Setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Growth Protection Easement</td>
<td>≥ 20 feet</td>
</tr>
<tr>
<td>Top of slopes >20% and over 10 feet of relief</td>
<td>≥ 50 feet</td>
</tr>
<tr>
<td>Underground storage tanks</td>
<td>10-100 feet</td>
</tr>
<tr>
<td>Wellheads, on-site septic systems, basements, foundations, utilities, slopes, contaminated areas, and property lines</td>
<td>Consult local jurisdiction guidelines</td>
</tr>
</tbody>
</table>

Setbacks (source: SWMMWW Infeasibility Criteria)
Infiltration not required in:

- Areas that geotechnical evaluation deems imprudent
 - Erosion, slope failure, flooding
- Erosion/landslide hazard areas
- Groundwater protection area

Restrictions (sources: SWMMWW Infeasibility Criteria)
• Understand fate of infiltrated water
 • Intent is to infiltrate to native underlying soil
 • Arterial ROW with dense underground infrastructure (preferential pathway → utility trenches)
 • Potential for excessive shallow interflow emerging at slopes, development cuts, or in basements
• Use engineering controls
 • Ex. trench water stops to prevent re-infiltration to pipes
 • Ex. liners to protect adjacent infrastructure
• Native soil and vegetation preservation
• Site Slopes
 • Cross & Longitudinal Slopes
 • Positive Drainage from drainage area to BR to overflow
• Setbacks (e.g., utilities & other infrastructure, wetland and streams)
• May require pre-settling
• Public acceptance/ participation (retrofits)
BIORETENTION SITING, DESIGN & CONSTRUCTION

SITING CONSIDERATIONS: Soils

• Why soils affect siting
• Soil variability
• Initial infiltration rates
• Design infiltration rates
BIORETENTION SITING, DESIGN & CONSTRUCTION

SITING CONSIDERATIONS: Native Soils

• Important for Infiltrating facilities ONLY

• Infiltrating facilities sized based on infiltration rates

• Minimum “feasible” initial infiltration rate of 0.3 in/hr

• Locate infiltrating BMPs in areas with best soils
BIORETENTION SITING, DESIGN & CONSTRUCTION

SITING CONSIDERATIONS: Soil Variability

Broadview Green Grid, Seattle, WA
SITING CONSIDERATIONS: Soil Variability

Site 1: Loam

Broadview Green Grid, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

SITING CONSIDERATIONS: Soil Variability

Site 2: Sand

Broadview Green Grid, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

SITING CONSIDERATIONS: Soil Variability

Site 3: Glacial till

Broadview Green Grid, Seattle, WA
Infiltration Rates: Overview

Measure or estimate initial saturated hydraulic conductivity

Apply correction factor

Long-term (design) infiltration rate
BIORETENTION SITING, DESIGN & CONSTRUCTION

INFILTRATION RATES: Methods

- Estimate based on soil properties
 - USDA Soil Textural Classification _eliminated in 2012 SWMMWW
 - Soil Grain Analysis _allowed for soils unconsolidated by glacial advance (in-situ soil investigation may still be advised)

- In-situ field measurements
 - EPA Falling Head
 - Double ring infiltrometer test _not in SWMMWW (inaccurate)
 - Small Scale Pilot Infiltration Test (PIT)
 - Large Scale PIT
INfiltration Rates: Methods

- Estimate based on soil properties
 - USDA Soil Textural Classification
 - Soil Grain Analysis

- In-situ field measurements
 - EPA Falling Head
 - Double ring infiltrometer test
 - Small-Scale Pilot Infiltration Test (PIT)
 - Large Scale PIT

Allowed for soils unconsolidated by glacial advance (in-situ soil investigation may still be advised)

Use for all other soils
BIORETENTION SITING, DESIGN & CONSTRUCTION
ECOLOGY SMALL-SCALE PIT METHOD

• Excavate pit
 • Depth ~ surface elevation of native soil (before BSM placement)
 • Horizontal bottom area ~ 12 to 32 sf
 • Side slopes laid back, but vertical to test ponding depth (6 – 12in)

• Install vertical measuring rod

• Install splash plate
 • Reduce side wall erosion and disturbance of bottom (clogging)
BIORETENTION SITING, DESIGN & CONSTRUCTION
ECOLOGY SMALL-SCALE PIT METHOD

• Fill pit for pre-soak period
 • Standing water (at least 12 inches) for 6 hours

• Adjust flow rate for steady state period
 • Constant water depth (6 – 12 inches) for 1 hour

• Turn off water and record rate of infiltration every 30 -60 minutes until one hour after the flow has stabilized

• Lowest hourly flow rate is the initial (measured) infiltration rate
BIORETENTION SITING, DESIGN & CONSTRUCTION

ECOLOGY SMALL-SCALE PIT METHOD

• Depth to groundwater
 • Over excavate 3 feet below pit bottom to check for hydraulic restrictive layers (e.g., bed rock, till/clay lenses) or groundwater
 • Alternatively, monitor groundwater through wet season

[Image of a pit with excavation tools and a layer measurement tool]

Associated Earth Sciences
BIORETENTION SITING, DESIGN & CONSTRUCTION

ECOLOGY SMALL-SCALE PIT METHOD

• PIT Timing
 • Test between December 1 and April 1

• Number of PITs
 • Recommend one PIT at each bioretention site
 • For larger site, one PIT every 5,000 sf
 • For long narrow facilities, one PIT every 200 lineal feet (unless borings indicate consistent soil characteristics)
ECOLOGY SMALL-SCALE PIT METHOD

- Hydrant
- Fire Hose
- Flow Meter
- Garden Hose
- To Pit
- Regulate flow (Ex. Ball Valve)
BIORETENTION SITING, DESIGN & CONSTRUCTION

ECOLOGY SMALL-SCALE PIT METHOD

Vertical Measuring Rod

Pit (lay back side slopes)

5 gal. Bucket (energy dissipation)

Water level recorded every 15 minutes
ECOLOGY SMALL-SCALE PIT METHOD

March 8 and 9, 2012
BIORETENTION SITING, DESIGN & CONSTRUCTION
ECOLOGY SMALL-SCALE PIT METHOD

Graph showing initial rate of 0.25 in/hr and a steady state rate of 1.5 in/hr.

