OVERVIEW OF PROGRAM

- 2012: Public and private partners engage state legislature to fund program
- June 2012: LID Training Steering Committee
- 2012-2013: Washington State LID Training Plan developed: www.wastormwatercenter.org/statewide-lid-training-program-plan
- Training program built from state LID Training Plan

PROJECT LEAD

ADDITIONAL TRAINING SUPPORT
OVERVIEW OF PROGRAM

- Implementation of first round of trainings (September 2014 through May 2015)
- 64 trainings offered in current phase (through June 2015)
- Three levels: Introductory, Intermediate, and Advanced

INTRODUCTORY

1.0 Introduction to LID for Eastern Washington

INTERMEDIATE

1.1 Intermediate LID Topics: NPDES Phase I & II Requirements

2.1 Intermediate LID Design: Bioretention

2.2 Intermediate LID Design: Permeable Pavement

3.1 Intermediate LID Design: Site Assessment, Planning & Layout

3.2 Intermediate LID Design: Hydrologic Modelling

3.3 Intermediate LID Design: Habitat & Vegetated Roofs

4.1 Intermediate LID Design: Site Assessment, Planning & Layout

4.2 Intermediate LID Design: Hydrologic Modelling

ADVANCED

5.1 Advanced Topics in LID Design: Bioretention

5.2 Advanced Topics in LID Design: Permeable Pavement

5.3 Advanced Topics for Long-term LID Operations: Permeable Pavement

5.4 Advanced Topics for Long-term LID Operations: Bioretention

6.1 Advanced Topics in LID Design: Hydrologic Modelling

7.0 Advanced Topics in LID Design: Site Assessment, Planning & Layout

7.1 Advanced Topics in LID Design: Site Assessment, Planning & Layout

8.1 Advanced Topics in LID Design: Site Assessment, Planning & Layout

8.2 Advanced Topics in LID Design: Site Assessment, Planning & Layout

TODAY’S TRAINING

1.0 Introduction to LID for Eastern Washington

1.1 Intermediate LID Topics: NPDES Phase I & II Requirements

2.1 Intermediate LID Design: Bioretention

2.2 Intermediate LID Design: Permeable Pavement

3.1 Intermediate LID Design: Site Assessment, Planning & Layout

3.2 Intermediate LID Design: Hydrologic Modelling

4.1 Intermediate LID Design: Site Assessment, Planning & Layout

4.2 Intermediate LID Design: Hydrologic Modelling

5.1 Advanced Topics in LID Design: Bioretention

5.2 Advanced Topics in LID Design: Permeable Pavement

5.3 Advanced Topics for Long-term LID Operations: Permeable Pavement

5.4 Advanced Topics for Long-term LID Operations: Bioretention

6.1 Advanced Topics in LID Design: Hydrologic Modelling

7.0 Advanced Topics in LID Design: Site Assessment, Planning & Layout

7.1 Advanced Topics in LID Design: Site Assessment, Planning & Layout

8.1 Advanced Topics in LID Design: Site Assessment, Planning & Layout

8.2 Advanced Topics in LID Design: Site Assessment, Planning & Layout

LID Topic Experts

Service Providers

1/12/2015
INSTRUCTORS

JASON KING, RLA
ASLA LEED AP
Senior Landscape Architect
Key project experience:
Stormwater design for
development, site design,
green roofs, stormwater art,
ecological planning

DUSTIN ATCHISON, PE
Water Resources Project Manager
Key project experience:
LID design, stormwater
master planning, stream and wetland restoration
design, hydrologic and hydraulic modeling

AGENDA

introduction and regulations
principles of LID site design
LID site design process
site assessment and layout
site planning and infrastructure
trees
exercises
wrap up
AGENDA

- Introduction and regulations
- Principles of LID site design
- LID site design process
- Site assessment and layout
- Site planning and infrastructure
- Trees
- Exercises
- Wrap up

LEARNING OBJECTIVES

1. Participants gain an intermediate level understanding of overall site assessment with particular attention to infiltration capability of soils for roadway, lot and open space layout within the LID context.

2. Participants gain an intermediate level understanding of appropriate layout for roadway, lot and open space to protect site hydrology and create livable and attractive developments.

