Statewide LID Training Program

INSTRUCTORS

Curtis Hinman
Senior Scientist
Key project experience: Research specialist in the performance and design of LID practices.

Scott Kindred
Infiltration Expert
Key project experience: Expertise in stormwater infiltration and subsurface flow
introduction

permeable pavement basics

common siting, design and construction

design and construction by pavement type

wrap-up
Statewide LID Training Program

LOGISTICS

SCHEDULE
8-hour training
Lunch on your own
60 minute site visit

OTHER LOGISTICS
• Restrooms
• Food
• Turn off cell phones
• Sign in and sign out
LEARNING OBJECTIVES

1. Gain an intermediate level knowledge necessary for proper entry level design and implementation of permeable pavement systems in residential and commercial settings (new and retrofit).

2. Learn skills necessary for basic site assessment and locating permeable pavement areas in residential and commercial settings.

3. Learn practical skills necessary for construction of basic permeable pavement systems.
• 2012: Public and private partners engage state legislature to fund program

• June 2012: LID Training Steering Committee convened

• 2012-2013: Washington State LID Training Plan developed: www.wastormwatercenter.org/statewide-lid-training-program-plan

• 2014: Training program built from state LID Training Plan.
Statewide LID Training Program

PROGRAM OVERVIEW

• Implement first phase of trainings (September 2014 through May 2015)
• 64 trainings offered in first phase
• Three levels: Introductory, Intermediate, and Advanced
• Train the Trainer program for service providers and LID topic experts
• Future funding unknown.
Statewide LID Training Program TEAM

<table>
<thead>
<tr>
<th>PROJECT LEAD</th>
<th>CORE TEAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herrera</td>
<td>Cascadia Consulting Group</td>
</tr>
</tbody>
</table>

ADDITIONAL TRAINING SUPPORT

- CH2M HILL
- Kindred Hydro
- Leaping Frog Films
- SVR Design Company
- Stormwater Training & Certification
- Stormwater ONE
<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction to LID for Eastern Washington</td>
<td>3.1 Intermediate LID – NPDES Phase I & II Requirements</td>
<td>5.1 Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>2.1 Introduction to LID for Inspection & Maintenance Staff</td>
<td>3.2 Intermediate LID Design: Bioretention</td>
<td>5.2 Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>2.2 Introduction to LID for Developers & Contractors: Make Money be Green</td>
<td>3.3 Intermediate LID Design: Permeable Pavement</td>
<td>5.3 Advanced Topics for LID Operations: Bioretention</td>
</tr>
<tr>
<td></td>
<td>3.4 Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>5.4 Advanced Topics for LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td></td>
<td>4.1 Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td>6.0 Advanced Topics in LID Design: Hydrologic Modeling</td>
</tr>
<tr>
<td></td>
<td>4.2 Intermediate LID Design: Hydrologic Modelling</td>
<td>7.0 Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.1 Advanced Topics in LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.2 Advanced Topics in LID Design: Bioretention Media</td>
</tr>
</tbody>
</table>

TRAIN THE TRAINERS

- 9.1 Service Providers
- 9.2 LID Topic Experts
Statewide LID Training Program

TRAINING SEQUENCE

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction to LID for Eastern Washington</td>
<td>3.1 Intermediate LID – NPDES Phase I & II Requirements</td>
<td>5.1 Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>2.1 Introduction to LID for Inspection & Maintenance Staff</td>
<td>3.2 Intermediate LID Design: Bioretention</td>
<td>6.0 Advanced Topics in LID Design: Hydrologic Modeling</td>
</tr>
<tr>
<td>2.2 Introduction to LID for Developers & Contractors: Make Money be Green</td>
<td>3.3 Intermediate LID Design: Permeable Pavement</td>
<td>5.2 Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>3.4 Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>5.3 Advanced Topics for LID Operations: Bioretention</td>
<td>7.0 Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
<tr>
<td>4.1 Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td>5.4 Advanced Topics for LID Operations: Permeable Pavement</td>
<td>8.1 Advanced Topics in LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
</tr>
<tr>
<td>4.2 Intermediate LID Design: Hydrologic Modelling</td>
<td></td>
<td>8.2 Advanced Topics in LID Design: Bioretention Media</td>
</tr>
</tbody>
</table>

TRAIN THE TRAINERS

| **9.1** Service Providers | **9.2** LID Topic Experts |
AGENDA

1. introduction
2. permeable pavement basics
3. common siting, design and construction
4. water quality treatment
5. wrap-up
Statewide LID Training Program

LID REGULATORY STATUS

• New Permit Requirements for local governments on 3 levels:
 • Building site and subdivision
 • Municipal (codes)
 • Watershed

• New & Redevelopment
 • Site & subdivision - S5.C.4.a.i. & ii. (S5.C.5 in Phase I)
 • Development Codes - S5.C.4.f.
 • Watershed Scale - S5.C.4.g.
Statewide LID Training Program

LID REGULATORY STATUS

• Phase I Permittees
 • Snohomish, King, Pierce, Clark Counties
 • Seattle, Tacoma
 • WSDOT

• Phase II Permittees
 • WWA: 80 cities, 5 counties, WSDOT
 • EWA: 18 cities, 6 counties

• Secondary Permittees:
 • Approximately 45 such as ports and universities
Statewide LID Training Program

LID REGULATORY TIMELINE

- Adopt new site & subdivision stormwater codes
 - Phase I: June 30, 2015
 - Phase II: December 31, 2016*

- Review and revise development-related codes, rules & standards
 - Phase I: June 30, 2015
 - Phase II: December 31, 2016*

* Or GMA update deadline, whichever is later
<table>
<thead>
<tr>
<th>#1 Preparation of Stormwater Site Plans</th>
<th>#2 Construction Stormwater Pollution Prevention</th>
<th>#3 Source Control of Pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4 Preservation of Natural Drainage Systems and Outfalls</td>
<td>#5 On-site Stormwater Management</td>
<td>#6 Runoff Treatment</td>
</tr>
<tr>
<td>#7 Flow Control</td>
<td>#8 Wetlands Protection</td>
<td>#9 Operation and Maintenance</td>
</tr>
</tbody>
</table>
Statewide LID Training Program

LID REGULATORY STATUS: New Development Thresholds

Min. Requirements #1 - #9:

- \(\geq 5,000 \) sq. ft. new and replaced hard surface area, or
- \(\geq \frac{3}{4} \) acre vegetation to lawn/landscape, or
- \(\geq 2.5 \) acres native vegetation to pasture

