Statewide LID Training Program
Statewide LID Training Program

OVERVIEW OF PROGRAM

• 2012: Public and private partners engage state legislature to fund program
• June 2012: LID Training Steering Committee
• 2012-2013: Washington State LID Training Plan developed: www.wastormwatercenter.org/statewide-lid-training-program-plan
• Training program built from state LID Training Plan
Statewide LID Training Program

Overview of Program

<table>
<thead>
<tr>
<th>Project Lead</th>
<th>Core Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herrera</td>
<td>Cascadia</td>
</tr>
<tr>
<td></td>
<td>Veda</td>
</tr>
</tbody>
</table>

Additional Training Support

- CH2M Hill
- Kindred Hydro
- Leaping Frog Films
- SvR Design Company
- StormwaterONE
Statewide LID Training Program

OVERVIEW OF PROGRAM

• Implementation of first round of trainings (September 2014 through May 2015)
• 64 trainings offered in current phase (through June 2015)
• Three levels: Introductory, Intermediate, and Advanced
Statewide LID Training Program

Overview of Program

<table>
<thead>
<tr>
<th>Introductory</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction to LID for Eastern Washington</td>
<td>3.1 Intermediate LID Topics: NPDES Phase I & II Requirements</td>
<td>5.1 Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>2.1 Introduction to LID for Inspection & Maintenance Staff</td>
<td>3.2 Intermediate LID Design: Bioretention</td>
<td>5.2 Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>2.2 Introduction to LID for Developers & Contractors: Make Money be Green</td>
<td>3.3 Intermediate LID Design: Permeable Pavement</td>
<td>5.3 Advanced Topics for Long-term LID Operations: Bioretention</td>
</tr>
<tr>
<td></td>
<td>3.4 Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>5.4 Advanced Topics for Long-term LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td></td>
<td>4.1 Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 Intermediate LID Design: Hydrologic Modelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Train the Trainers

- 9.1 Service Providers
- 9.2 LID Topic Experts
Statewide LID Training Program

Today’s Training

<table>
<thead>
<tr>
<th>Introductory</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Introduction to LID for Eastern Washington</td>
<td>Intermediate LID Topics: NPDES Phase I & II Requirements</td>
<td>Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>2.1</td>
<td>3.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Introduction to LID for Inspection & Maintenance Staff</td>
<td>Intermediate LID Design: Bioretention</td>
<td>Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>2.2</td>
<td>3.3</td>
<td>5.3</td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td>5.4</td>
</tr>
<tr>
<td>Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td></td>
<td>Advanced Topics for Long-term LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td></td>
<td>Advanced Topics in LID Design: Bioretention Media</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>Intermediate LID Design: Hydrologic Modelling</td>
<td></td>
<td>Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
</tbody>
</table>

Train the Trainers

<table>
<thead>
<tr>
<th>Training Topic</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Service Providers</td>
<td>9.2 LID Topic Experts</td>
</tr>
</tbody>
</table>
JASON KING, RLA
ASLA LEED AP
Senior Landscape Architect
Key project experience:
Stormwater design for development, site design, green roofs, stormwater art, ecological planning

DUSTIN ATCHISON, PE
Water Resources Project Manager
Key project experience: LID design, stormwater master planning, stream and wetland restoration design, hydrologic and hydraulic modeling
AGENDA

1. Introduction and regulations
2. Principles of LID site design
3. LID site design process
4. Site assessment and layout
5. Site planning and infrastructure
6. Trees
7. Exercises
8. Wrap up
AGENDA

- Introduction and regulations
- Principles of LID site design
- LID site design process
- Site assessment and layout
- Site planning and infrastructure
- Trees
- Exercises
- Wrap up
LEARNING OBJECTIVES

1. Participants gain an intermediate level understanding of overall site assessment with particular attention to infiltration capability of soils for roadway, lot and open space layout within the LID context.

2. Participants gain an intermediate level understanding of appropriate layout for roadway, lot and open space to protect site hydrology and create livable and attractive developments.

3. Participants will gain an intermediate level understanding of techniques to protect native soil and vegetation during site development.
LOGISTICS

SCHEDULE
• 8-hour training with two breaks
• Lunch on your own
• Sign in and sign out

OTHER LOGISTICS
• Restroom location
• Food
• Turn off cell phones
• Q&A at end of each section
LID Principles: Pre-developed forest

Yakima Regional LID Stormwater Design Manual (April 2011)
LID Principles: Developed condition

Yakima Regional LID Stormwater Design Manual (April 2011)
INTRODUCTION & REGULATIONS

LOW IMPACT DEVELOPMENT (LID): Stormwater Management Strategy

- Site design & planning techniques emphasizing conservation

- Use of small-scale & distributed engineered controls to closely mimic pre-development hydrologic processes

- Minimizing the concentration of stormwater

- Careful assessment of site soils and strategic site planning to best use those soils for stormwater management
LID Principles: Site Design And Planning