March 8 and 9, 2012

Initial rate = 0.25 in/hr
BIORETENTION SITING, DESIGN & CONSTRUCTION

DESIGN INFILTRATION RATES

• Correction factors applied to initial rate to estimate long-term rate for design

• Partial Correction factors:
 • CFv (Site variability and number of locations tested) = 0.33 to 1
 • CFt (Test method) = 0.4 to 0.75
 • CFm (Degree of influent control to prevent siltation and bio-buildup) = 1 (overlying BSM provides excellent protection)

• Total Correction Factor (CF) = CFv x CFt x CFm

• Design rate = Initial Rate x CF
BIORETENTION SITING, DESIGN & CONSTRUCTION

APPLICABILITY

• Residential Parcels
 • Landscaped areas
 • Planters

• Right-of-Way
 • Planting strip
 • Curb bulbs
 • Medians

• Commercial Parcels
 • Landscaped areas
 • Planters
 • Parking Lots
BIORETENTION SITING, DESIGN & CONSTRUCTION
SINGLE FAMILY: Rain Gardens

Note that rain gardens meet requirements for MR 1-5, but not for MR 6 or 7.
BIORETENTION SITING, DESIGN & CONSTRUCTION
SINGLE FAMILY: Stormwater Planters

Inflow
Conveyance

Overflow
BIORETENTION SITING, DESIGN & CONSTRUCTION

RIGHT OF WAY: Seattle SEAstreets

Before

After
BIORETENTION SITING, DESIGN & CONSTRUCTION

RIGHT OF WAY: Seattle SEAstreets

Before

After
BIORETENTION SITING, DESIGN & CONSTRUCTION

RIGHT OF WAY: Curb Bulbs

NE Siskiyou Green Street Portland, OR

23rd Ave SE & 171st Pl SE
BIORETENTION SITING, DESIGN & CONSTRUCTION
MULTI-FAMILY DEVELOPMENTS

High Point, Seattle, WA

Statewide LID Training Program
3.2 BIORETENTION
INTERMEDIATE LID DESIGN
BIORETENTION SITING, DESIGN & CONSTRUCTION
MULTI-FAMILY DEVELOPMENTS: Block Level Design

High Point, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

MULTI-FAMILY DEVELOPMENTS: Block Level Design

High Point, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION
COMMERCIAL PARCELS
BIORETENTION SITING, DESIGN & CONSTRUCTION
COMMERCIAL PARCELS: Conveyance

Downtown CSO Demand Management, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION
COMMERCIAL PARCELS: Parking Lots

Northgate Mall, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Parking Lots

Northgate Mall, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Parking Lots

Northgate Mall, Seattle, WA

Curb Cut Inflow

Beehive Structure Overflow
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Parking Lots

Lewis Creek Park, Bellevue, WA

Combining landscape requirements with bioretention
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Parking Lots

Combining conveyance with bioretention

Bagley Elementary, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Bioretention and Rain Gardens

YMCA Silverdale, WA

Villanova Campus
BIORETENTION SITING, DESIGN & CONSTRUCTION

COMMERCIAL PARCELS: Stormwater Planters

Taylor 28 Apartments
Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

RIGHT OF WAY:

Portland's Green Streets

New Seasons Market, Portland

SW 12th Avenue Green St

Kevin Perry, BES

Q&A
Lunch
Field Exercise
Infiltration Tests
BIORETENTION SITING, DESIGN & CONSTRUCTION

1. Siting

2. Design

3. Construction

Top Width

Inlet Protection

Bottom Width (See Note 1)

Design Ponding Depth

Statewide LID Training Program

INTERMEDIATE LID DESIGN 93
BIORETENTION SITING, DESIGN & CONSTRUCTION

PERFORMANCE STANDARDS

• **On-site Stormwater Management (MR #5)**
 - Use BMP List 1
 or
 - Meet LID Performance Standard (match flow durations to pre-developed condition from 8% to 50% of the 2-year peak flow)

• **Runoff Treatment (MR #6)**
 - Infiltrate 91 percent of the total runoff volume through soil meeting Ecology treatment criteria (for infiltration BMPs)

• **Flow Control (MR #7)**
 - Match flow durations to pre-developed condition from 50% of the 2-year to the full 50-year peak flow

• **Other Flow Control Standards**
 - Combined Sewer or Capacity Constrained Basins (peak-based standards)
BIORETENTION SITING, DESIGN & CONSTRUCTION

LAYOUT OPTIONS

Series of Connected Cells

Broadview Green Grid, Seattle, WA

Single Cell
FLOW ENTRANCE: Design Criteria

- Flow entering should be non-erosive
 - Velocity less than 1.0 fps
- Dispersed flow entrance → Preferred!
 - Vegetated buffer strip
 - Sheet flow across pavement/gravel
 - Sheet flow b/t wide wheel stops
- Concentrated flow entrance → Requires erosion protection (e.g., rock)
 - Piped flow
 - Curb cuts
 - Trench drains
FLOW ENTRANCE: Design Criteria

High Point, Seattle, WA
Wheel stops prevent vehicle entry and restrict vehicle loading at edge while allowing sheet flow to bioretention.
FLOW ENTRANCE

Finish grade should be 2-3” lower than curb line to allow for settling. Armor flow entrance with concrete pad or stone.