Min. Requirements #1 - #5:

- \(\geq 2,000 \) sq. ft. new and replaced hard surface area, or
- \(\geq 7,000 \) sq. ft. land disturbance

Min. Requirement #2 - Erosion control

- All projects (No submittal for projects <2,000 sf new and replaced hard surface or <7,000 sf land disturbance)
Pollution-Generating Hard Surface (PGHS)

- Pollutant-generating hard surfaces subject to vehicular use, industrial activities, material storage
- Pollution-generating impervious surfaces (PGIS) and pollution-generating permeable pavement
Statewide LID Training Program

LID REGULATORY STATUS: Infeasibility Criteria

Requires site geotech evaluation & written recommendation

- Erosion, slope failure, or flooding
- Where adjacent impervious pavements compromised
- Threaten below grade basements
- Fill soils that can be unstable when saturated
- Excessively steep slopes meeting certain conditions
- Threaten pre-existing underground utilities tanks, road sub-grades
- Inadequate strength for heavy loads at industrial facilities
Statewide LID Training Program

LID REGULATORY STATUS: Minimum Requirements

Criteria not requiring justification, but possibly professional services

- Area designated as erosion or landslide hazard
- Within 50 feet from top of slopes greater than 20%
- Known soil or ground water contamination
- Fill soils that can be unstable when saturated
- At multi-level parking garages and over culverts & bridges
- Where saturated conditions within 1 foot of bottom of base course
Criteria not requiring justification, but possibly professional services

- On arterial or collector (see state RCW’s)
- Native soils don’t meet soil suitability criteria
- Infiltration less than 0.30 in/hr
- Soils unsuitable for loads when saturated
- Replacing impervious unless NON-PGIS over soil > 4in/hr
- In high use sites
- Areas with “industrial activity”
- Where concentrated spill risk is higher
- Routine heavy sand applications in frequent snow zones
WHAT IS LOW IMPACT DEVELOPMENT

• A land use development strategy that emphasizes protection and use of on-site natural features to manage stormwater.

• Careful assessment of site soils and strategic site planning to best use those soils for stormwater management.

• Integrates engineered and non-engineered, small-scale stormwater controls into the site design to closely mimic pre-development hydrologic processes.
Statewide LID Training Program

WHAT IS LOW IMPACT DEVELOPMENT

• Used at the parcel and subdivision scale. Site scale necessary but not sufficient. Regional land use planning critical for effective stormwater management.

• Primary goal: no measurable impacts to receiving waters by maintaining or approximating pre-development surface flow volumes and durations.
Undeveloped - Forest

- During winter months evaporation continues to be active while the transpiration component is minimal.
- Storm events are moderated by infiltration, evaporation, and evapotranspiration.
- Water is available in substrata to sustain stream base flows during summer months.
- As winter progresses, the interflow component of stream flow increases.
- During the Summer and Fall streams are maintained primarily by glacial melt water and/or groundwater flow.
Developed Conditions

- Overland flow increases and time of concentration decreases
- Less water in substrata available to sustain base stream flows
- Interflow highly variable depending on development
Statewide LID Training Program

WHAT IS LOW IMPACT DEVELOPMENT

Objectives

- Protect and restore native soils/vegetation.
- Reduce development envelope.
- Reduce impervious surfaces and eliminate effective impervious area.
Objectives

- Manage stormwater as close to its origin as possible.
- Integrate stormwater controls into the design—create a multifunctional landscape.
WHAT IS LOW IMPACT DEVELOPMENT

- Bioretention
- Rainwater collection
- Permeable pavement
- Vegetated roofs
- Low impact foundations
AGENDA

introduction

permeable pavement basics

common siting, design and construction

design and construction by pavement type

wrap-up
• Wearing course
• Leveling/choker course
• Aggregate storage reservoir/base
• Geosynthetics

• Under- and elevated-drains
• Native underlying soil
• Subsurface berms
PERMEABLE PAVEMENT BASICS

TYPES: Porous Asphalt

- Flexible
- Similar to conventional asphalt, but fines < No. 30 sieve reduced
- Typically used for parking and light traffic loads; however, has been used for medium and heavy applications
- ~16% voids typical (2-3% for conventional)
- Industry engagement has been limited in this region, but increasing
TYPES: Pervious Concrete

• Rigid

• 1/4 to 5/8 round or crushed aggregate typical, Portland cement, and admixtures (optional) to increase workability and strength

• 15 to 20% voids typical

• Good experience and industry engagement in western WA.
PERMEABLE PAVEMENT BASICS

TYPES: Permeable Pavers

- Flexible
- Capable of high vehicle loads. Used for lower speeds
- High-density concrete that interlock and transfer vertical loads to surrounding pavers
- 12% voids typical
- Good experience and industry engagement in western WA.
PERMEABLE PAVEMENT BASICS

TYPES: Plastic Grids

- Flexible
- Highest percent voids
- Plastic grid filled with gravel or soil and planted with grass
- Capable of high vehicle loads
- Used for lower speeds/infrequent use (grass)
- Consider Geogrid for additional strength
- Good experience and industry engagement in western WA
PERMEABLE PAVEMENT BASICS

HOW THE FACILITY WORKS

• Storage
• Infiltration

2012 LID Technical Guidance Manual for Puget Sound
PERMEABLE PAVEMENT BASICS

HOW THE FACILITY WORKS

• Inlets
• Outlets
• Slopes
PERMEABLE PAVEMENT BASICS

APPLICATIONS

- Low-volume residential streets
- Parking
- Public walkways
- Parks
- Plazas and patios
- Bike lanes
- Greenhouse floors
- Sports courts
- Noise barriers/walls

Statewide LID Training Program

33 PERMEABLE PAVEMENT

INTERMEDIATE LID DESIGN 41
Break
introduction

permeable pavement basics

common siting, design and construction

water quality treatment

wrap-up
1. Siting

2. Design

3. Construction
OVERVIEW

For a successful project, the team needs to carefully assess site, select appropriate materials and plan construction:

- Site selection
- Material specifications
- Design
- Planning & coordination
- Installation
- Construction
- Protection of work
- Operations/use as intended
- Maintenance (covered in Module 5.4)
SITING AND SELECTION OF MATERIALS

USERS

• Who will be the users of the facility?
 • Pedestrian
 • Bicycle
 • Parking Lot
 • Low-volume residential streets
 • Aesthetics

• One size does not fit all. Use appropriately.