3. Participants will gain an intermediate level understanding of techniques to protect native soil and vegetation during site development.

LOGISTICS

SCHEDULE
- 8-hour training with two breaks
- Lunch on your own
- Sign in and sign out

OTHER LOGISTICS
- Restroom location
- Food
- Turn off cell phones
- Q&A at end of each section
LID Principles: Pre-developed forest

LID Principles: Developed condition

LOW IMPACT DEVELOPMENT (LID):
Stormwater Management Strategy
- Site design & planning techniques emphasizing conservation
- Use of small-scale & distributed engineered controls to closely mimic pre-development hydrologic processes
- Minimizing the concentration of stormwater
- Careful assessment of site soils and strategic site planning to best use those soils for stormwater management
LID Principles: Site Design And Planning

- Minimize disturbance
- Reduce impervious surface
- Protect and restore native soils and vegetation
- Manage stormwater close to the source in a system of distributed practices
- Disconnect impervious surfaces

Purpose and Principles

LID BMPs

<table>
<thead>
<tr>
<th>BMP</th>
<th>Flow Control</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Amendment</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dispersion</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Retaining & Planting Trees</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bioretention</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bioretention (underdrain)</td>
<td>X *</td>
<td>X</td>
</tr>
<tr>
<td>Permeable Pavement</td>
<td>X</td>
<td>X *</td>
</tr>
<tr>
<td>Green Roofs</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rainwater Harvesting</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Principles: LID BMPs

- Infiltration
- Filtration
- Storage
- Evaporation
- Transpiration

Replace pre-developed hydrologic functions
PRINCIPLES: LID BMPs

LID provides additional tools to meet your existing E WA stormwater management objectives.

INTRODUCTION

NPDES PERMIT REQUIREMENTS

- Phase I*
 - Populations ≥ 100,000
- Phase II
 - Generally populations > 10,000
- Issuance date: August 1, 2012
- Effective date: August 1, 2014
- Permit term: 5 years (through July 31, 2019)

*No Phase I jurisdictions in Eastern WA

<table>
<thead>
<tr>
<th>Phase II Cities</th>
<th>Phase II Counties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asotin</td>
<td>Asotin</td>
</tr>
<tr>
<td>Clarkston</td>
<td>Chelan</td>
</tr>
<tr>
<td>East Wenatchee</td>
<td>Douglas</td>
</tr>
<tr>
<td>Ellensburg</td>
<td>Spokane</td>
</tr>
<tr>
<td>Kennewick</td>
<td>Spokane Valley</td>
</tr>
<tr>
<td>Moses Lake</td>
<td>Sunnyside</td>
</tr>
<tr>
<td>Pasco</td>
<td>Union Gap</td>
</tr>
<tr>
<td>Pullman</td>
<td>Walla Walla</td>
</tr>
<tr>
<td>Richland</td>
<td>Wenatchee</td>
</tr>
<tr>
<td></td>
<td>West Richland</td>
</tr>
<tr>
<td></td>
<td>Yakima</td>
</tr>
</tbody>
</table>
INTRODUCTION

NPDES PERMIT REQUIREMENTS: Core Elements

#1 Preparation of a Stormwater Site Plan
#2 Construction Stormwater Pollution Prevention
#3 Source Control of Pollution
#4 Preservation of Natural Drainage Systems and Outfalls
#5 Runoff Treatment
#6 Flow Control
#7 Operations and Maintenance
#8 Local Requirements

AGENDA

1. Introduction and regulations
2. Principles of LID site design
3. LID site design process
4. Site assessment and layout
5. Site planning and infrastructure
6. Trees
7. Exercises
8. Wrap up

Q&A
The typical construction approach is to strip, cut, fill and pound.

PRINCIPLES OF LID SITE DESIGN: Conventional Site Development Practices and Impacts

- Compaction can extend 24"+ with heavy loads on wet soils.
- Compaction usually in top 6-8 inches of soil for tractors weighing less than 10 tons/axle.
- Track vs tires inflated to higher pressures…compaction appears to increase with increased tire pressure.

Management of large clearing and grading operations is expensive and time consuming.
PRINCIPLES OF LID SITE DESIGN: Conventional Site Development Practices and Impacts

• Stream biota significantly reduced at SS levels of 50-80 mg/L (Corish 1995).