- Minimize disturbance
- Reduce impervious surface
- Protect and restore native soils and vegetation
- Manage stormwater close to the source in a system of distributed practices
- Disconnect impervious surfaces

Traditional LID
PURPOSE AND PRINCIPLES

PURPOSE: LID BMPs

<table>
<thead>
<tr>
<th>BMP</th>
<th>Flow Control</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Amendment</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dispersion</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Retaining & Planting Trees</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bioretention</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bioretention (underdrain)</td>
<td>X *</td>
<td>X</td>
</tr>
<tr>
<td>Permeable Pavement</td>
<td>X</td>
<td>X *</td>
</tr>
<tr>
<td>Green Roofs</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rainwater Harvesting</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
PRINCIPLES: LID BMPs

- Infiltration
- Filtration
- Storage
- Evaporation
- Transpiration

Replace pre-developed hydrologic functions

City of Spokane
PRINCIPLES: LID BMPs

LID provides additional tools to meet your existing E WA stormwater management objectives.
INTRODUCTION

NPDES PERMIT REQUIREMENTS

• Phase I*
 • Populations ≥ 100,000

• Phase II
 • Generally populations > 10,000

• Issuance date: August 1, 2012
• Effective date: August 1, 2014
• Permit term: 5 years (through July 31, 2019)

*No Phase I jurisdictions in Eastern WA
NPDES PERMIT REQUIREMENTS

INTRODUCTION

<table>
<thead>
<tr>
<th>Phase II Cities</th>
<th>Phase II Counties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asotin</td>
<td>Asotin</td>
</tr>
<tr>
<td>Clarkston</td>
<td>Chelan</td>
</tr>
<tr>
<td>East Wenatchee</td>
<td>Douglas</td>
</tr>
<tr>
<td>Ellensburg</td>
<td>Spokane</td>
</tr>
<tr>
<td>Kennewick</td>
<td>Spokane Valley</td>
</tr>
<tr>
<td>Moses Lake</td>
<td>Sunnyside</td>
</tr>
<tr>
<td>Pasco</td>
<td>Union Gap</td>
</tr>
<tr>
<td>Pullman</td>
<td>Walla Walla</td>
</tr>
<tr>
<td>Richland</td>
<td>Wenatchee</td>
</tr>
<tr>
<td></td>
<td>West Richland</td>
</tr>
<tr>
<td></td>
<td>Yakima</td>
</tr>
</tbody>
</table>
INTRODUCTION

NPDES PERMIT REQUIREMENTS: Core Elements

<table>
<thead>
<tr>
<th>#1 Preparation of a Stormwater Site Plan</th>
<th>#2 Construction Stormwater Pollution Prevention</th>
<th>#3 Source Control of Pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4 Preservation of Natural Drainage Systems and Outfalls</td>
<td>#5 Runoff Treatment</td>
<td>#6 Flow Control</td>
</tr>
<tr>
<td>#7 Operations and Maintenance</td>
<td>#8 Local Requirements</td>
<td></td>
</tr>
</tbody>
</table>

Statewide LID Training Program

INTERMEDIATE SITE ASSESSMENT, PLANNING & LAYOUT
AGENDA

1. Introduction and regulations
2. Principles of LID site design
3. LID site design process
4. Site assessment and layout
5. Site planning and infrastructure
6. Trees
7. Exercises
8. Wrap up
The typical construction approach is to strip, cut, fill and pound.
PRINCIPLES OF LID SITE DESIGN: Conventional Site Development Practices and Impacts

- Compaction can extend 24”+ with heavy loads on wet soils.
- Compaction usually in top 6-8 inches of soil for tractors weighing less than 10 tons/axle.
- Track vs tires inflated to higher pressures...compaction appears to increase with increased tire pressure.

![Image showing soil compaction pressures under different conditions](U of Missouri and Minnesota Extension)
Management of large clearing and grading operations is expensive and time consuming.
PRINCIPLES OF LID SITE DESIGN: Conventional Site Development Practices and Impacts

• Stream biota significantly reduced at SS levels of 50-80 mg/L (Corish 1995).

• Schueler reported median TSS concentrations of 4,145 mg/L leaving construction sites with no TESC and 283 mg/L with TESC.
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation

- 23.92 acres
- 103 Lots (4,143 sq ft ave.)
- 15 acres (63%) Open space
- Effective impervious area approaching 0%
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation

<table>
<thead>
<tr>
<th></th>
<th>Detention storage reduced (ft3)</th>
<th>Detention storage required (ft3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional development</td>
<td></td>
<td>270,000</td>
</tr>
<tr>
<td>Low impact development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• reduce development envelope</td>
<td>-149,019</td>
<td></td>
</tr>
<tr>
<td>• and use bioretention</td>
<td>-40,061</td>
<td></td>
</tr>
<tr>
<td>• and use minimal excavation foundation</td>
<td>-7,432</td>
<td></td>
</tr>
<tr>
<td>• and use 20’ wide permeable road</td>
<td>-29,988</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-226,500</td>
<td>43,500</td>
</tr>
</tbody>
</table>