Photos: Kathy Gwilym, SVR
SITING AND SELECTION OF MATERIALS

PUBLIC VS PRIVATE FACILITIES

• Design life
• Maintenance effort
• Material selection

Photos: Kathy Gwilym,

32nd Ave. SW, Seattle. Pervious Concrete
(2005 – 8” PPCC over 18” sub-base)

Grand Central Parking Lot, Vancouver, WA

N. Gay Ave, Portland. Porous Asphalt Concrete
(2005 - 8” porous AC over 6” sub-base)
SITING AND SELECTION OF MATERIALS

IN FILTRATION ASSESSMENTS

- Site characterization criteria (Volume 3, Section 3.3.5)
- Geology/soil characteristics
- Groundwater conditions
- Infiltration potential
- Mounding analysis
SITING AND SELECTION OF MATERIALS

INfiltration Tests

- **Exploration**
 - Continuous sampling
 - At least 10 ft below base of facility
 - Grain size analyses
- **Exploration Approaches**
 - Exploration pits
 - Deep exploration borings/wells
 - Vactor explorations (cost effective in developed areas)
SITING AND SELECTION OF MATERIALS

INfiltrATION ASSESSMENT

Readily available resources

- USGS and DNR Geologic Maps
- Publicly available logs at DNR Washington State Geologic Information Portal
- Well logs at Ecology
- Streams, lakes, and wetlands generally indicate groundwater elevations
SITING AND SELECTION OF MATERIALS

INFILTRATION ASSESSMENT

Groundwater Separation

• At least one foot between base of permeable pavement section and seasonal high groundwater table
 • If site assessment shows at least 5 feet of separation, groundwater monitoring not required
 • Separation from both groundwater and hydraulic restriction (perching) layer
 • Ideally, groundwater monitoring occurs between Dec. 21 - Mar 21 during a winter of normal to high precipitation
 • Professional judgment may be sufficient
SITING AND SELECTION OF MATERIALS

INfiltrATION TESTS

Design infiltration rate (3.3.3)

- Special Case Only
 - Grain Size Distribution
- Outdated
 - Small-scale falling head test (EPA)
 - Double Ring Infiltrometer
- Preferred
 - Large-diameter single ring
 - Pilot-scale PIT (large- and small-scale)
SITING AND SELECTION OF MATERIALS

INfiltration Tests

Ecology 2012, Sieve Analysis (USDA/ASTM)

• Recessional Outwash or Holocene only
• Need to assess if deeper layers will limit infiltration (equation 2 in 3.3.6 not recommended)

\[
\log_{10}(K_{sat}) = -1.57 + 1.90D_{10} + 0.015D_{60} - 0.013D_{90} - 2.08f_{\text{fines}}
\]
SITING AND SELECTION OF MATERIALS

INFILTRATION TESTS

Old school infiltration testing (not recommended)

- **Falling head test (EPA)**
 - Scale too small for many applications

- **Double Ring Infiltrometer**
 - Scale too small for many applications, time consuming and expensive for scale
SITING AND SELECTION OF MATERIALS

INfiltration Tests

Small-scale Pilot Infiltration Test (PIT)

- Difference from Large-Scale: Pit bottom area 12-32 sf
SITING AND SELECTION OF MATERIALS

IN FILTRATION TESTS

Large-scale Pilot Infiltration Test (PIT)
SITING AND SELECTION OF MATERIALS

INfiltrATION TESTS

Modified Pilot Infiltration Test (PIT)
SITING AND SELECTION OF MATERIALS

INfiltrATION TESTS

Modified Pilot Infiltration Test (PIT) for finished sub-grade
SITING AND SELECTION OF MATERIALS

IN INFILTRATION ASSESSMENT

Correction factor for permeable pavement design infiltration rates

• Site variability and # test locations
 • $CF_v=0.33-1.0$

• Quality of pavement base material
 • $CF_m=0.9-1.0$

• $K_{design} = K_{measured} \times CF_v \times CF_m$
 • Total correction ranges from 0.3 to 1.0
 • Personal recommendation: use correction factor of 0.5
INFILTRATION ASSESSMENT

Soil suitability criteria for treatment of runoff from pollution-generating hard surfaces (SSC 6)

- Cation exchange capacity > 5 meq/100 grams dry soil
- Organic content > 1%
- Measured K < 12 inches/hour
- Minimum of one foot of soil with above characteristics
SITING AND SELECTION OF MATERIALS

INфиЛTRATION TESTS

Testing frequency for permeable pavement

• Commercial sites: 1 test per 5,000 sq. ft. of permeable pavement
• Residential sites: 1 Test per 200 feet of road and every lot
• Frequency of testing may be reduced based on professional judgment (consistent soil conditions and depth to seasonal high groundwater)
• Over-excavate each test location to look for any restrictive layers or groundwater
SITING AND SELECTION OF MATERIALS

INFILTRATION TESTS

Scale of infiltration tests

INfiltration pond

Standpipe/Double Ring

Large Ring/Pilot Test

Receptor Soil

Water Table

Impermeable Soil
Mounding analysis required if groundwater is less than 15 feet from base of permeable pavement section

- Depth to water table
- Infiltration rate of native soils
- Thickness and hydraulic conductivity of the saturated zone
- MODFLOW analysis by a qualified hydrogeologist
INFILTRATION ASSESSMENT

SITING AND SELECTION OF MATERIALS

Groundwater mound development
Detailed Approach

- Use methods for estimating infiltration correction factors with caution
- Infiltration rate is generally not a function of depth to groundwater, facility size, or facility aspect ratio
- Other elements of detailed approach (e.g., mounding analysis) are fine
- MODRET can be unstable, better to use MODFLOW or comparable program for mounding analysis
SITING AND SELECTION OF MATERIALS

INFILTRATION ASSESSMENT

Summary

• Site characterization
• Infiltration rate testing
• Groundwater separation
• Correction factor
• Mounding analysis
INFILTRATION ASSESSMENT

Summary

• Geologic constraints and opportunities must be fully and correctly incorporated prior to site planning and engineering.