Depressed gutter at inlet
BIORETENTION SITING, DESIGN & CONSTRUCTION
FLOW ENTRANCE

Trench Drain Curb Cut

Do not use woody plants at inlet (can restrict or concentrate flows)
BIORETENTION SITING, DESIGN & CONSTRUCTION

FLOW ENTRANCE

Trench Drain

For higher/surface elevation inlets

2012 LID Technical Guidance Manual for Puget Sound
BIORETENTION SITING, DESIGN & CONSTRUCTION

FLOW ENTRANCE

• Finish grade is 2-3” lower than curb line to allow for settling.

• Armored flow entrance with concrete pad and stone.

Armored flow entrance with curb cut

Chris Webb & Associates, Inc.
BIORETENTION SITING, DESIGN & CONSTRUCTION
FLOW ENTRANCE

Seattle Standard Details

Curb cut

Channel with grate
BIORETENTION SITING, DESIGN & CONSTRUCTION

PRE-SETTLING

• To capture debris/sediment and reduce potential for clogging of BSM

• May be required for:
 • For concentrated flow entrances
 • For larger drainage areas
 • Where sediment loading is expected (e.g., high-use parking lots and roadways)
BIORETENTION SITING, DESIGN & CONSTRUCTION

PRE-SETTLING

• Pre-settling methods:
 • Vegetated filter strip
 • Fore bay
 • Catch basin
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA

- Earthen Depression, High Point, Seattle, WA
- Rockery Walls, Pinehurst, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design/Performance

- **Without Underdrain**
 - Earthen depression (w/o liner) or open-bottomed planter
 - Relies on infiltration to native soil
 - Can provide effective on-site stormwater management, flow control and WQ treatment

Notes:
1. Bottom width shall be a minimum of 2 feet and bottom area shall be flat (0% slope).
2. Imported bioretention soil shall meet City of Seattle specifications (minimum design infiltration rate of 3 inches per hour and 40% porosity).
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design/Performance

- With Underdrain
 - Some infiltration to native soil (w/out liner)
 - Can provide on-site stormwater management
 - Can provide effective WQ treatment for some pollutants
 - Cannot meet forest duration flow control alone, but can contribute as part of a system to achieve flow control goals (orifice improves performance)
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Sizing Criteria

• Size to meet performance standards
 • Use hydrologic modeling to size for LID performance (MR#5), flow control (MR#6) or WQ (MR#7) standards
 • For on-site List (MR #5) horizontal projected surface area below overflow = 5% of impervious drainage area

• Max. surface pool drawdown time (24-48 hours)
 • Soil allowed to dry out periodically
 • Restore hydraulic capacity of system
 • Maintain adequate soil oxygen levels
 • Prevent conditions supportive of mosquito breeding

*Surface Pool Drawdown= Ponding Depth ÷ Design Infiltration Rate
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Sizing Criteria

• Size to meet performance standards
 • Use hydrologic modeling to size for LID performance (MR#5), flow control (MR#6) or WQ (MR#7) standards
 • For on-site List (MR #5) horizontal projected surface area below overflow = 5% of impervious drainage area

• Max. surface pool drawdown time (24-48 hours)
 • Soil allowed to dry out periodically
 • Restore hydraulic capacity of system
 • Maintain adequate soil oxygen levels
 • Prevent conditions supportive of mosquito breeding

*Surface Pool Drawdown=
Example: 6 inch ÷ 0.25 inch/hour = 24 hours
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Footprint Area

- Larger footprint area for:
 - Larger contributing area
 - Higher site precipitation
 - Lower native soil infiltration rate
 - Shallower ponding depth
 - Shallower BSM depth
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Cross-Section Criteria*

- Max ponding depth (12 inches)
- Min bottom width (1 foot)
- Max planted side slope (2.5:1) (for depth ≥ 3 ft)
- Min freeboard?
- Max contributing area or bottom area?

* Seattle requirements provided for example design criteria
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Roadway Facility Criteria*

- 2-foot shoulder
- Grade at 3H:1V
- Grade at 4H:1V for intersections (Seattle)
- Compact shoulder to 90 percent standard proctor

*Seattle requirements provided for example design criteria

Statewide LID Training Program
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Roadway Facility Criteria*

- Rockery >1’ high, min 10’ from curb/edge of road
- Rockery <1’ high min 5’ from curb/edge of road

*Seattle requirements provided for example design criteria
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Roadway Facility Criteria*

Max 4’ drop from vehicular lane

*Seattle requirements provided for example design criteria
Bioretention with curb

Seattle Standard Details

- Conc Curb
- Soil, compacted to 90% density
- Bottom Swale EL
- Top of Bank EL
- Bottom Swale Width
- VAR
- 1'-0" Min
- 1'-0" Min
- 2'-0" Min
- 3'-11" Max

- 3" Depth of shredded bark mulch (medium or coarse) or composted material
- 3" Depth of composted material
- Bioretention soil, landscape mix

* Depth over 4' require guard rail.
PONDING AREA: Design Resources

Bioretention without curb

Seattle Standard Details

- **Top of bank EL**
- **Bottom swale width**
- **3.9' MAX**
- **1' MIN**

Notes:
- W/O CURB NT3
- Conc band or gutter
- Bioretention turf soil, compacted to 90% density
- Bottom swale EL
- 3' depth of shredded bark mulch (medium or coarse) or composted material
- 3' depth of composted material
- Bioretention soil, landscape mix

* Depth over 4' require guard rail.
** 4:1 MAX when within 50-feet from intersections

Statewide LID Training Program
3.2 BIORETENTION
Intermediate LID Design 117
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design Resources

Rockery wall

2012 LID Manual

MÉÍNOTM RÉCK SIZES

<table>
<thead>
<tr>
<th>SIZE (IN)</th>
<th>SIZE (TOP)</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

NOTE: GRAPHIC ADAPTED FROM CITY OF SEATTLE, BROOKVIEW GREEN GRID PROJECT MANUAL.