Hydrologic modeling comparing a conventional development and the flow reduction benefits from individual practices for a low impact development design.
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation

Full Dispersion
- 65/10/0
- Sliding dispersion scale
PRINCIPLES OF LID SITE DESIGN: Urban Development and Small Lots

Possible but challenging to conserve and protect native soils and vegetation in dense development settings
PRINCIPLES OF LID SITE DESIGN: Protecting Native Trees and Soil

It takes a village...and fines to protect trees and soil.

• Contractor training
• Bonding/fines
• Signage
PRINCIPLES OF LID SITE DESIGN: Road Networks

- Conventional street design increases drainage network and efficiency.
- Local street right of ways can constitute over 25 percent of the typical urban watershed.
- Streams with buffers constitute about 10 percent of this sample watershed.
PRINCIPLES OF LID SITE DESIGN: Road Networks
PRINCIPLES OF LID SITE DESIGN: Scale of Analysis

- Home
- Planned Development
- Community
- Watershed
- County/City
- Region
PRINCIPLES OF LID SITE DESIGN: Regional Planning

Avoid open-space fragmentation

15,000 sq. ft. lots

5,000 sq. ft. lots
PRINCIPLES OF LID SITE DESIGN: Regional Planning

Project vs. regional clustering

Project by project cluster development

Regional cluster development

Statewide LID Training Program
3.4 EASTERN WASHINGTON
INTERMEDIATE SITE ASSESSMENT, PLANNING & LAYOUT
PRINCIPLES OF LID SITE DESIGN: Regional Planning

Project vs. regional clustering

Arterials
PRINCIPLES OF LID SITE DESIGN: Small Contributing Areas
LID SITE DESIGN PROCESS: Overview

1. Project baseline/charter
2. Develop basis of design
3. Develop team and engage stakeholders
4. Site inventory and analysis
5. Site assessment and develop Site Plan
LID SITE DESIGN PROCESS: Project Baseline/Charter

• Project Scope
• Project Schedule
 • Construction
 • Plant Establishment
• Construction Budget
• Jurisdiction and Code Requirements
• Sustainability Goals defined
• Maintenance Capabilities
LID SITE DESIGN PROCESS: Develop Basis of Design

• Project Background
 • Specification and drawing format
 • Sustainability requirements
 • Property restrictions and easements
 • Permitting and point of compliance

• Site Civil
 • Frontage and Right-of-Way requirements
 • Civil grading criteria
 • Utility criteria

• Landscape Design Criteria
 • Existing tree preservation
 • Buffers
LID SITE DESIGN PROCESS: Develop Team and Engage Stakeholders

- Owner/Developer
- Public agency reviewers
 - Land use Planners/Zoning
 - Transportation
 - Utility department
 - Stormwater Management
 - Other
- Architect
- Civil Engineer
- Surveyor
- Landscape Architect
- Geotechnical Engineer
- Wetland/Biologist
- Arborist
- Outreach
- Community stakeholders
- Fire & Police Department
- Owner’s contractor
- Funding partners
- Maintenance staff
- Other?
LID SITE DESIGN PROCESS: Site Inventory and Analysis

- Gather existing analysis, inventories, and historic information:
 - Soil surveys and analyses
 - Historic records of altering wetlands/stream channels
 - Aerial photos
 - Maps and site reconnaissance to verify topography
 - Location of groundwater protection areas and/or well head protection zones
 - Descriptions of local site geology

- Site reconnaissance and characterization
 - Characterize hydrologic, geologic and biologic conditions
 - Used to inform overall design and location of infrastructure
 - Investigate steep slopes and landslide hazards near project site
LID SITE DESIGN PROCESS: Stormwater Site Plan

NPDES Permit Core Element #1
Preparation of Stormwater Site Plans:
• Refers to Chapter 3 of the Stormwater Management Manual for Eastern Washington
• Prepare a Stormwater Site Plan for local government review
LID SITE DESIGN PROCESS: Stormwater Site Plan

Core Element #1 Preparation of Stormwater Site Plans

1. Analyze Existing Site Conditions
2. Determine Applicable Core Elements
3. Prepare a Permanent Stormwater Control Plan
4. Prepare Construction SWPPP
1. Site Analysis: Collect and Analyze Information on Existing Conditions (Section 3.2.1)

- Site topography and survey
- Locations of sensitive and critical areas
- Drainage patterns
 - Areas with high potential for erosion and sediment deposition
 - Observations of potential runoff contribution from off-site basins
 - Adjacent properties with history of stormwater issues
- Soils Report
 - Licensed engineering hydrogeologist or geotechnical engineer
 - Ksat field tests or grain size analysis
 - Depth to restrictive layer—need winter data
- Downstream Analysis and Mitigation Procedures (applies to projects with surface, offsite, or potential problem discharges)
LID SITE DESIGN PROCESS: Stormwater Site Plan