• Geology can help predict the nature of the physical environment.
SITING, DESIGN & CONSTRUCTION

1. Siting

2. Design

3. Construction

PERMEABLE PAVEMENT

Statewide LID Training Program

INTERMEDIATE LID DESIGN
DESIGN OBJECTIVES

Permeable pavements can be designed to provide one or more of the following:

- Reduce impervious footprint
- Flow control facility via the storage within the gravel sub-base
- Water quality treatment (if subgrade soils are suitable or treatment layer incorporated in pavement section)
- Other
Geosynthetics

• Typically not necessary or advised under most permeable pavement installations
• On sloped applications can address subsurface scour
• Maybe advised in certain situations for material separation
• Can be a clogging surface
DESIGN

SLOPE: Subgrade Slope & Storage Capacity

- Ideal 0% to maximize storage but can increase excavation effort.
- Sloped conditions (1% to 5%) reduces the amount of useable storage space but decreases amount of excavation. Use periodic impermeable check dams, or gravel trenches or other measures to allow water to backup & infiltrate.
- Consider geosynthetics for scour.
SLOPE: Subsurface Overflow

- Install to not compromise section
- Outlet controlled
- Not an underdrain

Design: Chris Webb, Herrera
SLOPE: Overflow/Back-up System

- Ideal 0% to maximize storage but can increase excavation
- Provide for emergency overflow
- What is the flow path if water does not infiltrate?
- Submerged outlet controlled pipe in base to avoid compromising section

Photo: Kathy Gwilm, SVR
SLOPE: Overflow/Back-up System

- If 100% infiltration facility follow manual guidelines for closed depression infiltration facility
- Subsurface drain pipe as described above (slotted pipe above design water surface level)
PAVEMENT SECTION DESIGN

Section includes:

• Top wearing course
• Leveling course (optional)
• Aggregate sub-base (storage)
• Geotextile (?)
PAVEMENT SECTION DESIGN

• Design conservatively for wearing course section depth

• Follow manufacturer guidelines for proprietary products (e.g. interlocking pavers, rigid and flexible open celled grids)

• Consider:
 • Design Speed
 • Stress/torque on pavement surface (e.g. heavy vehicles making tight radius turns)
 • Aesthetics
PAVEMENT SECTION DESIGN: Aggregate Base

- **30%+/- Voids for Gravel Storage Sub-base**
 - Consult with Geotechnical Engineer

- **Sub-base**
 - Key is low fines (% passing 200 sieve), clean and interlocking fracture aggregate

- **Sub-base for pedestrian areas:**
 - **AASHTO #57**
 - 3/8” to 3/4” clean crushed gravel
 - OR per manufacturer

Photo: Kathy Gwilym, SVR
PAVEMENT SECTION DESIGN: Aggregate Base

- Sub-base for vehicular areas:
 - Permeable Ballast (WSDOT 9-03.9(2))
 - OR per manufacturer

- Consult with geotech to review subgrade and sub-base preparation

- Scarify existing subgrade to prevent sealing of subgrade

- Geotextile?
 - Consult with Geotechnical Engineer

- Depth depends on structural requirements and flow control objectives (will the installation accept run-on?)

Photo: Kathy Gwilm, SVR
Performance standards

- **On-site Stormwater Management (MR #5) (NEW 2012)**
 - Use BMP List (rain garden), or
 - Meet LID Performance Standard (match flow durations to pre-developed condition from 8% to 50% of the 2-year peak flow)

- **Runoff Treatment (MR #6)**
 - Infiltrate 91 percent of the total runoff volume through soil meeting Ecology treatment criteria (for infiltration BMPs)

- **Flow Control (MR #7)**
 - Match flow durations to pre-developed condition from 50% of the 2-year to the 50-year peak flow

- **Other Flow Control Standards**
 - Combined Sewer or Capacity Constrained Basins (peak-based standards)
PAVEMENT SECTION DESIGN: Modeling

Key:
- Wearing Course
- Aggregate
- Sub-base
- Overflow

Note: Only aggregate under overflow invert modeled
PAVEMENT SECTION DESIGN: Modeling

Subgrade Slope >2 to 5% (with berms)

- Cannot neglect lateral flow
- Modeled subsurface storage depth = average subsurface ponding depth (water depth before berm overtops or overflows*)
 *function of slope, check dam height, and check dam spacing
PAVEMENT SECTION DESIGN: Edge Details

- Transition between impervious and pervious
- Thickened edge
- Transition to landscaping
SITING, DESIGN & CONSTRUCTION

1. Siting

2. Design

3. Construction

Statewide LID Training Program

PERMEABLE PAVEMENT

INTERMEDIATE LID DESIGN
CONSTRUCTION

PAVEMENT SECTION, TESC AND VERIFICATION

- Specifics to each permeable pavement type to be provided in sections after lunch
- Follow manufacturer guidelines for installation with proprietary products
CONSTRUCTION

PAVEMENT SECTION: Subgrade

• Design haul roads and sequence project to eliminate or minimize construction traffic on subgrade

• Rough grade to at least 6” above final grade

• Do not drive directly on finished sub-grade

• Excavator backs out of installation on rough grade while excavating to final grade
CONSTRUCTION

PAVEMENT SECTION: Aggregate Base Installation

- To finish sub-grade, excavator pulls back on rough grade 6-12” above finish sub-grade
- Do not drive directly on finished sub-grade
- Install aggregate base by back-dumping and spreading on top aggregate base
CONSTRUCTION
TEMPORARY EROSION & SEDIMENT CONTROL

• Install protection (TESC and Flow Diversion) measures prior to final excavation

• Prime contractor to inform other subs of requirements when working around permeable pavement

• Maintain Erosion Control BEFORE and AFTER construction. Permanently stabilize adjacent areas

Photo: Kathy Gwilym, SVR
CONSTRUCTION
TEMPORARY EROSION & SEDIMENT CONTROL

Photos: Kathy Gwilym, SVR
SITING, DESIGN & CONSTRUCTION

POST INSTALLATION INSPECTION AND VERIFICATION

Infiltration Tests

- ASTM C1701 for concrete, asphalt and pavers
- Pavers have specific application guidelines for ASTM C1701

Photo: Kathy Gwilym, SvR
POST INSTALLATION INSPECTION AND VERIFICATION

- Pervious Concrete and Porous Asphalt
 - Check for raveling (pressure washer test or other means)
 - Check for uniform surface and non-sealing at the surface
 - Coring to check for consistent density and design depth

Photo: Curtis Hinman, Herrera
SITING, DESIGN & CONSTRUCTION
POST INSTALLATION INSPECTION AND VERIFICATION

- Check for sediment contamination from uncontrolled runoff
- Open celled plastic grids, check staking is per manufacturer