Statewide LID Training Program

3.2 BIORETENTION

INTERMEDIATE LID DESIGN
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design Resources

Roadside Planter

2014 San Francisco Typical Details

Statewide LID Training Program

INTERMEDIATE LID DESIGN 119
BIORETENTION SITING, DESIGN & CONSTRUCTION

PONDING AREA: Design Resources

Roadside Planter

2014 San Francisco Typical Details

CONSTRUCTION NOTES:
1. AVOID CONTACT OF EXISTING SUBGRADE BELOW PLANTER DURING CONSTRUCTION.
2. SCARRY SOIL REMOVED TO 0" DEPTH OR DEEPER IMMEDIATELY PRIOR TO PLACEMENT OF GRAY, SOIL, AND BIORETENTION SOIL.
3. BIORETENTION PLANTER WITH UNDERDRAIN ALTERNATE SECTION

<table>
<thead>
<tr>
<th>PHASE I DETAILS</th>
<th>BIORETENTION PLANTER WITH UNDERDRAIN ALTERNATE SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statewide LID Training Program
State of Washington

INTERMEDIATE LID DESIGN 120
UNDERDRAINS: Purpose

- Where liner is used
- Where infiltration is prohibited or not prudent
- Near sensitive infrastructure with high flood potential
- Soil infiltration rates not adequate to meet pool and system drawdown time
UNDERDRAINS: Types of Pipes

- **Slotted, thick-walled plastic pipe**
 - Minimum 4” diameter Schedule 40 PVC

- **Slot openings**
 - Smaller than smallest aggregate gradation of filter material
 - Slots perpendicular to long axis of pipe
UNDERDRAINS: Types of Pipes

- Slotted PVC Pipe with Aggregate Filter/bedding material
- Aggregate filter/bedding material
 - Prevent migration of fine material into drain
 - City of Seattle Mineral Aggregate Type 26 (sandy gravel)
- Do not wrap in filter fabric

Note: If using City of Seattle Mineral Agg 26, slots shall be 0.069 inches by 1-inch long, spaced 0.25 inches apart. Slots arranged in four rows spaced on 45-degree centers.
UNDERDRAINS: Slotted Pipe Placement

- Slotted pipe placement within aggregate filter/bedding material (Seattle)
 - 6” under pipe
 - 12” on top of pipe
 - 12” each side

2009 Seattle Stormwater Manual
UNDERDRAINS: Slotted Pipe Benefits

- Increased media area provides better filtering
 - Reduced potential for clogging (versus perforated pipe wrapped in filter fabric)

- More durable and easier to clean (rotary root cutter or water jet)
 - Versus perforated PVC or flexible slotted HDPE
BIORETENTION SITING, DESIGN & CONSTRUCTION
UNDERDRAINS: Slotted Pipe Guidance

- Observation pipe/clean out
 - 6” rigid non-perforated
 - Every 250 to 300 feet
 - Clean out port
 - Observation well for dewatering rates

- Raised under-drain
 - Maximize infiltration
 - Fluctuating aerobic/anaerobic conditions → Denitrification
UNDERDRAINS: Slotted Pipe Guidance

- Minimum underdrain slope = 0.5%
- Orifice/control structures
 - Improve flow control performance
 - Minimum 0.5” orifice diameter
 - Maintenance access to orifice required
- Design with access for future modification
 - “Adaptive management”
 - Cap drain pipe
 - Throttle flows with orifice

Photo courtesy of Seattle Public Utilities
Bioretention with curb
BIORETENTION SITING, DESIGN & CONSTRUCTION

OVERFLOW: Design Criteria/Types

• Necessary to safely convey flows that exceed capacity
 • Protect downstream property and resources
 • Overflow configuration depends on design objectives

• Overflow elevation set at max. ponding depth

• Directed to downstream BMP or approved discharge point

Photo courtesy of Seattle Public Utilities
OVERFLOW: Design Criteria/Types

• Sizing
 • Conveyance sized for local jurisdiction level of service
 • Consider larger overflows (e.g., grade so overflows to ROW)

• Surface overflow
 • Sheet flow
 • Gravel level spreader
 • Exit curb cut/ trench drain
BIORETENTION SITING, DESIGN & CONSTRUCTION

OVERFLOW: Subsurface Overflow

• Catch basin
• Vertical stand pipe
• Horizontal pipe
• Can be connected to underdrain system

Broadview Green Grid, Seattle, WA

Vertical stand pipe with beehive grate
ELEVATIONS AND GRADE: Considerations

- Cross Slope
- Longitudinal Slope
- Positive Grade
- Series of Cells
- Check Dams

Broadview Green Grid, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: **Cross Slope**

- Larger footprint area and berming or wall(s) to achieve ponding area
ELEVATIONS AND GRADE: Cross Slope

Required width on slope

Berm

Cross Slope
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Longitudinal Slope