• Schueler reported median TSS concentrations of 4,145 mg/L leaving construction sites with no TESC and 283 mg/L with TESC.

PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation

- 23.92 acres
- 103 Lots (4,143 sq ft ave.)
- 15 acres (63%) Open space
- Effective impervious area approaching 0%

Hydrologic modeling comparing a conventional development and the flow reduction benefits from individual practices for a low impact development design.

<table>
<thead>
<tr>
<th>Conventional development</th>
<th>Detention storage reduced (ft³)</th>
<th>Detention storage required (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low impact development</td>
<td></td>
<td>270,000</td>
</tr>
<tr>
<td>• reduce development envelope</td>
<td>-149,019</td>
<td></td>
</tr>
<tr>
<td>• and use bioretention</td>
<td>-40,061</td>
<td></td>
</tr>
<tr>
<td>• and use minimal excavation foundation</td>
<td>-7,432</td>
<td></td>
</tr>
<tr>
<td>• and use 20' wide permeable road</td>
<td>-29,988</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-226,500</td>
<td>43,500</td>
</tr>
</tbody>
</table>
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation

Full Dispersion
- 65/10/0
- Sliding dispersion scale

PRINCIPLES OF LID SITE DESIGN: Urban Development and Small Lots

Possible but challenging to conserve and protect native soils and vegetation in dense development settings.

PRINCIPLES OF LID SITE DESIGN: Protecting Native Trees and Soil

It takes a village…and fines to protect trees and soil.
- Contractor training
- Bonding/fines
- Signage
• Conventional street design increases drainage network and efficiency.
• Local street right of ways can constitute over 25 percent of the typical urban watershed.
• Streams with buffers constitute about 10 percent of this sample watershed.

PRINCIPLES OF LID SITE DESIGN: Scale of Analysis
- Home
- Planned Development
- Community
- Watershed
- County/City
- Region
PRINCIPLES OF LID SITE DESIGN: Regional Planning

Avoid open-space fragmentation

- 15,000 sq. ft. lots
- 5,000 sq. ft. lots

PRINCIPLES OF LID SITE DESIGN: Regional Planning

Project vs. regional clustering

- Project by project cluster development
- Regional cluster development

PRINCIPLES OF LID SITE DESIGN: Regional Planning

Project vs. regional clustering

Arterials
LID SITE DESIGN PROCESS: Overview

1. Project baseline/charter
2. Develop basis of design
3. Develop team and engage stakeholders
4. Site inventory and analysis
5. Site assessment and develop Site Plan

LID SITE DESIGN PROCESS: Project Baseline/Charter

- Project Scope
- Project Schedule
- Construction
- Plant Establishment
- Construction Budget
- Jurisdiction and Code Requirements
- Sustainability Goals defined
- Maintenance Capabilities

LID SITE DESIGN PROCESS: Develop Basis of Design

- Project Background
 - Specification and drawing format
 - Sustainability requirements
 - Property restrictions and easements
 - Permitting and point of compliance
- Site Civil
 - Frontage and Right-of-Way requirements
 - Civil grading criteria
 - Utility criteria
- Landscape Design Criteria
 - Existing tree preservation
 - Buffers
LID SITE DESIGN PROCESS: Develop Team and Engage Stakeholders

- Owner/Developer
- Public agency reviewers
 - Land use Planners/Zoning
 - Transportation
 - Utility department
 - Stormwater Management
 - Other
- Architect
- Civil Engineer
- Surveyor
- Landscape Architect
- Geotechnical Engineer
- Wetland/Biologist
- Arborist
- Outreach
- Community stakeholders
- Fire & Police Department
- Owner’s contractor
- Funding partners
- Maintenance staff
- Other?