Photo: Kathy Gwilym, SvR
MAINTENANCE AND OPERATIONS

- Covered in Module 5.4
- Important: if allowing run-on from adjacent impervious surfaces, additional O&M will be necessary

Photo: Curtis Hinman, Herrera
SNOW MANAGEMENT

- Limit sanding material particle size to coarse materials (e.g. #8 stone)
- Raise plow or provide skids for permeable pavers
- Assess salt and sanding needs and adjust snow management program accordingly (permeable pavements may not require as much application)

Photos courtesy of UNH
Lunch
introduction

permeable pavement basics

common siting, design and construction

design and construction by pavement type

wrap-up
POROUS ASPHALT GUEST SPEAKER:
MARK PALMER, CITY OF PUYALLUP
SITING, DESIGN & CONSTRUCTION

PERVIOUS CONCRETE DESIGN & CONSTRUCTION:

General

- Pervious rigid pavement
- Highly durable
- Integral color available
- 15%+ voids

Photo: Chris Webb, Herrera
PERVIOUS CONCRETE DESIGN & CONSTRUCTION: Section / Wearing Course

- No fine aggregate reduced fine aggregate (sand)
- Admixtures
- Open Graded Course Aggregate
 - Open Graded Course Aggregate
 - AASHTO #7 or #8
 - AASHTO #67
- Monofilament Fiber
PERVIOUS CONCRETE DESIGN & CONSTRUCTION: Base Material

- Cast PCCP directly on base material (no need for choker)

- Base for pedestrian areas:
 - AASHTO #57
 - 3/8” to 3/4” clean crushed gravel
 - Permeable Ballast (WSDOT 9-03.9(2))

- Base for vehicular areas:
 - Permeable Ballast (WSDOT 9-03.9(2))
PERVIOUS CONCRETE DESIGN & CONSTRUCTION: ACI & ASTM standards

ACI 522-10
- Somewhat limited in specifics
- Good general resource

ASTM
- Many standard concrete tests DON’T work
 - Compressive Strength of Cylinder
 - Flexural Strength Test by Beam
SITING, DESIGN & CONSTRUCTION

PERVIOUS CONCRETE DESIGN & CONSTRUCTION:
NRMCA standards

• **NRMCA Contractor Certifications**
 - Pervious Concrete Craftsman
 - Pervious Concrete Installer
 - Pervious Concrete Technician

• **Contractors need to have a certain number of each level on each crew**

• **Training offered locally by Washington Aggregates and Concrete Association**
 - Bruce Chattin, ED
PERVIOUS CONCRETE DESIGN & CONSTRUCTION: Testing and Verification

- Test panel
- Unit Weight
 - Dry (cores) & Wet (plastic concrete)
- Thickness
- Uniformity
- Areas sealed with paste
- Infiltration test
 - ASTM C1701

Photos: Kathy Gwilym, SvR
PERVIOUS CONCRETE DESIGN & CONSTRUCTION: Placing & Finishing

- Can’t pump but conveyor ok
- Minimal handling

Bunyan Power Screed

Photo: Chris Webb, Herrera

Video: Chris Webb, Herrera

Statewide LID Training Program

PERMEABLE PAVEMENT

INTERMEDIATE LID DESIGN
SITING, DESIGN & CONSTRUCTION

PERVIOUS CONCRETE DESIGN & CONSTRUCTION: Jointing

- Sawcut in cured concrete
- Rolled in plastic concrete (preferred)
PERVIOUS CONCRETE DESIGN & CONSTRUCTION: Finishing

Cover, secure carefully and protect

- Concrete should remain covered for six days
PERVIOUS CONCRETE DESIGN & CONSTRUCTION: Mathei Place

- Bellingham, WA
- Built 2006
- 12,000 sf
- Affordable Housing
- ~2”/hr. long term
- ¼” pea gravel aggregate
- Less costly than traditional
- LEED-Homes Pilot

Photo: Chris Webb, Herrera
SITING, DESIGN & CONSTRUCTION
PERVERIOUS CONCRETE DESIGN & CONSTRUCTION:
Mathei Place

Photo: Chris Webb, Herrera
SITING, DESIGN & CONSTRUCTION

PERVIOUS CONCRETE DESIGN & CONSTRUCTION:
Firstenberg Comm. Center

• Vancouver, WA
• Built 2005
• 110,000 sf
• Public Community Center
• ~4”/hr. long term
• ¼” pea gravel aggregate
• LEED-Gold

Photos: Chris Webb, Herrera
PERVIOUS CONCRETE DESIGN & CONSTRUCTION: Firstenberg Community Center
Field Exercise
Infiltration Tests
Equipment Demos
PERMABLE PAVER GUEST SPEAKER:
RICK CROOKS, MUTUAL MATERIALS
GRID SYSTEM: Types

- Gravel
- Grass
GRID SYSTEM: Gravel Paver: applications

Trails
• Severe rutting prior to installation
• Park estimates an 80% reduction in maintenance time and cost
GRID SYSTEM: Gravel Paver: applications

Trails
- Oakdale Nature Preserve, IL

Fire lanes
- Colorado Springs City Building, CO

Utility access
- Tri Rail Station, Miami Airport, FL
GRID SYSTEM: Gravel Pavers

Trade Names

- Grassy Pavers
- TruGrid
- Geoblock
- Gravelpave2
- Agrablock
- Integra 500
- Ground Grid
- Netpave 50

Compacted sandy gravel base course
GRID SYSTEM: Gravel Paver: base material

Base course specification

- Sandy gravel material common for road base

<table>
<thead>
<tr>
<th>Sieve</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1”</td>
<td>100</td>
</tr>
<tr>
<td>¾”</td>
<td>90-100</td>
</tr>
<tr>
<td>3/8”</td>
<td>70-80</td>
</tr>
<tr>
<td>#4</td>
<td>55-70</td>
</tr>
<tr>
<td>#10</td>
<td>45-55</td>
</tr>
<tr>
<td>#40</td>
<td>25-35</td>
</tr>
<tr>
<td>#200</td>
<td>3-8</td>
</tr>
</tbody>
</table>
GRID SYSTEM: Gravel Paver: flexible pavers

- Grid colors to match aggregate
- Many systems available
- Many 100% recycled HDPE
- Different structural characteristics
GRID SYSTEM: Gravel Paver: wearing course