• For long, linear configurations, create series of flat-bottomed cells

• Optimum slope is 2%
 Maximum slope = 8%

• Steep slopes: control gradient with intermittent weirs or berms or standpipe overflow to provide ponding and dissipate energy

• Flat slopes: may need weir to create ponding

Photo courtesy of Seattle Public Utilities
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Positive Grade

• Need positive grade for gravity flow
 • Inflow from contributing area to bioretention cell
 • Overflow from bioretention cell
ELEVATIONS AND GRADE: Series of Cells

- Check dams / weirs or vertical stand pipe overflow
- Reduce flow velocities & erosion potential/dissipates energy
- Create ponding to promote infiltration

Photo courtesy of Seattle Public Utilities
ELEVATIONS AND GRADE: Series of Cells

• Types of check dams / weirs
 • Compacted earthen berms covered with vegetation
 • Vegetated hedgerows
 • Rock
 • Wood
 • Concrete

• Optimum spacing determined by longitudinal slope, performance goals and cost

Photo courtesy of Seattle Public Utilities
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Mild Longitudinal Slope

Earthen berms

High Point, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Mild Longitudinal Slope

Rock berms

Wood berms
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Moderate
Longitudinal Slope

Concrete weirs

Portland, OR Photo: Curtis Hinman
ELEVATIONS AND GRADE: Steeper Longitudinal Slope

Concrete weirs for longitudinal slopes

Walls for cross slopes

110th Street Cascade, Seattle, WA

107th Street Cascade, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Steeper Longitudinal Slope

Beehive grate over vertical pipe/structure

Broadview Green Grid, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION

ELEVATIONS AND GRADE: Design Resources

Check Dams

2014 San Francisco Typical Details

CONSTRUCTION NOTES:
1. UNDERGROUND TO PASSE THROUGH CHECK DAMS
2. SEE ANNEXURE FOR CULL GROUND PIPES, REFER TO 2014 PCP 2.2
3. BEND FITTINGS SHALL BE USED TO ACCOMMODATE CHANGED PRIOR PIPES AND HANGERS
4. CONCRETE CHECK DAMS SHALL BE CONSTRUCTED IN Joints
5. CONCRETE CHECK DAMS SHALL BE PLACED IN A MANNER TO ENSURE PLACES AT 15 FEET ON CENTERS, EACH WAY.
6. CONCRETE CHECK DAMS SHALL BE CONSTRUCTED IN Joints
7. TOP OF CHECK DAM TO BE LEVELED, WITH CLEAR ELEVATION MARKS TO MARK ELEVATION VALUES MARKED TO CLEARLY MARK ELEVATION VALUES.

GENERAL NOTES:
1. ALL MATERIALS AND WORKSHOPS FOR CHECK DAMS SHALL BE IN ACCORDANCE WITH 2014 PCP STANDARDS SPECIFICATIONS AND APPLICABLE CODES PER SAN FRANCISCO PCP

Statewide LID Training Program

3.2 BIORETENTION

INTERMEDIATE LID DESIGN 144
BIORETENTION SITING, DESIGN & CONSTRUCTION

1. Siting

2. Design

3. Construction

Statewide LID Training Program

3.2 BIORETENTION

Interimate LID Design
BIORETENTION SITING, DESIGN & CONSTRUCTION

CONSTRUCTION CONSIDERATIONS

• Minimize site disturbance
• Tree protection
• Preventing over compaction
• Erosion and sediment control
• Construction sequencing (next section)
CONSTRUCTION CONSIDERATIONS: Minimize Site Disturbance

• Stream biota significantly reduced at SS levels of 50-80 mg/L (Corish 1995).

• Schueler reported median TSS concentrations of 4,145 mg/L leaving construction sites with no TESC and 283 mg/L with TESC.
CONSTRUCTION CONSIDERATIONS: Minimize Site Disturbance

• Site design
• Construction Planning
• Training
• Equipment
CONSTRUCTION CONSIDERATIONS: Tree Protection

- Trees are valuable!
- Arborist evaluation
- Valuation posted on each tree
- Vegetation protection in TESC
CONSTRUCTION CONSIDERATIONS: Tree Protection

- Critical Root Zone (CRZ)
 - No disturbance
 - Arborist present for construction in CRZ

- Dripline
 - Fence during construction
CONSTRUCTION CONSIDERATIONS: Tree Protection

- **Feeder Root Zone**
 - Limit heavy equipment/stockpiling
 - Limit Trenching

- **Utility Boring**
 - Tunnel/bore under trees to avoid open cut trench through CRZ and dripline
CONSTRUCTION CONSIDERATIONS: Native Soil Variability

- Do cells look like test pit?
- If lower permeability:
 - Increase size
 - Over-ex and add more BR soil
 - Increase ponding depth (if drawdown can be maintained)
 - Add underdrain

Broadview Green Grid, Seattle, WA
BIORETENTION SITING, DESIGN & CONSTRUCTION
CONSTRUCTION CONSIDERATIONS: Over-compaction

• Prevent over compaction (CRITICAL FOR PERFORMANCE)

• No excavation, soil placement, or soil amendment during wet or saturated conditions

• Operate equipment adjacent to (not in) the facility

• If machinery must operate in the facility, use light weight, low ground-contact pressure equipment
CONSTRUCTION CONSIDERATIONS: Over-compaction

Vehicular loading prism – some compaction is necessary

For road or parking lot stability, need heavy compaction from road prism-2H:1V from edge

Target compaction for BSM in cell: 85% of max dry density

High Point, Seattle, WA
CONSTRUCTION CONSIDERATIONS: Subgrade permeability

Scarify subgrade to re-fracture soil and till in BSM at interface

Smeared and sealed by bucket
CONSTRUCTION CONSIDERATIONS: Erosion & Sediment Control