Storm Drainage Design Guideline for Site Characterization

- Soils and infiltration rate testing can be skipped if those data for the site are already available
- Field methods:
 - Small-scale PIT test
 - Large-scale PIT test
 - Soil grain size analysis
LID SITE DESIGN PROCESS: Stormwater Site Plan

Recommended Field Test Procedures (E WA LID Guidance Manual)

- Small-scale PIT test (infiltration rate)
 - Locate tests at frequency capable of producing a representative soil profile
 - Long/narrow bioretention: locate tests every 200 feet or wherever soil conditions are known to change
 - Commercial property permeable parking lots and driveways: 1 per every 5,000 square feet of permeable pavement (no less than 1 test per site)
 - Permeable pavement residential developments: every 200 feet of roadway and at every proposed lot if driveways are permeable pavement
- Correction factors:
 - Site variability CF = 0.33 to 1

<table>
<thead>
<tr>
<th>SITE ANALYSIS ISSUE</th>
<th>CORRECTION FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site variability and number of locations tested</td>
<td>CF = 0.33 to 1</td>
</tr>
<tr>
<td>Degree of influent control to prevent siltation and bio- buildup</td>
<td>No correction factor required</td>
</tr>
</tbody>
</table>
LID SITE DESIGN PROCESS: Stormwater Site Plan

Recommended Field Test Procedures (E WA LID Guidance Manual)

- Large-scale PIT test (infiltration rate)
 - Locate tests at frequency capable of producing a representative soil profile
 - Use for large scale permeable pavement facilities that will receive run-on from adjacent impervious areas

- Soil grain size analysis (ksat/ infiltration rate)
 - Appropriate for soils unconsolidated by glacial advance
 - Bioretention: analyze for each layer below the top of the final subgrade to a depth of at least 3 times the maximum ponding depth (no less than 3 feet)
LID SITE DESIGN PROCESS: Stormwater Site Plan

Minimum Requirement #1 Preparation of Stormwater Site Plans

1. Analyze Existing Site Conditions
2. Determine Applicable Core Elements
3. Prepare a Permanent Stormwater Control Plan
4. Prepare Construction SWPPP
LID SITE DESIGN PROCESS: Stormwater Site Plan

3. Permanent Stormwater Control Plan (Section 3.2.1)

- Construction Plans (Appendix 3C)
- Drainage Report
LID SITE DESIGN PROCESS: Stormwater Site Plan

3. Permanent Stormwater Control Plan (Section 3.2.1)

- Drainage Report contents
 - Hydrology computations
 - Geotechnical information (e.g., soil logs)
 - Basin map
 - Inlet capacities
 - Detention/retention storage capacities
 - Culvert and pipe system capacities and outlet velocities
 - Ditch capacities
 - Map with the project location
AGENDA

introduction and regulations

principles of LID site design

LID site design process

site assessment and layout

site planning and infrastructure

trees

exercises

wrap up
SITE ASSESSMENT AND LAYOUT

Use site analysis to guide site planning, reducing environmental impacts and achieve LID design objectives

- Optimizing the development envelope for site protection
- Road layout
- Buildings
- Open space
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Four general objectives:
- Minimize disturbance
- Locate lots for dispersing stormwater to open space areas
- Orient lots to maximize on-lot infiltration or open conveyance
- Locate lots adjacent to, or with views or, open space

Benefits
- Preserve agricultural lands
- Promote thriving city centers
- Open space preservation
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Prevalent Strategies:

- Cluster homes
- Narrow lot frontages to reduce road length per home
- Reduce front yard setbacks to reduce driveway length
- For grid or modified grid layouts, lengthen street blocks to reduce the number of cross streets and overall road network per home
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Large lot yield plan

2012 LID Technical Guidance Manual for Puget Sound
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Rural cluster

• 30% reduction in impervious surface when lot size reduced from 1.4 to 0.25 acres (MD Office of Planning).

