Statewide LID Training Program
• 2012: Public and private partners engage state legislature to fund program

• June 2012: LID Training Steering Committee convened

• 2012-2013: Washington State LID Training Plan developed: www.wastormwatercenter.org/lid-background

• 2014: Training program built from state LID Training Plan
Statewide LID Training Program

PROGRAM OVERVIEW

- 42 trainings in western and eastern WA in 2015-2016.
- Three levels: Introductory, Intermediate, and Advanced.
- Statewide LID Certificate now available.
Statewide LID Training Program

Overview of Program

<table>
<thead>
<tr>
<th>Introductory</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction to LID for Inspection & Maintenance Staff</td>
<td>3.1 Intermediate LID Topics: NPDES Phase I & II Requirements</td>
<td>5.0 Advanced Topics for Long-term LID Operations: Bioretention</td>
</tr>
<tr>
<td>3.2 Intermediate LID Design: Bioretention</td>
<td>5.1 Advanced Topics for Long-term LID Operations: Permeable Pavement</td>
<td>5.6 Advanced Topics in LID Design: Hydrologic Modeling</td>
</tr>
<tr>
<td>3.3 Intermediate LID Design: Permeable Pavement</td>
<td>5.2 Advanced Topics in LID Design: Bioretention</td>
<td>6.2 Advanced Topics in LID Design: Bioretention Media and Compost Amended Soils</td>
</tr>
<tr>
<td>3.4 Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>5.3 Advanced Topics in LID Design: Permeable Pavement</td>
<td></td>
</tr>
<tr>
<td>3.5 Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td>5.4 Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
<td></td>
</tr>
<tr>
<td>3.6 Intermediate LID Design: Hydrologic Modeling</td>
<td>5.5 Advanced Topics in LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td></td>
</tr>
</tbody>
</table>
Statewide LID Training Program

Overview of Program

<table>
<thead>
<tr>
<th>Introductory</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction to LID for Inspection & Maintenance Staff</td>
<td>3.1 Intermediate LID Topics: NPDES Phase I & II Requirements</td>
<td>5.0 Advanced Topics for Long-term LID Operations: Bioretention</td>
</tr>
<tr>
<td></td>
<td>3.2 Intermediate LID Design: Bioretention</td>
<td>5.6 Advanced Topics in LID Design: Hydrologic Modeling</td>
</tr>
<tr>
<td></td>
<td>3.3 Intermediate LID Design: Permeable Pavement</td>
<td>5.1 Advanced Topics for Long-term LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td></td>
<td>3.4 Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>6.2 Advanced Topics in LID Design: Bioretention Media and Compost Amended Soils</td>
</tr>
<tr>
<td></td>
<td>3.5 Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td>5.2 Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td></td>
<td>3.6 Intermediate LID Design: Hydrologic Modeling</td>
<td>5.3 Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.4 Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.5 Advanced Topics in LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6 Advanced Topics in LID Design: Hydrologic Modeling</td>
</tr>
</tbody>
</table>
Statewide LID Training Program

Intermediate Site Assessment, Planning and Layout

WESTERN WASHINGTON
INSTRUCTORS

JASON KING, RLA
ASLA LEED AP
Senior Landscape Architect
Key project experience: Stormwater design for development, site design, green roofs, stormwater art, ecological planning

CURTIS HINMAN
Senior Scientist
Key project experience: Research specialist in the performance and design of LID practices.

DUSTIN ATCHISON, PE
Water Resources Project Manager
Key project experience: LID design, stormwater master planning, stream and wetland restoration design, hydrologic and hydraulic modeling
AGENDA

1. introduction and regulations
2. principles of LID site design
3. LID site design process
4. site assessment and layout
5. site planning and infrastructure
6. trees
7. exercises
8. wrap up
LEARNING OBJECTIVES

1. Participants gain an intermediate level understanding of overall site assessment with particular attention to infiltration capability of soils for roadway, lot and open space layout within the LID context.

2. Participants gain an intermediate level understanding of appropriate layout for roadway, lot and open space to protect site hydrology and create livable and attractive developments.