- Protect adjacent properties
- Protect public waterways and storm systems
- Protect installed work
- Protect infiltration systems including swales, soils and permeable pavement

High Point, Seattle, WA
Bioretention Media
MEDIA: Media for Optimum Performance

- High enough infiltration rates to meet desired surface water drawdown and system dewatering
- Infiltration rates that are not too high in order to optimize pollutant removal capability
- A growth media to support long-term plant and soil health and water quality treatment capability
- Balance nutrient availability and retention and copper retention at low effluent levels
BIORETENTION SITING, DESIGN & CONSTRUCTION

MEDIA: Common Soil Media Guidelines

- 40% topsoil, 30% sand, 30% compost common recommendation nationally and in (in the past) this region

- Issues with this and other guidelines
 - Fines (< 5% passing the #200 sieve)
 - Minimum organic matter content 10% by dry weight per ASTM D 2974
 - Material control
 - Contaminant flushing
BIORETENTION SITING, DESIGN & CONSTRUCTION

MEDIA: Developing New Soil Media Guidelines

Technical Memorandum
Bioretention Soil Mix Review and Recommendations for Western Washington

Prepared for: Puget Sound Partnership
Prepared by: Curtis Hinman WSU Extension Faculty
Date: January, 2009

Driver:

• Top soil specifications can be difficult to apply consistently.

• The need for relatively consistent materials that are readily available, affordable and meet necessary criteria.
Hydraulic conductivity strongly related to percent fines (passing #200 sieve)
Hydraulic conductivity strongly related to coefficient of uniformity
BIORETENTION SITING, DESIGN & CONSTRUCTION

MEDIA: Existing Soil Media Guidelines

• Current guideline in SWMMWW and LID manual 60% sand and 40% compost (this will likely be changing)

• For default media blend use 6”/hr initial infiltration rate (this may be changing with the 2014 SWMMWW update)

• 18” minimum soil depth for enhanced treatment. Minimum of 24” for improved nitrogen or phosphorus removal (2014 manual may eliminate 24” guideline)
The following gradation provides a relatively consistent Ksat and coefficient of uniformity for bioretention soil mixes. This is the primary mineral aggregate spec in 2012 LID manual and prescribed by SWMMWW.
MEDIA: Infiltration Rates

If not using the default media blend determine long-term infiltration rate for sizing and flow control capacity

- 1 in/hr minimum for acceptable ponding and system de-watering in typical setting (long-term hydraulic conductivity per ASTM D 2434 at 85% compaction per ASTM D 1557)
- If contributing area has <5,000 sf of PGS; and <10,000 sf TIA; and <¾ acre landscaping then use correction factor of 2
- If over the above thresholds use correction factor of 4
BIORETENTION SITING, DESIGN & CONSTRUCTION

MEDIA: Infiltration Rates

If not using the default media blend determine sizing and water quality treatment flow

- 2.4 in/hr was maximum rate...guideline likely established for existing native soils not designed soil mixes

- Research indicates that higher infiltration rates provide performance necessary to meet Ecology’s enhanced treatment

- DOE now accepts maximum measured (initial) WQ treatment rate of 12 in/hr with an OM content of 5-8% by weight, CEC ≥ 5 milliequivalents/100 grams dry soil, 2-5% mineral fines content, and 18” minimum soil depth

- Apply same correction factor as for flow control capacity
MEDIA: Recent Media Guideline Updates

- Recommended modifications to permeability testing (ASTM 2434) for bioretention soil media

- If 60% aggregate/40% compost specification in LID and SWMMWW manuals followed then use a measured Ksat of 6”/hr (1.4” to 3”/hr depending on correction factor)

 - 6”/hr may change depending on 2014 manual discussions (stay tuned)

- Previous recommendation of 10% OM content too high. Current recommendation 4% or 5% to 8% max
BIORETENTION SITING, DESIGN & CONSTRUCTION

MEDIA: Recent WQ Focus on Media

2012
• Export of N, P and Cu identified at WSU facility and City of Redmond swale monitoring.
• Individual BSM component characterization studies begin at Port of Olympia (Herrera), City of Redmond (Herrera) and at WSU (primarily compost).

2013
• Ecology funds approximately $1 million in media study projects through Kitsap County (Herrera technical lead), City of Tacoma and City of Redmond (Herrera technical lead).
• Kitsap County project examining a broad range of individual media components.
• City of Tacoma project focused on WTRs.
• Redmond focused on full-scale monitoring of swales (component characterization included).

2015
• Significant new data coming available to hopefully improve BSM performance and consistency.
• We may be a few years from developing a reliable, affordable and non-proprietary BSM to treat a broad suite of pollutants.
BIORETENTION SITING, DESIGN & CONSTRUCTION

MEDIA SUMMARY: What Do We Think We Know

- Initial flushing of nitrogen, phosphorus and copper at low influent concentrations.

- Excellent zinc (at installation) and very good copper capture (after establishment) at typical influent concentrations.

- Reasonable TN capture at typical influent concentrations.

- Very good TSS capture.

- TP and PO4 remain challenges.