• Increase in road network and driveways primary driver for impervious increase.
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Increase density, create appropriate building heights and scale, and conserve open space with strategic design.
SITE ASSESSMENT AND LAYOUT: Road Layout

Typical grid road layout
- Impervious coverage: 27-36%
- Less adaptive to site features.
- Promotes transit and connectivity with more direct access to services.
SITE ASSESSMENT AND LAYOUT: Road Layout

Typical curvilinear road layout
• Impervious coverage: 15-29%
• More adaptive to site features.
• Generally discourages transit with longer, less connected system.
SITE ASSESSMENT AND LAYOUT: Road Layout

Hybrid or LID road layout

• Impervious coverage: similar percentage to other layouts.
• Adaptive to site features and uses site features (particularly water as an organizing theme).
• Can provide good connectivity and fire and safety access.
SITE ASSESSMENT AND LAYOUT: Road Layout

Road width and turnarounds
SITE ASSESSMENT AND LAYOUT: Road Layout

- Design to enhance street scape and buffer pedestrians and homes from roadway

Water Street, Port Townsend, WA
SITE ASSESSMENT AND LAYOUT: Buildings

- Reduce building footprint (build up)
- Orient the long axis of the building along topographic contours to reduce cutting and filling
- Control roof runoff onsite
- Use low impact foundations
- Limit clearing and grading to road, utility, building pad, landscape areas
SITE ASSESSMENT AND LAYOUT: Open Space

• Preserve open space through clustering, building design, site planning
SITE ASSESSMENT AND LAYOUT: Costs and Benefits

• Reduce O&M costs
• Reduce in storm drainage infrastructure
• Reduce paving
• Triple Bottom Line Benefits:
 • Jobs and economic benefits
 • Community livability and neighborhood vitality
 • Sustainable product life cycle
 • Energy impact and production
 • Eco-system benefits
 • Agriculture and food production
 • Innovations and new market development
AGENDA

introduction and regulations
principles of LID site design
LID site design process
site assessment and layout
site planning and infrastructure
trees
exercises
wrap up
SITE PLANNING AND INFRASTRUCTURE:

Zoning

• Comprehensive Plan goals and policies

• Zoning code
 • Landscaping, Native Vegetation, Tree Protection, and Open Space
 • Impervious Surface Standards
 • Bulk and Dimensional Standards
 • Site Plan Review
 • Parking

• Development Code and Standards
 • Clearing and Grading Standards
 • Engineering and Street Standards
SITE PLANNING AND INFRASTRUCTURE: Small Lots

- Small lots often require:
 - Flexible code
 - Narrow side and front yard setbacks...consider fire and safety (sprinklers, fireproof siding)
 - Effective use of open space and lot layout
SITE PLANNING AND INFRASTRUCTURE:
Small Lots
SITE PLANNING AND INFRASTRUCTURE:
Small Lots

Danielson Grove/Triad Associates

Statewide LID Training Program
3.4 EASTERN WASHINGTON
INTERMEDIATE SITE ASSESSMENT, PLANNING & LAYOUT
SITE PLANNING AND INFRASTRUCTURE: Stormwater

- Strategic Stormwater Management
 - Reduce TIA and eliminate EIA where possible
 - Increase infiltration
 - Combined stormwater treatment and open space/landscaping
SITE PLANNING AND INFRASTRUCTURE: Utilities

- Place water and sewer lines in disturbed areas
- Cluster water meters to minimize construction disturbance
- Cluster dry utilities under proposed sidewalks in joint trenches

Residential street with bioretention and utility location detail (SVR)
SITE PLANNING AND INFRASTRUCTURE:
Utilities

BIORETENTION WITH UNDERDRAIN

BIORETENTION SOIL MIX
2' MIN., SEE NOTE 3
CROSSING WATER, SEE NOTE 1
CROSSING SEWER, SEE NOTE 2
CROSSING DRY UTILITIES, SEE NOTE 4

PARALLEL SEWER, SEE NOTE 2
PARALLEL DRY UTILITIES
PARALLEL WATER

3' MIN. 10' MIN.

BIORETENTION WITHOUT UNDERDRAIN

BIORETENTION SOIL MIX
2' MIN., SEE NOTE 3
CROSSING WATER, SEE NOTE 1
CROSSING SEWER, SEE NOTE 2
CROSSING DRY UTILITIES, SEE NOTE 4

PARALLEL SEWER, SEE NOTE 2
PARALLEL DRY UTILITIES
PARALLEL WATER

3' MIN. 10' MIN.
SITE PLANNING AND INFRASTRUCTURE: Circulation Layout

- Integrate pedestrian with storm where possible
- Layout pedestrian to access open space
- Fire and safety!

2012 LID Technical Guidance Manual for Puget Sound
SITE PLANNING AND INFRASTRUCTURE: Integrating Open Space

- Create open space areas as community amenity and to store and slow stormwater flows during winter when the areas are less active recreationally
- Integrate open space into traffic calming designs
- Use open space to break up visual landscape for homes facing the road/each other
- Create open space pathways between homes (green streets)

Danielson Grove
SITE PLANNING AND INFRASTRUCTURE: Case Study

St. Thomas School, Medina, WA

Site Planning: limit impermeable surface, open space, retained existing trees and soils, reduction in infiltration

• Stormwater management: reduction of impervious surfaces, amended top soil, bioretention, permeable pavement

• Construction: shared infrastructure facilities, adjustments to permeable pavement spec
SITE PLANNING AND INFRASTRUCTURE:
Case Study
St. Thomas School, Medina, WA
• Stormwater management: reduction of impervious surfaces, amended top soil, bioretention, permeable pavement
SITE PLANNING AND INFRASTRUCTURE: Case Study