3. Participants will gain an intermediate level understanding of techniques to protect native soil and vegetation during site development.
LOGISTICS

SCHEDULE

• 8-hour training with two breaks
• Lunch on your own
• Sign in and sign out

OTHER LOGISTICS

• Restroom location
• Food
• Turn off cell phones
• Q&A at end of each section
LID Principles: Pre-developed forest
INTRODUCTION & REGULATIONS

LID Principles: Developed condition

2012 LID Technical Guidance Manual for Puget Sound
INTRODUCTION & REGULATIONS

LOW IMPACT DEVELOPMENT (LID): Stormwater Management Strategy

- Site design & planning techniques emphasizing conservation

- Use of small-scale & distributed engineered controls to closely mimic pre-development hydrologic processes

- Minimizing the concentration of stormwater

- Careful assessment of site soils and strategic site planning to best use those soils for stormwater management
INTRODUCTION & REGULATIONS

LID Principles: Site Design And Planning

• Minimize disturbance
• Reduce impervious surface
• Protect and restore native soils and vegetation
• Manage stormwater close to the source in a system of distributed practices
• Disconnect impervious surfaces

Traditional

LID
INTRODUCTION & REGULATIONS

LID BMPs: Small-Scale Engineering Controls

- Infiltration
- Filtration
- Storage
- Evaporation
- Transpiration

Conserve or regain pre-developed hydrologic functions

Synonyms for LID BMPs:

Green Stormwater Infrastructure (GSI), Integrated Management Practices (IMPs), and On-Site Stormwater Management BMPs
Western WA NPDES Permit

National Pollutant Discharge Elimination System (NPDES) Municipal Stormwater Permits (2013-2018 permit cycle)

<table>
<thead>
<tr>
<th>Municipal Stormwater Permittees in Washington State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 Permittees</td>
</tr>
<tr>
<td>Seattle</td>
</tr>
<tr>
<td>Tacoma</td>
</tr>
<tr>
<td>Clark County</td>
</tr>
<tr>
<td>King County</td>
</tr>
<tr>
<td>Pierce County</td>
</tr>
<tr>
<td>Snohomish County</td>
</tr>
<tr>
<td>Secondary Permittees: Approximately 45; such as ports and universities</td>
</tr>
</tbody>
</table>

To see a listing of permittees visit http://www.ecy.wa.gov/programs/wq/stormwater/municipal/MuniStrmWtrPermList.html
INTRODUCTION & REGULATIONS

NPDES PERMIT LID REQUIREMENTS:
Implementation Timeline Varies By Permittee

Review and revise development related codes, rules & standards (i.e. adopt the 2012 Stormwater Manual)

Timeline for updating local codes

<table>
<thead>
<tr>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Section S5.C.5.b of the Phase I Permit</td>
<td>Per Section S5.C.4 of the Phase II Permit</td>
</tr>
<tr>
<td>June 2014</td>
<td>Dec. 31, 2016*</td>
</tr>
<tr>
<td>June 30, 2015</td>
<td>June 30, 2017</td>
</tr>
<tr>
<td>Most Permittees</td>
<td>Lewis Co. and Cowlitz Co.</td>
</tr>
<tr>
<td>City of Aberdeen</td>
<td>June 30, 2018</td>
</tr>
</tbody>
</table>

* = Or GMA update deadline

Statewide LID Training Program

3.4 WESTERN WASHINGTON

INTERMEDIATE SITE ASSESSMENT, PLANNING AND LAYOUT
DEFINITIONS

Subset of On-site Stormwater Management BMPs used to meet MR #6 or MR #7 (may also be used to meet MR #5)

<table>
<thead>
<tr>
<th>Onsite SW Management BMP</th>
<th>Flow Control Credit</th>
<th>Treatment Credit¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Amendment</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dispersion</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Retaining & Planting Trees</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rainwater Harvesting</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bioretention³</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Permeable Pavement³</td>
<td>X</td>
<td>X²</td>
</tr>
<tr>
<td>Vegetated Roofs³</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

¹ Meets basic, enhanced and phosphorus treatment when infiltrating through soil per Ecology treatment requirements

² Where permeable pavement is over soils meeting the suitability criteria or a treatment layer is included

³Also considered SW Treatment & Flow Control BMPs/Facilities (additional requirements in regard to long term inspection, operations, and maintenance apply)
AGENDA

1. introduction and regulations
2. principles of LID site design
3. LID site design process
4. site assessment and layout
5. site planning and infrastructure
6. trees
7. exercises
8. wrap up
PRINCIPLES OF LID SITE DESIGN: Conventional Site Development Practices and Impacts

The typical construction approach is to strip, cut, fill and pound.
Compaction can extend 24”+ with heavy loads on wet soils.