Gravel fill examples

- **Crushed Granite:** 3/16”
- **Decomposed Granite:** 3/8”
- **Carbon Canyon:** 5/16” minus
- **Sanora Tan:** 3/8”
- **Hard Limestone 3/8”**
 - Add 25-30% sharp mason’s sand to maintain porosity
- **Sharp Angular Pea Gravel**
 - Do Not Use Rounded Pea Gravel

Use clean, angular, hard, uniform size: 3/16 inch to 3/8 inch
GRID SYSTEM: Gravel Paver: installation

Refer to manufacturer’s technical specifications for complete installation details

1. Install and compact base
2. Unroll paver, connect and cut as needed
3. Secure to base with anchors*
4. Fill with open graded 3/8" aggregate (gravel)
5. Use and maintain

*Check with Specific Manufacturer. Some do not supply anchors
GRID SYSTEM: Gravel Paver: ADA access

Americans with Disability Act (ADA)

- Gravelpave2 – tested to meet required standards by Beneficial Designs, Inc. April 1999
GRID SYSTEM: Grass Paver: applications

Primary applications

- Overflow Parking
- Fire/emergency access
- Utility access
- Residential drives and parking
- Pedestrian traffic

World's Fair Park, Knoxville, TN

City Works Yard, Vancouver, BC
GRID SYSTEM: Grass Paver: applications

Fire lanes and emergency access

- 100’ ladder with outrigger
- 70,000 lbs.
- Grasspave2 by Invisible Structures

5,720 psi load bearing capacity (filled)
GRID SYSTEM: Grass Pavers

Trade Names

- Grassy Pavers
- TruGrid
- Geoblock
- Grasspave2
- Netpave 50
- GT Interlocking Panels
- MODI Porous Paving Grid
- Salvaverde
GRID SYSTEM: Grass Paver: base material

Base course specification

- Sandy gravel material common for road base

<table>
<thead>
<tr>
<th>Sieve</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1”</td>
<td>100</td>
</tr>
<tr>
<td>¾”</td>
<td>90-100</td>
</tr>
<tr>
<td>3/8”</td>
<td>70-80</td>
</tr>
<tr>
<td>#4</td>
<td>55-70</td>
</tr>
<tr>
<td>#10</td>
<td>45-55</td>
</tr>
<tr>
<td>#40</td>
<td>25-35</td>
</tr>
<tr>
<td>#200</td>
<td>3-8</td>
</tr>
</tbody>
</table>
SITING, DESIGN & CONSTRUCTION

GRID SYSTEM: Grass Paver: flexible pavers

- Exceeds H-20 loading requirements
- Both Grassy Pavers and Invisible Structures recycled HDPE
GRID SYSTEM: Grass Paver: wearing course

- Sand fill
 - Turf (sandy loam) or aggregate (3/16 minus to 3/8) top fill

- Grass
GRID SYSTEM: Grasp Paver: installation

Refer to manufacturer’s technical specifications for complete installation details

1. Install and compact base
2. Add soil amendment - fertilizer/polymer*
3. Unroll paver, connect, and cut as needed

*Check with specific manufacturer for availability (soil polymer, Zeopro, Isolite and Humate soil conditioners).
GRID SYSTEM: Grass Paver: installation

Refer to manufacturer’s technical specifications for complete installation details

4. Fill with sand**
5. Lay sod or hydroseed
6. Use and maintain - irrigate, fertilize, mow. Do Not Aerate

**Some manufacturers fill with top soil or existing soil. Sand is the preferred method of Prof. Bruce K. Ferguson, author, Porous Pavements: Integrated Studies in Water Management and Land Development
GRID SYSTEM: Grass Paver: applications

SITING, DESIGN & CONSTRUCTION

Stadium and arena parking lots

Ladd Peebles Stadium, Mobile, AL
Orange Bowl, Miami, FL.
GRID SYSTEM: Grass Paver: applications

Stadium and arena parking lots

St. Louis Rams Stadium, MO

Mitchell Center Arena, Mobile, AL
GRID SYSTEM: Grass Paver: applications

Hybrid grass/gravel fire lane

House of Awakened Culture, Suquamish Tribe Fire lane, Design: Chris Webb
GRID SYSTEM: Grass and Gravel Paver: snow removal

Seasonal and overflow parking: snow removal

- Raise blade 1 inch above surface and/or attach skids

Westfarms Mall, West Hartford, CT
GRID SYSTEM: Grass Paver: local climate

Urban heat island mitigation

- Grass Albedo 0.40
- Air Conditioning effect through transpiration
GRID SYSTEM: Grass Paver: LEED

LEED™ Points

- Reduced site disturbance
- Stormwater management
- Reduced heat island effect
- Water efficient landscaping
- Innovative wastewater technology
- Water use reduction
- Recycled content
- Erosion and sediment control
Permeable pavements provide several pollutant removal mechanisms inherent to the paving structure

- Stormwater volume reduction
- Reduced spray and vehicle wash off
- Biological degradation
- Filtration
- Adsorption
- Volatilization
WATER QUALITY TREATMENT

TYPICAL STORMWATER POLLUTANTS

- Hydrocarbons
 - Oil, grease and gasoline
- PAH’s
- Metals
 - Pb, Cu, Zn, Cd, Cr
- Sediment
- Nutrients
- Chloride
- Bacteria
WATER QUALITY TREATMENT

CHARACTERISTICS OF PAVING POLLUTANTS

• PAH’s product of incomplete combustion and sealers. Coal tar emulsions may be 5-600x higher in PAH’s concentrations than asphalt emulsion

• Primary conduit for hydrocarbons (gas and diesel)

• ~344 metric tons/yr of Zn to Puget Sound annually

• Many pollutants associated with fines (particularly metals), many <0.45 microns (dissolved)
Water Quality Treatment

Median of Average Effluent Concentrations

<table>
<thead>
<tr>
<th></th>
<th>SS (mg/L)</th>
<th>TCu (µg/L)</th>
<th>TPb (µg/L)</th>
<th>TZn (µg/L)</th>
<th>TP (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP (n=6)</td>
<td>16.96</td>
<td>2.78</td>
<td>7.88</td>
<td>16.60</td>
<td>0.09</td>
</tr>
<tr>
<td>DP (n=25)</td>
<td>26.74</td>
<td>15.91</td>
<td>14.57</td>
<td>58.66</td>
<td>0.19</td>
</tr>
<tr>
<td>WP (n=46)</td>
<td>9.74</td>
<td>5.82</td>
<td>3.40</td>
<td>21.58</td>
<td>0.10</td>
</tr>
<tr>
<td>WB (n=19)</td>
<td>13.38</td>
<td>3.35</td>
<td>2.51</td>
<td>29.21</td>
<td>0.11</td>
</tr>
<tr>
<td>BF (n=57)</td>
<td>17.84</td>
<td>9.63</td>
<td>5.42</td>
<td>27.93</td>
<td>0.27</td>
</tr>
<tr>
<td>MF (n=38)</td>
<td>10.85</td>
<td>7.63</td>
<td>2.62</td>
<td>32.23</td>
<td>0.11</td>
</tr>
<tr>
<td>HD (n=32)</td>
<td>23.48</td>
<td>11.82</td>
<td>5.05</td>
<td>75.12</td>
<td>0.20</td>
</tr>
</tbody>
</table>