LID SITE DESIGN PROCESS: Site Inventory and Analysis

- Gather existing analysis, inventories, and historic information:
 - Soil surveys and analyses
 - Historic records of altering wetlands/stream channels
 - Aerial photos
 - Maps and site reconnaissance to verify topography
 - Location of groundwater protection areas and/or well head protection zones
 - Descriptions of local site geology
- Site reconnaissance and characterization
 - Characterize hydrologic, geologic and biologic conditions
 - Used to inform overall design and location of infrastructure
 - Investigate steep slopes and landslide hazards near project site

LID SITE DESIGN PROCESS: Stormwater Site Plan

NPDES Permit Core Element #1
Preparation of Stormwater Site Plans:
- Refers to Chapter 3 of the Stormwater Management Manual for Eastern Washington
- Prepare a Stormwater Site Plan for local government review
Core Element #1 Preparation of Stormwater Site Plans

LID SITE DESIGN PROCESS: Stormwater Site Plan

1. Analyze Existing Site Conditions
2. Determine Applicable Core Elements
3. Prepare a Permanent Stormwater Control Plan
4. Prepare Construction SWPPP

Site Analysis: Collect and Analyze Information on Existing Conditions

- Site topography and survey
- Locations of sensitive and critical areas
- Drainage patterns
 - Areas with high potential for erosion and sediment deposition
 - Observations of potential runoff contribution from off-site basins
 - Adjacent properties with history of stormwater issues
- Soils Report
 - Licensed engineering hydrogeologist or geotechnical engineer
 - Ksat field tests or grain size analysis
 - Depth to restrictive layer—need winter data
 - Downstream Analysis and Mitigation Procedures (applies to projects with surface, offsite, or potential problem discharges)

Soils and infiltration rate testing can be skipped if those data for the site are already available

Field methods:
- Small-scale PIT test
- Large-scale PIT test
- Soil grain size analysis

Storm Drainage Design Guideline for Site Characterization
LID SITE DESIGN PROCESS: Stormwater Site Plan

Recommended Field Test Procedures (E WA LID Guidance Manual)

- **Small-scale PIT test (infiltration rate)**
 - Locate tests at frequency capable of producing a representative soil profile
 - Long/narrow bioretention: locate tests every 200 feet or wherever soil conditions are known to change
 - Commercial property permeable parking lots and driveways: 1 per every 5,000 square feet of permeable pavement (no less than 1 test per site)
 - Permeable pavement residential developments: every 200 feet of roadway and at every proposed lot if driveways are permeable pavement
 - Correction factors:
 - Site variability CF = 0.33 to 1

- **Large-scale PIT test (infiltration rate)**
 - Locate tests at frequency capable of producing a representative soil profile
 - Use for large scale permeable pavement facilities that will receive run-on from adjacent impervious areas
 - Soil grain size analysis (ksat/infiltration rate)
 - Appropriate for soils unconsolidated by glacial advance
 - Bioretention: analyze for each layer below the top of the final subgrade to a depth of at least 3 times the maximum ponding depth (no less than 3 feet)

Minimum Requirement #1 Preparation of Stormwater Site Plans

1. Analyze Existing Site Conditions
2. Determine Applicable Core Elements
3. Prepare a Permanent Stormwater Control Plan
4. Prepare Construction SWPPP
LID SITE DESIGN PROCESS: Stormwater Site Plan

3. Permanent Stormwater Control Plan (Section 3.2.1)
 • Construction Plans (Appendix 3C)
 • Drainage Report

LID SITE DESIGN PROCESS: Stormwater Site Plan

3. Permanent Stormwater Control Plan (Section 3.2.1)
 • Drainage Report contents
 • Hydrology computations
 • Geotechnical information (e.g., soil logs)
 • Basin map
 • Inlet capacities
 • Detention/retention storage capacities
 • Culvert and pipe system capacities and outlet velocities
 • Ditch capacities
 • Map with the project location

AGENDA

introduction and regulations
principles of LID site design
LID site design process
site assessment and layout
site planning and infrastructure
trees
exercises
wrap up
SITE ASSESSMENT AND LAYOUT

Use site analysis to guide site planning, reducing environmental impacts and achieve LID design objectives

Optimizing the development envelope for site protection

Road layout
Buildings
Open space

Four general objectives:
• Minimize disturbance
• Locate lots for dispersing stormwater to open space areas
• Orient lots to maximize on-lot infiltration or open conveyance
• Locate lots adjacent to, or with views or, open space

Benefits
• Preserve agricultural lands
• Promote thriving city centers
• Open space preservation

SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Prevalent Strategies:
• Cluster homes
• Narrow lot frontages to reduce road length per home
• Reduce front yard setbacks to reduce driveway length
• For grid or modified grid layouts, lengthen street blocks to reduce the number of cross streets and overall road network per home
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Large lot yield plan

SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Rural cluster

- 30% reduction in impervious surface when lot size reduced from 1.4 to 0.25 acres (MD Office of Planning).
- Increase in road network and driveways primary driver for impervious increase.

SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Increase density, create appropriate building heights and scale, and conserve open space with strategic design.
SITE ASSESSMENT AND LAYOUT: Road Layout

Typical grid road layout
- Impervious coverage: 27-36%
- Less adaptive to site features.
- Promotes transit and connectivity with more direct access to services.

Typical curvilinear road layout
- Impervious coverage: 15-29%
- More adaptive to site features.
- Generally discourages transit with longer, less connected system.

Hybrid or LID road layout
- Impervious coverage: similar percentage to other layouts.
- Adaptive to site features and uses site features (particularly water as an organizing theme).
- Can provide good connectivity and fire and safety access.
SITE ASSESSMENT AND LAYOUT: Road Layout

Road width and turnarounds

SITE ASSESSMENT AND LAYOUT: Road Layout

- Design to enhance streetscape and buffer pedestrians and homes from roadway

SITE ASSESSMENT AND LAYOUT: Buildings

- Reduce building footprint (build up)
- Orient the long axis of the building along topographic contours to reduce cutting and filling
- Control roof runoff onsite
- Use low impact foundations
- Limit clearing and grading to road, utility, building pad, and landscape areas
SITE ASSESSMENT AND LAYOUT: Open Space

• Preserve open space through clustering, building design, site planning

SITE ASSESSMENT AND LAYOUT: Costs and Benefits

• Reduce O&M costs
• Reduce in storm drainage infrastructure
• Reduce paving
• Triple Bottom Line Benefits:
 • Jobs and economic benefits
 • Community livability and neighborhood vitality
 • Sustainable product life cycle
 • Energy impact and production
 • Eco-system benefits
 • Agriculture and food production
 • Innovations and new market development
AGENDA

- Introduction and regulations
- Principles of LID site design
- LID site design process
- Site assessment and layout
- Site planning and infrastructure
- Trees
- Exercises
- Wrap up

SITE PLANNING AND INFRASTRUCTURE:

Zoning
- Comprehensive Plan goals and policies
- Zoning code
 - Landscaping, Native Vegetation, Tree Protection, and Open Space
 - Impervious Surface Standards
 - Bulk and Dimensional Standards
 - Site Plan Review
 - Parking
- Development Code and Standards
 - Clearing and Grading Standards
 - Engineering and Street Standards

SITE PLANNING AND INFRASTRUCTURE:

Small Lots
- Small lots often require:
 - Flexible code
 - Narrow side and front yard setbacks...consider fire and safety (sprinklers, fireproof siding)
 - Effective use of open space and lot layout
SITE PLANNING AND INFRASTRUCTURE:
Small Lots

SITE PLANNING AND INFRASTRUCTURE:
Small Lots

SITE PLANNING AND INFRASTRUCTURE:
Stormwater

• Strategic Stormwater Management
 • Reduce TIA and eliminate EIA where possible
 • Increase infiltration
 • Combined stormwater treatment and open space/landscaping
SITE PLANNING AND INFRASTRUCTURE:
Utilities
- Place water and sewer lines in disturbed areas
- Cluster water meters to minimize construction disturbance
- Cluster dry utilities under proposed sidewalks in joint trenches

SITE PLANNING AND INFRASTRUCTURE:
Utilities

SITE PLANNING AND INFRASTRUCTURE:
Circulation Layout
- Integrate pedestrian with storm where possible
- Layout pedestrian to access open space
- Fire and safety!
SITE PLANNING AND INFRASTRUCTURE: Integrating Open Space

• Create open space areas as community amenity and to store and slow stormwater flows during winter when the areas are less active recreationally

• Integrate open space into traffic calming designs

• Use open space to break up visual landscape for homes facing the road/each other

• Create open space pathways between homes (green streets)

SITE PLANNING AND INFRASTRUCTURE: Case Study

St. Thomas School, Medina, WA

Site Planning: limit impermeable surface, open space, retained existing trees and soils, reduction in infiltration