Compaction usually in top 6-8 inches of soil for tractors weighing less than 10 tons/axle.

Track vs tires inflated to higher pressures...compaction appears to increase with increased tire pressure.

U of Missouri and Minnesota Extension
PRINCIPLES OF LID SITE DESIGN: Conventional Site Development Practices and Impacts

Management of large clearing and grading operations is expensive and time consuming.
PRINCIPLES OF LID SITE DESIGN: Conventional Site Development Practices and Impacts

- Stream biota significantly reduced at SS levels of 50-80 mg/L (Corish 1995).

- Schueler reported median TSS concentrations of 4,145 mg/L leaving construction sites with no TESC and 283 mg/L with TESC.
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation

- 23.92 acres
- 103 Lots (4,143 sq ft ave.)
- 15 acres (63%) Open space
- Effective impervious area approaching 0%
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation

<table>
<thead>
<tr>
<th></th>
<th>Detention storage reduced (ft³)</th>
<th>Detention storage required (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional development</td>
<td></td>
<td>270,000</td>
</tr>
<tr>
<td>Low impact development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• reduce development envelope</td>
<td>-149,019</td>
<td></td>
</tr>
<tr>
<td>• and use bioretention</td>
<td>-40,061</td>
<td></td>
</tr>
<tr>
<td>• and use minimal excavation foundation</td>
<td>-7,432</td>
<td></td>
</tr>
<tr>
<td>• and use 20’ wide permeable road</td>
<td>-29,988</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-226,500</td>
<td>43,500</td>
</tr>
</tbody>
</table>

Hydrologic modeling comparing a conventional development and the flow reduction benefits from individual practices for a low impact development design.
PRINCIPLES OF LID SITE DESIGN: Value of Native Soils and Vegetation

BMP T5.30 Full Dispersion
- 65/10/0.
- Sliding dispersion scale.
Possible but challenging to conserve and protect native soils and vegetation in dense development settings
PRINCIPLES OF LID SITE DESIGN : Protecting Native Trees and Soil

It takes a village...and fines to protect trees and soil.

- Contractor training
- Bonding/fines
- Signage
PRINCIPLES OF LID SITE DESIGN: Road Networks

• Conventional street design increases drainage network and efficiency.

• Local street right of ways can constitute over 25 percent of the typical urban watershed.

• Streams with buffers constitute about 10 percent of this sample watershed.
PRINCIPLES OF LID SITE DESIGN: Road Networks

Street layout with 23 stream crossings
No local street crossings of stream corridors

Street layout with 63 stream crossings
Extend Metro street spacing standard across stream corridors (maximum of 520 ft.)
PRINCIPLES OF LID SITE DESIGN: Scale of Analysis

- Home
- Planned Development
- Community
- Watershed
- County/City
- Region
PRINCIPLES OF LID SITE DESIGN: Regional Planning

Avoid open-space fragmentation

15,000 sq. ft. lots

5,000 sq. ft. lots
PRINCIPLES OF LID SITE DESIGN: Regional Planning

Project vs. regional clustering

- Project by project cluster development
- Regional cluster development
PRINCIPLES OF LID SITE DESIGN: Regional Planning

Project vs. regional clustering

Arterials
PRINCIPLES OF LID SITE DESIGN: Small Contributing Areas
AGENDA

introduction and regulations

principles of LID site design

LID site design process

site assessment and layout

site planning and infrastructure

trees

exercises

wrap up
LID SITE DESIGN PROCESS: Overview

1. Project baseline/charter
2. Develop basis of design
3. Develop team and engage stakeholders
4. Site inventory and analysis
5. Site assessment and develop Site Plan
LID SITE DESIGN PROCESS: Project Baseline/Charter

• Project Scope
• Project Schedule
 • Construction
 • Plant Establishment
• Construction Budget
• Jurisdiction and Code Requirements
• Sustainability Goals defined
• Maintenance Capabilities
LID SITE DESIGN PROCESS: Develop Basis of Design

- Project Background
 - Specification and drawing format
 - Sustainability requirements
 - Property restrictions and easements
 - Permitting and point of compliance
- Site Civil
 - Frontage and Right-of-Way requirements
 - Civil grading criteria
 - Utility criteria
- Landscape Design Criteria
 - Existing tree preservation
 - Buffers
LID SITE DESIGN PROCESS: Develop Team and Engage Stakeholders