International BMP Database

PP = permeable paving, DP = detention pond, WP = wet pond, WB = wetland basin, BF = biofilter, MF = media filter, HD = hydrodynamic
Mean Concentrations for 9 Test Parking Stalls: Renton, WA (2001-2002)

<table>
<thead>
<tr>
<th>Material</th>
<th>Cu (µg/L)</th>
<th>Pb (µg/L)</th>
<th>Zn (µg/L)</th>
<th>Motor Oil (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravelpave</td>
<td>0.89 (66%<MDL)</td>
<td>ND</td>
<td>8.23 (66%<MDL)</td>
<td><MDL</td>
</tr>
<tr>
<td>Grasspave</td>
<td><MDL</td>
<td>ND</td>
<td>13.2</td>
<td><MDL</td>
</tr>
<tr>
<td>Turfstone</td>
<td>1.33 (44%<MDL)</td>
<td>ND</td>
<td>7.7 (33%<MDL)</td>
<td><MDL</td>
</tr>
<tr>
<td>EcoStone</td>
<td>0.86 (77%<MDL)</td>
<td>ND</td>
<td>6.8 (33%<MDL)</td>
<td><MDL</td>
</tr>
<tr>
<td>Conventional Asphalt</td>
<td>7.98</td>
<td>--</td>
<td>21.6</td>
<td>0.164</td>
</tr>
</tbody>
</table>

- MDL: motor oil 0.10 mg/L, Cu 1.0 (µg/L), Zn 5 (µg/L)
- Permeable paving sections ~10 cm deep. 90-100% occupancy during business hours. Test plots 6 years old. Dissolved metals
- Conventional asphalt section exceeded WA surface flow WQ standards for Zn in all but one sample (acute and chronic)

Brattebo and Booth 2003
Comparison of Water Quality Parameters: Permeable vs Conventional

<table>
<thead>
<tr>
<th>Study</th>
<th>Perm</th>
<th>Conv</th>
<th>TSS (mg/L)</th>
<th>TH/PAH's (mg/L)</th>
<th>Pb (µg/L)</th>
<th>Zn (µg/L)</th>
<th>Cu (µg/L)</th>
<th>Cd (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legret et al (1996)</td>
<td></td>
<td></td>
<td>12</td>
<td>TH <0.02</td>
<td>5.4</td>
<td>46</td>
<td>15</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>Perm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conv</td>
<td></td>
<td>33</td>
<td>TH <0.02</td>
<td>26.0</td>
<td>165</td>
<td>11</td>
<td>1.48</td>
</tr>
<tr>
<td>Barrett et al (2006) PFC</td>
<td>Perm</td>
<td></td>
<td>7.6</td>
<td>(PAH’s<detect)</td>
<td>0.9</td>
<td>40.4</td>
<td>26.8</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Conv</td>
<td></td>
<td>117.8</td>
<td>(PAH’s<detect)</td>
<td>12.6</td>
<td>167.4</td>
<td>6.8</td>
<td>--</td>
</tr>
<tr>
<td>Berbee et al (1999) PFC</td>
<td>Perm</td>
<td></td>
<td>17</td>
<td>PAH’s 5.2-5.8</td>
<td>7</td>
<td>47</td>
<td>40</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Conv</td>
<td></td>
<td>194</td>
<td>PAH’s <0.3</td>
<td>93</td>
<td>452</td>
<td>121</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- Legret: permeable asphalt road France, ~2000 vehicle trip/day. Study estimates that ~97% of stormwater infiltrates in reservoir structure and soil
- Barrett: 4 lane divide highway Austin TX, 20m² retrofitted with 50mm PFC, ADT 43,000
- Berbee: 2 highways near Amsterdam, 1 conventional (53,000veh/day) and 1 PFC (83,000 veh/day)
CONCENTRATIONS OF DISSOLVED METALS

Concentrations of dissolved metals in 60 cm laboratory rigs with permeable pavers and four different base aggregate materials (simulates 50 yrs of loading)

<table>
<thead>
<tr>
<th></th>
<th>Lead (µg/L)</th>
<th>Cadmium (µg/L)</th>
<th>Copper (µg/L)</th>
<th>Zinc (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic Stormwater</td>
<td>180</td>
<td>30</td>
<td>470</td>
<td>660</td>
</tr>
<tr>
<td>Effluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td><4</td>
<td>0.7</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Basalt</td>
<td><4</td>
<td>0.7</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Limestone</td>
<td><4</td>
<td>3.2</td>
<td>29</td>
<td>85</td>
</tr>
<tr>
<td>Sandstone</td>
<td><4</td>
<td>51</td>
<td>85</td>
<td>72</td>
</tr>
</tbody>
</table>

Percent Retention

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>98%</td>
<td>98%</td>
<td>96%</td>
<td>97%</td>
</tr>
<tr>
<td>Basalt</td>
<td>98%</td>
<td>98%</td>
<td>96%</td>
<td>98%</td>
</tr>
<tr>
<td>Limestone</td>
<td>98%</td>
<td>88%</td>
<td>94%</td>
<td>88%</td>
</tr>
<tr>
<td>Sandstone</td>
<td>98%</td>
<td>74%</td>
<td>89%</td>
<td>72%</td>
</tr>
</tbody>
</table>