St. Thomas School, Medina, WA

• Construction: shared TESC and WQ Treatment facilities, testing permeable pavement, reduce impacts on existing trees
Q&A
AGENDA

- Introduction and regulations
- Principles of LID site design
- LID site design process
- Site assessment and layout
- Site planning and infrastructure
- Trees
- Exercises
- Wrap up
TREES: Integrating Stormwater Management

Multiple benefits

• Energy conservation
• Air quality
• Carbon sequestration
• Aesthetics and increased property value
• Stormwater flow reduction
TREES: Integrating Stormwater Management

• Trees may be used for stormwater management through careful assessment of subgrade soils, groundwater levels, and site drainage patterns

• Volume of storage for stormwater dependent on volume and type of soil

• Preventing compaction and increasing volume of soil increases volume for stormwater storage
TREES: Integrating Stormwater Management

Stormwater concepts:

1. Larger mature trees provide more stormwater benefits than small trees
2. Evergreen trees provide more stormwater benefits than deciduous trees
3. Adequate soil volume and quality are critical for healthy long-lived trees
4. Proper drainage design is critical...too much water can kill a tree faster than too little
TREES: Integrating Stormwater Management

Site Assessment:

- Available above ground growing space
 - Overhead wires and other utilities
 - Vehicle and pedestrian sight lines
TREES: Integrating Stormwater Management

Considerations for location and type of tree (cont’d):

- Below ground root space and ground level planting
 - Proximity to paved areas, utilities, and underground structures

- General:
 - Availability of soil and water
 - Prevailing wind direction and sun exposure
 - Maintenance
 - Shade, windbreak, privacy screening, air quality....
TREES: Integrating Stormwater Management

Guidelines for tree placement and Protection

- Plant in the best/appropriate places with highest quality soils and adequate soil volume
- Design for larger growing spaces
- Do not restrict trunk flare of mature tree
- Use pervious pavement for hard surfaces around trees
- Protect the tree from surrounding activities
- Drainage
TREES: Integrating Stormwater Management

Drainage

• If not directing flow to tree area and seasonally high GW below tree pit subgrade then likely no under-drain needed.

• If directing flow to tree area careful consideration of soils, tree species and under-drain.

• Generally planting pit above rooting zone (18-24 in.) should drain down within 48hrs.

• If under-drains used, incorporate an accessible control structure if possible.

• SilvaCell has GULD for WA if using approved bioretention media.
Reducing soil compaction

- Clearly mark protection areas, soil storage/staging areas, existing tree protection areas on plans and site
- Review plans and coordinate throughout construction with construction foreman and crew
- Robust fencing and signage declaring protection objectives and penalties to violating protection areas
- If access unavoidable:
 - Foot access: 6 inch layer of arborist wood chip mulch (AWC) and water
 - Vehicle access: 1 inch steel plate or 4 inch thick timber plank over 2-3 inches of AWC (min of ¾ inch plywood over 6-8 inches of mulch)
TREES: Construction Impacts

Reducing compaction (long-term)

1. **New Trees**
 - Mulch tree planting bed with 2-4” of AWC. Keep chips 1’ back from trunk. Replenish 1-3 years
 - Barriers
 - Wheel stops.
 - Low fences.
 - Curbs.

2. **Existing trees**
 - Mechanical
 - Soil amendments (compost and other biological products)
TREES: Tree Protection Zone

Tree Protection Zone (TPZ)

- Area (radial distance) based on the radial distance m/ft
- Identified by a certified arborist
- Protect during development

Determined the Tree Protection Zone

To calculate the optimum tree protection zone (see Table 11-1).

1. Evaluate the species tolerance of the tree: good, moderate, or poor.
2. Identify tree age: young, mature, overmature.
3. In Table 11-1, find the distance from the trunk that should be protected per unit of trunk diameter.
4. Multiply the distance by the trunk diameter to calculate the optimum radius for the tree protection zone.

Examples:

(Left) A 15-year-old, healthy, 33-cm (13-in.) diameter raywood ash (Fraxinus Raywood) (good tolerance, young age):

\[
0.06 \text{ m} \times 33 \text{ cm} = 1.98 \text{ m radius tree protection zone} \\
0.5 \text{ ft} \times 13 \text{ in.} = 6.5 \text{ ft radius tree protection zone}
\]

(Right) A healthy 60-year-old, 76-cm (30-in.) diameter black walnut (Juglans hindsii) (poor tolerance, mature age):

\[
0.15 \text{ m} \times 78 \text{ cm} = 11.4 \text{ m radius tree protection zone} \\
1.25 \text{ ft} \times 30 \text{ in.} = 37.5 \text{ ft radius tree protection zone}
\]
TREES: Tree Protection Zone