• Owner/Developer
• Public agency reviewers
 • Land use Planners/Zoning
 • Transportation
 • Utility department
 • Stormwater Management
 • Other
• Architect
• Civil Engineer
• Surveyor

• Landscape Architect
• Geotechnical Engineer
• Wetland/Biologist
• Arborist
• Outreach
• Community stakeholders
• Fire & Police Department
• Owner’s contractor
• Funding partners
• Maintenance staff
• Other?
LID SITE DESIGN PROCESS: Site Inventory and Analysis

- Gather existing analysis, inventories, and historic information:
 - Soil surveys and analyses
 - Historic records of altering wetlands/ stream channels
 - Aerial photos
 - Maps and site reconnaissance to verify topography
 - Location of groundwater protection areas and/or well head protection zones
 - Descriptions of local site geology
- Site reconnaissance and characterization
 - Characterize hydrologic, geologic and biologic conditions
 - Used to inform overall design and location of infrastructure
 - Investigate steep slopes and landslide hazards near project site
LID SITE DESIGN PROCESS: Stormwater Site Plan

NPDES Permit Minimum Requirement #1 Preparation of Stormwater Site Plans:
• Use site-appropriate development principles to retain native vegetation and minimize impervious surfaces to the extent feasible.
• Local codes will change to incorporate certain LID principles.
• Prepare a Stormwater Site Plan for local government review
LID SITE DESIGN PROCESS: Stormwater Site Plan

Minimum Requirement #1 Preparation of Stormwater Site Plans

1. Analyze Existing Site Conditions
2. Preliminary Site Layout
3. Off-site Analysis
4. Determine applicable Min. Requirements
5. Prepare Permanent Stormwater Control Plan
6. Prepare Construction SWPPP
7. Complete Plan
8. Check for Compliance
LID SITE DESIGN PROCESS: Stormwater Site Plan

1. Site Analysis: Collect and Analyze Information on Existing Conditions (Volume 1, Section 3.1.1)

- Survey
- Soils Report
 - Professional (on-site sewage designer OK if only MR #1 - #5)
 - Surveys, test pits, borings
 - Ksat field tests or grain size analysis
 - Depth to restrictive layer – need winter data
 - Lateral flow assessment (MR #1 - #9)
 - Vegetation survey of any protected areas
LID SITE DESIGN PROCESS: Stormwater Site Plan

Site Procedures and Design Guidance for Bioretention/Rain Garden (Volume 3, Section 3.4)

- Small Commercial: one small-scale PIT
- Large Commercial: small-scale PIT every 5,000 sq. ft.
- Residential: small-scale PIT at each potential site
 - Per 200 feet for long, narrow layout; e.g. road ROW
 - Groundwater thru wet season – adequate clearance?
- Correction factor for native soils: CFv = 0.33 to 1
- WWHM guidance
- Legal Documentation
LID SITE DESIGN PROCESS: Stormwater Site Plan

Stormwater – related Site Procedures and Design Guidance for Permeable Pavement (Volume 3, Section 3.4)

• Sites where only MR 1 – 5 apply:
 • Infiltration test per 5,000 sq. ft./wet season ground water

• Commercial sites where MR 1 – 9 apply:
 • Small-scale PIT per 5000 sq. ft.; at least 1 per site

• Residential sites where MR 1 – 9 apply
 • Small-scale PIT per 200 ft of road & every lot
 • Criteria for reduction of test frequency
 • Groundwater thru wet season
LID SITE DESIGN PROCESS: Stormwater Site Plan

Stormwater – related Site Procedures and Design Guidance for Permeable Pavement (Volume 3, Section 3.4)

- Assignment of Infiltration Correction Factors
- Soil Suitability Confirmation
- Project Submission Requirements
- WWHM Modeling
- Legal Documentation
LID SITE DESIGN PROCESS: Stormwater Site Plan

Minimum Requirement #1 Preparation of Stormwater Site Plans

1. Analyze Existing Site Conditions
2. Preliminary Site Layout
3. Off-site Analysis
4. Determine applicable Min. Requirements
5. Prepare Permanent Stormwater Control Plan
6. Prepare Construction SWPPP
7. Complete Plan
8. Check for Compliance