- Overall, very good performance in relation to other treatment technologies.
Bioretention Plants
PLANTS: Selection

- Soil moisture conditions
- Sun exposure
- Above and below ground infrastructure
- Site distances and setbacks along roadways
PLANTS: Selection

• Pedestrian use
• Adjacent plant communities and potential invasive species control
• Visual buffering
• Aesthetics
BIORETENTION SITING, DESIGN & CONSTRUCTION

PLANTS: Siting

Bioretention Planting Zones

Note: Vertical scale is exaggerated to show zones.
BIORETENTION SITING, DESIGN & CONSTRUCTION

PLANTS: Siting

<table>
<thead>
<tr>
<th>EMERGENTS Species/ Common Name</th>
<th>EXPOSURE</th>
<th>MATURE SIZE/ SPREAD</th>
<th>TIME OF BLOOM</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carex oshupata* Slough sedge</td>
<td>Sun/partial shade</td>
<td>1-5 feet</td>
<td>-</td>
<td>Moist to seasonally saturated soils; shining foliage; excellent soil binder; drought-tolerant</td>
</tr>
<tr>
<td>Carex slipata* Sawbeak sedge</td>
<td>Partial shade</td>
<td>10 inches-3 feet</td>
<td>-</td>
<td>Wet soils; excellent soil binder</td>
</tr>
<tr>
<td>Juncus effusus* Common rush</td>
<td>Sun/partial shade</td>
<td>1-2 feet</td>
<td>Summer</td>
<td>Wet soils; evergreen perennial; hardy and adaptable; drought-tolerant; small, non-showy flowers</td>
</tr>
<tr>
<td>Juncus ensifolius* Daggerleaf rush</td>
<td>Sun</td>
<td>12-18 inches</td>
<td>-</td>
<td>Wet soils; shallow water; excellent soil binder</td>
</tr>
<tr>
<td>Juncus tenuis* Slender rush</td>
<td>Sun</td>
<td>.5-2.5 feet</td>
<td>-</td>
<td>Moist soils; tufted perennial</td>
</tr>
<tr>
<td>Scirpus acutus* Hardstem bulrush</td>
<td>Sun</td>
<td>4-8 feet</td>
<td>-</td>
<td>Wet soils; favors prolonged inundation; excellent soil binder</td>
</tr>
<tr>
<td>Scirpus microcarpus* Small-fruited bulrush</td>
<td>Sun/shade</td>
<td>2-4 feet</td>
<td>-</td>
<td>Wet soils; tolerates prolonged inundation; good soil binder; drought-tolerant</td>
</tr>
</tbody>
</table>
Agricultural literature documents well the role of plants for building soil structure (Buckman and Brady 1969, Angers and Caron 1998)

City of Portland OR documents increasing infiltration rates in 12-year old commercial parking bioretention areas. 1995~8”/hr, 2005~13”/hr (BES 2006)

Lucas observes increased phosphate removal in vegetated vs non-vegetated bioretention... removal more than plant uptake
Mulch reduces weed establishment, regulates soil temperature and moisture, and adds OM to soil.

Mulch should be:

• 2-3 inches thick
• Chipped or shredded softwood or hardwood
• Coarse compost for bottom of facility
• Fine beauty bark not preferable
Q&A
BIORETENTION COST: Components

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Estimated Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation</td>
<td>CY</td>
<td>$8 – 10</td>
</tr>
<tr>
<td>Bioretention media</td>
<td>CY</td>
<td>$40 – 60</td>
</tr>
<tr>
<td>Filter fabric</td>
<td>SY</td>
<td>$1 – 5</td>
</tr>
<tr>
<td>Gravel</td>
<td>CY</td>
<td>$30 – 35</td>
</tr>
<tr>
<td>4-inch perforated underdrain pipe</td>
<td>LF</td>
<td>$8 – 15</td>
</tr>
<tr>
<td>Plants</td>
<td>each</td>
<td>$5 – 20</td>
</tr>
</tbody>
</table>

Source: http://www.lowimpactdevelopment.org/fairfax.htm
CONSTRUCTION COSTS

Cost Comparison – bioretention vs. filters for treatment only

<table>
<thead>
<tr>
<th>CONVENTIONAL:</th>
<th>LID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 4’ wide landscape island between rows of stalls</td>
<td>1. 4’ wide bioretention cell between rows of stalls, bioretention cells sized @ +/- 5% of tributary area for treatment only)</td>
</tr>
<tr>
<td>2. Catch basins @ 150’o/c</td>
<td>2. Standpipe overflow with beehive grate in each bioretention cell 1 @ 150’</td>
</tr>
<tr>
<td>3. 8” CPEP storm pipe continuous</td>
<td></td>
</tr>
<tr>
<td>4. Stormwater treatment provided by filter vaults sized @ 10 cartridges per acre</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $5/ SF x 4’ = $20/LF</td>
<td>1. $30/SF x 4’ = $120/LF</td>
</tr>
<tr>
<td>2. $1,000 / 150’ = $6.67/LF</td>
<td>2. $1,000/150’ = $6.67/LF</td>
</tr>
<tr>
<td>3. $50/LF</td>
<td></td>
</tr>
<tr>
<td>4. $1.25/SF x (18’x2 +22’)=$72.50</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: ~ $149.17 / LF

TOTAL: ~ $126.67 / LF

Notes

- Reduced detention benefit in addition to the 15% savings shown for treatment only
CONSTRUCTION COSTS

Cost Comparison – conventional vs. LID project

No formal cost comparison, but contractor found LID project approximately 20% less than conventional.
1. Introduction

2. Water quality treatment

3. Bioretention siting, design and construction

4. Inspection & verification

wrap-up
CONSTRUCTION OVERSIGHT

• Inspection and verification timing and processes fall into three general phases of project:
 • Pre-construction reviews
 • Construction
 • Verification/repair and final permit
CONSTRUCTION OVERSIGHT: Pre-Construction Reviews