Tree Protection Barriers

• Protection zone that covers the trees optimum rooting zone
• Use plywood, chain-link or sheet metal fence
• Fines and penalties for violating the area demarcated by the barrier (included in the contract or specifications)
• Location of the barrier determined by the certified arborist based on species tolerance, condition, and age
• Barrier placement should also account for working space

Figure No.4, General Illustration of Tree Protection Area

Notes:
A: Install / maintain a 12 inches/300mm depth of woodchip mulch (absolute minimum)
TREES: Construction Impacts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Impact</th>
<th>Methods to minimize damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Stripping site of organic surface soil</td>
<td>Root loss</td>
<td>• Restrict stripping of topsoil around trees</td>
</tr>
<tr>
<td>• Clearing unwanted vegetation</td>
<td></td>
<td>• Install fences to protect trees from injury</td>
</tr>
<tr>
<td>• Demolishing existing structures</td>
<td></td>
<td>• Any woody vegetation to be removed adjacent to trees remain should be cut at ground level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and not pulled out by equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Otherwise root injury to remaining trees may result</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Arborist may be needed for adjacent tree removal if crowns are intertwined</td>
</tr>
<tr>
<td>• Lowering of grade, scarifying</td>
<td>Root loss</td>
<td>• Before grading, root prune tree at edge of excavation to a depth required</td>
</tr>
<tr>
<td>• Preparing sub-grade for fill and structures</td>
<td></td>
<td>• Spoil beyond cut face can be removed by equipment sitting outside the drip line of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use retaining walls with discontinuous footings to increase the distance that natural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grade is maintained from trunk</td>
</tr>
</tbody>
</table>

![Construction Images](image-url)
TREES: Construction Impacts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Impact</th>
<th>Methods to minimize damage</th>
</tr>
</thead>
</table>
| Trenching for utilities, stormwater system, drains | Root loss | • Avoid open trenching in rooting area
• Tunnel under roots, if possible. If not, within root area, dig trench by hand, bridging roots greater than 1 inches / 254 mm
• Consolidate utilities into one trench |
| Compacted surface soils | • Unfavorable conditions for root growth
• chronic stress from reduced root systems | • Fence trees to keep traffic and storage out of root area
• Provide a storage area and traffic route/area for construction activity away from trees
• Where traffic cannot be diverted, protect soil surface |

Statewide LID Training Program
3.4 EASTERN WASHINGTON
INTERMEDIATE SITE ASSESSMENT, PLANNING & LAYOUT 103
TREES: Integrating Stormwater Management

• Soil depth
 • 30-48” extended for a 10’ radius around tree in lawn areas

• Soil volume
 • Recommendations vary
 • Urban: 0.38 m³ soil per 1 m² canopy projection for loam, no irrigation with 30” annual rainfall
 • Lindsey and Bussuk: 0.24 m³ per 1 m² canopy projection
 • Structural Soils require volume for structural component => less available soil
 • CU Structural Soil™ has ~ 20% available soil
Soil and rooting volume strategies

1. Rigid cell systems
 - Modular frames
 - Support high loads
 - Most volume available for soil and tree roots

TREES: Integrating Stormwater Management

[Diagram of stormwater management systems, including rain gardens, street trees, and underground cells for water infiltration.]
TREES: Integrating Stormwater Management

Soil and rooting volume strategies

2. Structural soil
 • Crushed aggregate (typ. 0.75-1.5” fine grained soil and polymer
 • Good porosity (25-30%) and permeability (>20in/hr), load bearing. Lower soil availability (~20%).
3. **Sand-based structural soil**
 - Medium to coarse uniformly graded sand with compost
 - (2-3% by volume) and 2-4in/hr Ksat typical
 - Typically 30” deep
 - Non-proprietary
TREES: Integrating Stormwater Management

Soil and rooting volume strategies

4. Root paths
 • Guide roots out of confined planting areas
 • Do not add much soil volume, but interconnect planting areas

Figure 2.6.8. Root path detail.
1. Strip drain.
2. 4-inch-wide by 12-inch-deep trench backfill with loam topsoil. Compact sides of trench.
3. Extend strip drain 12 inches into tree opening.
5. Root trenches
 • Increase soil and rooting volume
 • Typically 5” wide filled with topsoil or designed mix
 • Reinforce sidewalk to span trench
AGENDA

- introduction and regulations
- principles of LID site design
- LID site design process
- site assessment and layout
- site planning and infrastructure
- trees
- exercises
- wrap up
THE BOOT – MULTI-FAMILY RESIDENTIAL DEVELOPMENT

GOALS

• Maintain pre-development hydrologic conditions as much as possible.