Dierkes 2002
CONCENTRATIONS OF DISSOLVED METALS

Dierkes 2002
Soil Pollutant Concentrations

Soil pollutant concentrations in soil beneath permeable paving installations

<table>
<thead>
<tr>
<th>Study</th>
<th>Depth</th>
<th>MOH (mg/kg)</th>
<th>PAH’s (mg/kg)</th>
<th>Pb (mg/kg)</th>
<th>Zn (mg/kg)</th>
<th>Cu (mg/kg)</th>
<th>Cd (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legret et al. (1996)*</td>
<td>surface</td>
<td>--</td>
<td>--</td>
<td>190</td>
<td>383</td>
<td>46</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>60-75 cm</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>97</td>
<td>15</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>110-150 cm</td>
<td>--</td>
<td>--</td>
<td>29</td>
<td>111</td>
<td>15</td>
<td>0.05</td>
</tr>
<tr>
<td>Dierkes et al. (2002)</td>
<td>surface</td>
<td>133</td>
<td>ND(<1.5)</td>
<td>~60</td>
<td>~26</td>
<td>~5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-5 cm</td>
<td>26</td>
<td>ND(<1.5)</td>
<td>Background</td>
<td>Background</td>
<td>background</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>5-10 cm</td>
<td>20</td>
<td>ND(<1.5)</td>
<td>Background</td>
<td>Background</td>
<td>background</td>
<td><1</td>
</tr>
<tr>
<td>MTCA</td>
<td></td>
<td>30/4,000**</td>
<td>0.1</td>
<td>250</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

*Study estimates that ~97% of stormwater infiltrates in reservoir structure and soil
**Gas with benzene/mineral oil
HYDROCARBON BIODEGRADATION

- A diversity of microbes (flagelates, amoeba, rotifers) colonize permeable paving immediately
- 97-99% removal capability
- Geotextile primary substrate for microbes... Non-woven perform better than woven
- Nutrient need for microbial population unclear

Newman 2002 and 2004, Pratt 1999
UNH Stormwater Center finding significant reduction of deicing salts for permeable paving compared to conventional paving

- May reduce salt use by 70% by allowing snowmelt and rain to infiltrate
Permeable pavements may be more effective for managing typical road and parking pollutants than conventional practices

- Hydrocarbons, metals and nutrients
- Much of the pollutant capture and transformation happens in the upper few inches of the paving structure...geotextiles
Permeable pavements may be more effective for managing typical road and parking pollutants than conventional practices

- No significant contamination of soil has been observed in the research
- We currently do not give any water quality treatment credit for standard permeable pavements
INITIAL INFILTRATION RATES

Average permeable pavement surface infiltration rates (cm/hr)

<table>
<thead>
<tr>
<th>Date</th>
<th>PC</th>
<th>PICP1</th>
<th>CGP</th>
<th>PICP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/2006</td>
<td>3087</td>
<td>771</td>
<td>91</td>
<td>457</td>
</tr>
<tr>
<td>09/2006</td>
<td>6152</td>
<td>1027</td>
<td>89</td>
<td>171</td>
</tr>
<tr>
<td>03/2007</td>
<td>4466</td>
<td>1299</td>
<td>87</td>
<td>376</td>
</tr>
<tr>
<td>07/2007</td>
<td>4941</td>
<td>1536</td>
<td>101</td>
<td>267</td>
</tr>
</tbody>
</table>

Percent surface runoff reductions from rainfall depth

<table>
<thead>
<tr>
<th></th>
<th>Asphalt (n=44)</th>
<th>PC (n=40)</th>
<th>PICP1 (n=41)</th>
<th>CGP (n=40)</th>
<th>PICP2 (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>34.65</td>
<td>99.86</td>
<td>99.33</td>
<td>98.17</td>
<td>99.51</td>
</tr>
<tr>
<td>Median</td>
<td>29.43</td>
<td>99.94</td>
<td>99.37</td>
<td>98.67</td>
<td>99.68</td>
</tr>
<tr>
<td>Min</td>
<td>-2.73</td>
<td>99.03</td>
<td>97.76</td>
<td>91.11</td>
<td>96.94</td>
</tr>
<tr>
<td>Max</td>
<td>84.80</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>
LONG-TERM INFILTRATION RATES

High initial infiltration rates in permeable paving will diminish over time...important to consider context and maintenance

Infiltration Rates Over Time

- Most conservative: 10.0 in/hr for 20 yr life span (ICPI)
- 50% of initial infiltration rate typical recommendation.
- Permeable asphalt hwy: 1986 100 in/hr, 1990 28 in/hr
WATER QUALITY TREATMENT
LONG-TERM INFILTRATION RATES

Infiltration Rates Over Time

- Florida permeable concrete field evaluation: 6.5 yrs old: 240 in/hr, 8 yrs old: 42 in/hr
- Borgwardt: reports a long-term infiltration rate for permeable pavers of 4.25 in/hr
- Worst case: 1096 cm/hr reduced to 3.32 cm/hr observed...105 cm/hr after cleaning (Hinman, 2009)
Q&A
introduction

permeable pavement basics

common siting, design and construction

water quality treatment

wrap-up
Statewide LID Training Program

OTHER COURSE OFFERINGS

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Intermediate LID</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>Topics: NPDES</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Phase I & II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Intermediate LID</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>Design: Bioretention</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Intermediate LID</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>Design: Permeable Pavement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design: Site</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Assessment,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planning &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layout</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate LID</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Design: Rainwater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collection Systems &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetated Roofs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design: Bioretention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design: Site</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Assessment,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planning &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layout</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Topics</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>for LID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operations:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bioretention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Topics</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>for LID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operations:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permeable Pavement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Topics</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>in LID Design:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site Assessment,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planning &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layout</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Intermediate LID</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>Design: Rainwater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collection Systems &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetated Roofs</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Intermediate LID</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Design: Hydrologic Modelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Topics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in LID Design:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site Assessment,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planning &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layout</td>
<td></td>
</tr>
</tbody>
</table>

TRAIN THE TRAINERS

<table>
<thead>
<tr>
<th>9.1 Service Providers</th>
<th>9.2 LID Topic Experts</th>
</tr>
</thead>
</table>
ONLINE EVALUATION

- An on-line evaluation will be sent to you within 5 days following this training
- Feedback will help to refine future trainings
- Feedback is also important to pursue funding to support a long-term statewide LID training program
Two certificates:

• LID Design certificate
• Long-term LID Operations certificate
• Stay tuned for developing certificate policies

Sign out!
For information on training and other resources, visit the Washington Stormwater Center website:

http://www.wastormwatercenter.org

Stay connected through Social Media

• Come “Like” our Page
• Sign up to follow and get Tweets
Statewide LID Training Program

QUESTIONS

Further questions? Contact:
training@cascadiaconsulting.com
(206) 449-1163