• Stormwater management: reduction of impervious surfaces, amended top soil, bioretention, permeable pavement

• Construction: shared infrastructure facilities, adjustments to permeable pavement spec

SITE PLANNING AND INFRASTRUCTURE: Case Study

St. Thomas School, Medina, WA

• Stormwater management: reduction of impervious surfaces, amended top soil, bioretention, permeable pavement
SITE PLANNING AND INFRASTRUCTURE: Case Study
St. Thomas School, Medina, WA
• Construction: shared TESC and WQ Treatment facilities, testing permeable pavement, reduce impacts on existing trees

Q&A

AGENDA
- introduction and regulations
- principles of LID site design
- LID site design process
- site assessment and layout
- site planning and infrastructure
- trees
- exercises
- wrap up
TREES: Integrating Stormwater Management

Multiple benefits
- Energy conservation
- Air quality
- Carbon sequestration
- Aesthetics and increased property value
- Stormwater flow reduction

TREES: Integrating Stormwater Management

- Trees may be used for stormwater management through careful assessment of subgrade soils, groundwater levels, and site drainage patterns
- Volume of storage for stormwater dependent on volume and type of soil
- Preventing compaction and increasing volume of soil increases volume for stormwater storage

TREES: Integrating Stormwater Management

Stormwater concepts:
1. Larger mature trees provide more stormwater benefits than small trees
2. Evergreen trees provide more stormwater benefits than deciduous trees
3. Adequate soil volume and quality are critical for healthy long-lived trees
4. Proper drainage design is critical...too much water can kill a tree faster than too little
Site Assessment:
• Available above ground growing space
 • Overhead wires and other utilities
 • Vehicle and pedestrian sight lines

TREES: Integrating Stormwater Management
Considerations for location and type of tree (cont'd):
• Below ground root space and ground level planting
 • Proximity to paved areas, utilities, and underground structures
• General:
 • Availability of soil and water
 • Prevailing wind direction and sun exposure
 • Maintenance
 • Shade, windbreak, privacy screening, air quality...

Guidelines for tree placement and protection:
• Plant in the best/appropriate places with highest quality soils and adequate soil volume
• Design for larger growing spaces
• Do not restrict trunk flare of mature tree
• Use pervious pavement for hard surfaces around trees
• Protect the tree from surrounding activities
• Drainage
Drainage
- If not directing flow to tree area and seasonally high GW below tree pit subgrade then likely no under-drain needed.
- If directing flow to tree area careful consideration of soils, tree species and under-drain.
- Generally planting pit above rooting zone (18-24 in.) should drain down within 48hrs.
- If under-drains used, incorporate an accessible control structure if possible.
- SilvaCell has GULD for WA if using approved bioretention media.

Reducing soil compaction
- Clearly mark protection areas, soil storage/staging areas, existing tree protection areas on plans and site
- Review plans and coordinate throughout construction with construction foreman and crew
- Robust fencing and signage declaring protection objectives and penalties to violating protection areas
- If access unavoidable:
 - Foot access: 6 inch layer of arborist wood chip mulch (AWC) and water
 - Vehicle access: 1 inch steel plate or 4 inch thick timber plank over 2-3 inches of AWC (min of % inch plywood over 6-8 inches of mulch)

Reducing compaction (long-term)
1. **New Trees**
 - Mulch tree planting bed with 2-4” of AWC. Keep chips 1” back from trunk. Replenish 1-3 years
 - Barriers
 - Wheel stops.
 - Low fences.
 - Curbs.
2. **Existing trees**
 - Mechanical
 - Soil amendments (compost and other biological products)
TREES: Tree Protection Zone

Tree Protection Zone (TPZ)

- Area (radial distance) based on the radial distance m/ft
- Identified by a certified arborist
- Protect during development

TREES: Tree Protection Zone

Tree Protection Barriers

- Protection zone that covers the trees optimum rooting zone
- Use plywood, chain-link or sheet metal fence
- Fines and penalties for violating the area demarcated by the barrier (included in the contract or specifications)
- Location of the barrier determined by the certified arborist based on species tolerance, condition, and age
- Barrier placement should also account for working space