• Maintain or enhance existing native vegetation and connections to adjacent Riparian Habitat Zones

• Protect wetland, and mitigate any impacts

• Provide space for program of buildings, parking, and utilities

• Provide access for residents, site circulation, and amenities
THE BOOT – MULTI-FAMILY RESIDENTIAL DEVELOPMENT

MATERIALS

• A site survey of existing conditions

• A list of factors to consider for consideration of opportunities & constraints including soils, utilities, access issues, adjacent land use, habitat connections.

• A program of development

• Strategies for compact development, clustering, and location of buildings and road to maximize site function and aesthetics.

• A set of low-impact stormwater treatment practices.

• Access to “consultants” to offer suggestions and opinions on your plan.
THE BOOT – MULTI-FAMILY RESIDENTIAL DEVELOPMENT

- 3.2 acres
- 2 roadway access points to west
- Utility connections along southwest road corridor
- Wetlands
- Riparian Zone & Buffer
- Existing trees & Heritage Trees
- Trail connection at south and north
- Most of site good infiltration
- Area of yellow is low infiltration
EXERCISE 1: SITE ASSESSMENT (45 mins)

- Using LID principles, develop diagram for the site that identifies opportunities and constraints for future development, including, but not limited to:
 - Zones of Native Vegetation to be Retained
 - Setbacks, buffers and other constraints
 - Areas for location of Access, Roadways, Parking, Utilities and other site features
 - Building Location Zones
 - Areas for potential stormwater management
 - Locations of Key amenities, trails, views, or other potential site assets

- The result should be a plan showing constraints (i.e. buffers, protected zones, poor infiltration) and opportunities (locations for roads, parking, amenities, stormwater management, etc.) to provide guidance for location of future development. (30 mins)

- Exercise 1 Group Presentations & Discussion: 15 mins
EXERCISE 1: SITE ASSESSMENT
• EXERCISE 2: SITE PLANNING AND LAYOUT (2 hours)

In this phase, you are to focus on preliminary layout (arrows and basic bubble diagrams) that address a potential viable scenario for siting buildings, roads, parking per the program for the site.

Site Design Goals & Guidelines:
• Limit building footprint; Minimize effective impervious area
• Maintain natural hydrologic conditions
• Produce a marketable development
• Maximize open space and natural areas
• Incorporate stormwater BMP’s into site design
• Maintain access for vehicles; pedestrians, parking
• Provide logical routing of Utilities
• **EXERCISE 2: SITE PLANNING AND LAYOUT**

• Locate building footprints of housing
 • Total of 20 townhouses in 3, 4, and 5 unit clusters
 • Total of 12 flats – in 2, 4, or 6 unit clusters

• Locate a clubhouse/community building

• Provide roadway access on-site and space for parking of 40 cars – close to units (max 5 spaces before island)

• Provide space for playground, basketball court

• Provide circulation for pedestrians to all elements, plus trail and seating in open space zones

• Provide conceptual routing of utilities

• Provide a conceptual approach to stormwater management that maximizes on-site treatment and infiltration.
• EXERCISE 2: SITE PLANNING AND LAYOUT

Clearwater Commons
Site Plan
Click to Enlarge
AGENDA

1. Introduction and regulations
2. Principles of LID site design
3. LID site design process
4. Site assessment and layout
5. Site planning and infrastructure
6. Trees
7. Exercises
8. Wrap up
Statewide LID Training Program

OTHER COURSE OFFERINGS

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Intermediate LID Topics: NPDES Phase I & II Requirements</td>
<td>5.1 Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td>2.1</td>
<td>Intermediate LID Design: Bioretention</td>
<td>5.2 Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td>2.2</td>
<td>Intermediate LID Design: Permeable Pavement</td>
<td>5.3 Advanced Topics for Long-term LID Operations: Bioretention</td>
</tr>
<tr>
<td></td>
<td>Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>5.4 Advanced Topics for Long-term LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td></td>
<td>Intermediate LID Design: Hydrologic Modelling</td>
<td>7.0 Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
<tr>
<td></td>
<td>Service Providers</td>
<td>8.1 Advanced Topics in LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
</tr>
<tr>
<td></td>
<td>9.1</td>
<td>8.2 Advanced Topics in LID Design: Bioretention Media</td>
</tr>
<tr>
<td></td>
<td>9.2 LID Topic Experts</td>
<td>10.0 Train the Trainers: Service Providers</td>
</tr>
</tbody>
</table>

TRAIN THE TRAINER

10.0 Train the Trainer: Service Providers

9.2 LID Topic Experts

123

1/12/2015

123
http://www.wastormwatercenter.org/lidswtrainingprogram/
An on-line evaluation will be sent to you within 5 days following this training.
Two certificates:

• Stay tuned for decisions on certificate
• LID Design certificate
• Long-term LID Operations certificate

Sign out!
For information on training and other resources, visit the Washington Stormwater Center website:

http://www.wastormwatercenter.org

Stay connected through Social Media
- Come “Like” our Page
- Sign up to follow and get Tweets
Further questions? Contact:
training@cascadiaconsulting.com
(206) 449-1163