- Set guidelines, expectations and timing for inspections
- Discuss construction sequencing
- Review checklists
- Determine training needs
INSPECTION & VERIFICATION
CONSTRUCTION OVERSIGHT: Pre-Construction Reviews

- Include developer, builder, utilities, plan review, inspectors in pre-construction

- Make sure everyone knows where and what the requirements are...for an LID project, there may be stormwater requirements in landscaping guidelines

Broadview Green Grid Seattle, WA
CONSTRUCTION OVERSIGHT: Construction

First Visit: Pre-bioretention soil media (BSM) placement

• Certify native/existing soils comparable to design specs

• Temporary erosion and sediment control (TESC) correctly installed

• Rough grading to plans

• Under-drain(s) and overflow

• Field changes...process should have been covered at pre-construction

• Photo documentation?
CONSTRUCTION OVERSIGHT: Construction

Second Visit: Pre-mulch or planting

- Verify that BSM meets composition guidelines and depth

- For BSM composition: current lab report from physical submittal, truck ticket, visual/texture. If questions on depth, expose to subgrade

- TESC still installed correctly and upslope areas managed properly
CONSTRUCTION OVERSIGHT: Post-Construction

Third Visit: Post-construction

• Verify final grade

• Verify contributing area as designed and stabilized

• Verify BSM not clogged and infiltration rate adequate

• Verify ponding depths, overflow, bottom swale area

• Verify plants (type and density)

• Verify mulch (type and depth)
CONSTRUCTION OVERSIGHT: Post-Construction

Third Visit: Post-construction (whole site)

• Final grades
• 30-45 day follow up to remove TESC
• Verify O&M plan in place
INSPECTION & VERIFICATION
CONSTRUCTION SEQUENCING

• Site flat or sloping away from facility likely ok to:
 • Complete bioretention area with roads, utilities and storm infrastructure
 • Install conventional TESC and barriers
CONSTRUCTION SEQUENCING

- Construction activity sloping to bioretention facility
 - Divert flows around facility and treat during construction
 - Partially complete and allow storm flows through facility
INSPECTION & VERIFICATION

CONSTRUCTION SEQUENCING

- Construction activity sloping to bioretention facility (w/o underdrain)
 - Delineate or partially grade to define facility. Keep construction traffic off area
 - Install TESC and stabilize upslope construction area as best as possible
 - Divert flows around facilities
 - If flows allowed through facility, leave at least 6” above final grade. Line or mulch?
 - Keep construction traffic off area
CONSTRUCTION SEQUENCING

- Construction activity sloping to bioretention facility (w/underdrain)
 - Place infrastructure
 - If possible leave rest of facility at least 6” above grade
 - Install TESC and stabilize upslope construction area
 - If flows allowed through facility, leave or backfill at least 6” above final grade
 - Cover underdrain with plastic and fabric
 - Line or mulch whole facility?
 - Keep construction traffic off area
Partial excavation and completion of facility after homes are finished and landscaping stabilized requires clear agreement among developer, homebuilder and jurisdiction.
INSPECTION & VERIFICATION

REMEDIES FOR FAILING SITES

- Poor TESC and sediment to facility
 - Excavate to depth that sediment deposits and potential clogging not present (usually 6”)
 - Replace BSM, mulch, and plants

- Compaction of existing soils
 - Does the facility still infiltrate at design rate?
 - Perform infiltration test or verify pre-construction density
 - Remedy procedures if necessary
introduction to course and bioretention

flow control and water quality treatment

bioretention siting, design and construction

inspection & verification

wrap-up
Other Course Offerings

Introductory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction to LID for Eastern Washington</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction to LID for Inspection & Maintenance Staff</td>
</tr>
<tr>
<td>2.2</td>
<td>Introduction to LID for Developers & Contractors: Make Money be Green</td>
</tr>
</tbody>
</table>

Intermediate

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Intermediate LID Topics: NPDES Phase I & II Requirements</td>
</tr>
<tr>
<td>3.2</td>
<td>Intermediate LID Design: Bioretention</td>
</tr>
<tr>
<td>3.3</td>
<td>Intermediate LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>3.4</td>
<td>Intermediate LID Design: Site Assessment, Planning & Layout</td>
</tr>
</tbody>
</table>

Advanced

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>5.2</td>
<td>Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>5.3</td>
<td>Advanced Topics for LID Operations: Bioretention</td>
</tr>
<tr>
<td>5.4</td>
<td>Advanced Topics for LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td>6.0</td>
<td>Advanced Topics in LID Design: Hydrologic Modeling</td>
</tr>
<tr>
<td>7.0</td>
<td>Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
<tr>
<td>8.1</td>
<td>Advanced Topics in LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
</tr>
<tr>
<td>8.2</td>
<td>Advanced Topics in LID Design: Bioretention Media</td>
</tr>
</tbody>
</table>

Train the Trainers

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Service Providers</td>
</tr>
<tr>
<td>9.2</td>
<td>LID Topic Experts</td>
</tr>
</tbody>
</table>
Statewide LID Training Program

ONLINE EVALUATION

• An on-line evaluation will be sent to you within 3 days following this training

• Feedback will help to refine future trainings

• Feedback is also important to pursue funding to support a long-term statewide LID training program
Two certificates:

- LID Design certificate
- Long-term LID Operations certificate
- Stay tuned for developing certificate policies

Sign out!
Statewide LID Training Program

ONLINE RESOURCES

For information on training and other resources, visit the Washington Stormwater Center website:

http://www.wastormwatercenter.org

Stay connected through Social Media

• Come “Like” our Page
• Sign up to follow and get Tweets
Further questions? Contact:
training@cascadiaconsulting.com
(206) 449-1163