TREES: Construction Impacts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Impact</th>
<th>Methods to minimize damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripping site of organic surface soil</td>
<td>Root loss</td>
<td>Remove clinging of material should not touch soil. Install fences to prevent tree from injury. Any realtor necessary to be removed adjacent to area certain should be cut at ground level and not pulled out by equipment. Arborist may be needed for adjacent tree removal if stumps are intercepted.</td>
</tr>
<tr>
<td>Clearing unwanted vegetation, removing existing structures</td>
<td>Root loss</td>
<td>Before grading, root pruner time at edge of excavation to a depth required. Spill beyond cut face can be removed by equipment sitting outside the dip line of the time. Use retaining walls with discontinuous fill to increase the distance that natural grade is maintained from trunk.</td>
</tr>
<tr>
<td>Lowering of grade, scarifying</td>
<td>Root loss</td>
<td></td>
</tr>
<tr>
<td>Preparing subgrade for fill and structures</td>
<td>Root loss</td>
<td></td>
</tr>
</tbody>
</table>

TREES: Construction Impacts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Impact</th>
<th>Methods to minimize damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trenching for utilities, stormwater</td>
<td>Root loss</td>
<td>• Avoid open trenching in rooting area</td>
</tr>
<tr>
<td>system, drains</td>
<td></td>
<td>• Tunnel under roots, if possible. If not, within root area, dig trench by hand, bridging root greater than 1 inch / 25.4 mm. Consolidate utilities in one trench.</td>
</tr>
<tr>
<td>Compact soils</td>
<td>Unfavorable conditions for root growth</td>
<td>• Fence trees to keep traffic and storage out of root area</td>
</tr>
<tr>
<td></td>
<td>Chronic stress from compacted root systems</td>
<td>• Provide a storage area and traffic route/area for construction activity away from trees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Where traffic cannot be diverted, protect soil surface</td>
</tr>
</tbody>
</table>

TREES: Integrating Stormwater Management

- **Soil depth**
 - 30-48" extended for a 10’ radius around tree in lawn areas

- **Soil volume**
 - Recommendations vary
 - Urban: 0.36 m3 soil per 1 m2 canopy projection for loam, no irrigation with 30" annual rainfall
 - Lindsey and Bussuk: 0.24 m3 per 1 m2 canopy projection
 - Structural Soils require volume for structural component => less available soil
 - CU Structural Soil™ has ~ 20% available soil

TREES: Integrating Stormwater Management

Soil and rooting volume strategies

1. Rigid cell systems
 - Modular frames
 - Support high loads
 - Most volume available for soil and tree roots
Soil and rooting volume strategies

2. Structural soil
 - Crushed aggregate (typ. 0.75-1.5” fine grained soil and polymer
 - Good porosity (25-30%) and permeability (>20in/hr), load bearing. Lower soil availability (~20%).

3. Sand-based structural soil
 - Medium to coarse uniformly graded sand with compost
 - (2-3% by volume) and 2-4in/hr Ksat typical
 - Typically 30” deep
 - Non-proprietary

4. Root paths
 - Guide roots out of confined planting areas
 - Do not add much soil volume, but interconnect planting areas
5. Root trenches
 * Increase soil and rooting volume
 * Typically 5" wide filled with topsoil or designed mix
 * Reinforce sidewalk to span trench
THE BOOT – MULTI-FAMILY RESIDENTIAL DEVELOPMENT

GOALS
• Maintain pre-development hydrologic conditions as much as possible.
• Maintain or enhance existing native vegetation and connections to adjacent Riparian Habitat Zones
• Protect wetland, and mitigate any impacts
• Provide space for program of buildings, parking, and utilities
• Provide access for residents, site circulation, and amenities

THE BOOT – MULTI-FAMILY RESIDENTIAL DEVELOPMENT

MATERIALS
• A site survey of existing conditions
• A list of factors to consider for consideration of opportunities & constraints including soils, utilities, access issues, adjacent land use, habitat connections.
• A program of development
• Strategies for compact development, clustering, and location of buildings and road to maximize site function and aesthetics.
• A set of low-impact stormwater treatment practices.
• Access to "consultants" to offer suggestions and opinions on your plan.

THE BOOT – MULTI-FAMILY RESIDENTIAL DEVELOPMENT

• 3.2 acres
• 2 roadway access points to west
• Utility connections along southwest road corridor
• Wetlands
• Riparian Zone & Buffer
• Existing trees & Heritage Trees
• Trail connection at south and north
• Most of site good infiltration
• Area of yellow is low infiltration
EXERCISE 1: SITE ASSESSMENT (45 mins)

• Using LID principles, develop diagram for the site that identifies opportunities and constraints for future development, including, but not limited to:
 • Zones of Native Vegetation to be Retained
 • Setbacks, buffers and other constraints
 • Areas for location of Access, Roadways, Parking, Utilities and other site features
 • Building Location Zones
 • Areas for potential stormwater management
 • Locations of key amenities, trails, views, or other potential site assets

• The result should be a plan showing constraints (i.e. buffers, protected zones, poor infiltration) and opportunities (locations for roads, parking, amenities, stormwater management, etc.) to provide guidance for location of future development. (30 mins)

• Exercise 1 Group Presentations & Discussion: 15 mins

EXERCISE 2: SITE PLANNING AND LAYOUT (2 hours)

In this phase, you are to focus on preliminary layout (arrows and basic bubble diagrams) that address a potential viable scenario for siting buildings, roads, parking per the program for the site.

Site Design Goals & Guidelines:
• Limit building footprint; Minimize effective impervious area
• Maintain natural hydrologic conditions
• Produce a marketable development
• Maximize open space and natural areas
• Incorporate stormwater BMP’s into site design
• Maintain access for vehicles; pedestrians, parking
• Provide logical routing of Utilities
• EXERCISE 2: SITE PLANNING AND LAYOUT

• Locate building footprints of housing
 • Total of 20 townhouses in 3, 4, and 5 unit clusters
 • Total of 12 flats – in 2, 4, or 6 unit clusters

• Locate a clubhouse/community building

• Provide roadway access on-site and space for parking of 40 cars – close to units (max 5 spaces before island)

• Provide space for playground, basketball court

• Provide circulation for pedestrians to all elements, plus trail and seating in open space zones

• Provide conceptual routing of utilities

• Provide a conceptual approach to stormwater management that maximizes on-site treatment and infiltration.
AGENDA

- Introduction and regulations
- Principles of LID site design
- LID site design process
- Site assessment and layout
- Site planning and infrastructure
- Trees
- Exercises
- Wrap up

Statewide LID Training Program

INTRODUCTORY
1.0 Introduction to LID for Eastern Washington

INTERMEDIATE
2.1 Introduction to LID for Inspectors & Maintenance Staff
3.1 Intermediate LID Topics: NPS/PS Plan & Design Standards
3.2 Intermediate LID Design: BioRetention
3.3 Intermediate LID Design: Permeable Pavement
3.4 Intermediate LID Design: Retention Solutions Analysis & Implementation
4.1 Intermediate LID Design: Model Development & Analysis

ADVANCED
5.1 Advanced Topics in LID Design: BioRetention
5.2 Advanced Topics in LID Design: Permeable Pavement
5.3 Advanced Topics for Designers LID Design:
5.4 Advanced Topics for Long-term LID Operation:
5.5 Advanced Topics in LID Design:
5.6 Advanced Topics in LID Design:
5.7 Advanced Topics in LID Design:
5.8 Advanced Topics in LID Design:
5.9 Advanced Topics in LID Design:
5.10 Advanced Topics in LID Design:

TRAIN THE TRAINERS
9.1 Service Provider
9.2 LID Topic Expert
Statewide LID Training Program

http://www.wastormwatercenter.org/lidwtrainingprogram/

ONLINE EVALUATION

• An on-line evaluation will be sent to you within 5 days following this training

CERTIFICATE

Two certificates:
• Stay tuned for decisions on certificate
• LID Design certificate
• Long-term LID Operations certificate

Sign out!
For information on training and other resources, visit the Washington Stormwater Center website:
http://www.wastormwatercenter.org

Stay connected through Social Media
• Come “Like” our Page
• Sign up to follow and get Tweets

Further questions? Contact:
training@cascadiaconsulting.com
(206) 449-1163