Statewide LID Training Program

3.4 WESTERN WASHINGTON

INTERMEDIATE SITE ASSESSMENT, PLANNING AND LAYOUT
LID SITE DESIGN PROCESS: Stormwater Site Plan

5. Permanent Stormwater Control Plan (Volume 1, Section 3.1.5)

- Site Hydrology for Projects under MR #1 – #5:
 - Drawings for location of all On-site SW BMPs & drainage areas
 - Design details, figures, maintenance instructions (recordable documents)
 - Justification for infeasibility decisions, OR
 - Demo compliance with LID Performance Standard if applicable
LID SITE DESIGN PROCESS: Stormwater Site Plan

5. Permanent Stormwater Control Plan (Volume 1, Section 3.1.5)

- Site Hydrology for Projects under MR #1-#9:
 - Summary
 - Performance Standards, Treatment, Lists
 - LID Features
 - Flow Control System (MR #7)
 - Water Quality System (MR #6)
 - Conveyance System
LID SITE DESIGN PROCESS: Stormwater Site Plan

Minimum Requirement #1 Preparation of Stormwater Site Plans

1. Analyze Existing Site Conditions
2. Preliminary Site Layout
3. Off-site Analysis
4. Determine applicable Min. Requirements
5. Prepare Permanent Stormwater Control Plan
6. Prepare Construction SWPPP
7. Complete Plan
8. Check for Compliance
LID SITE DESIGN PROCESS: Stormwater Site Plan

7. Complete Stormwater Site Plan (Volume 1, Section 3.1.7)

- O&M manuals for all “stormwater treatment and flow control facilities”
 - Includes bioretention, permeable pavement, & vegetated roofs that help meet MR #6 or #7.
- Declaration of Covenant & Grant of Easement
 - For all stormwater treatment & flow control facilities
 - For all other on-site stormwater management BMPs
 - Signed & recorded for each lot
LID SITE DESIGN PROCESS: Stormwater Site Plan

7. Complete Stormwater Site Plan (Volume 1, Section 3.1.7)

- Track lot obligations
 - Plat/short plat approvals
 - Deed info & restrictions
 - Covenant & Easement
 - Drawings, design details, maintenance instructions
 - Impervious/pervious requirements
AGENDA

1. Introduction and regulations
2. Principles of LID site design
3. LID site design process
4. Site assessment and layout
5. Site planning and infrastructure
6. Trees
7. Exercises
8. Wrap up
SITE ASSESSMENT AND LAYOUT

Use site analysis to guide site planning, reducing environmental impacts and achieve LID design objectives.
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Four general objectives:

• Minimize disturbance
• Locate lots for dispersing stormwater to open space areas
• Orient lots to maximize on-lot infiltration or open conveyance
• Locate lots adjacent to, or with views or, open space
Prevalent Strategies:

- Cluster homes
- Narrow lot frontages to reduce road length per home
- Reduce front yard setbacks to reduce driveway length
- For grid or modified grid layouts, lengthen street blocks to reduce the number of cross streets and overall road network per home
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Large lot yield plan

2012 LID Technical Guidance Manual for Puget Sound
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Rural cluster

- 30% reduction in impervious surface when lot size reduced from 1.4 to 0.25 acres (MD Office of Planning).
- Increase in road network and driveways primary driver for impervious increase.
SITE ASSESSMENT AND LAYOUT: Optimize Development Envelope

Increase density, create appropriate building heights and scale, and conserve open space with strategic design.
SITE ASSESSMENT AND LAYOUT: Road Layout

Typical grid road layout

- Impervious coverage: 27-36%
- Less adaptive to site features.
- Promotes transit and connectivity with more direct access to services.
SITE ASSESSMENT AND LAYOUT: Road Layout

Typical curvilinear road layout

- Impervious coverage: 15-29%
- More adaptive to site features.
- Generally discourages transit with longer, less connected system.
SITE ASSESSMENT AND LAYOUT: Road Layout

Hybrid or LID road layout

- Impervious coverage: similar percentage to other layouts.
- Adaptive to site features and uses site features (particularly water as an organizing theme).
- Can provide good connectivity and fire and safety access.
SITE ASSESSMENT AND LAYOUT: Road Layout

Road width and turnarounds
SITE ASSESSMENT AND LAYOUT: Road Layout

• Design to enhance streetscape and buffer pedestrians and homes from roadway
SITE ASSESSMENT AND LAYOUT: Buildings

- Reduce building footprint (build up)
- Orient the long axis of the building along topographic contours to reduce cutting and filling
- Control roof runoff onsite
- Use low impact foundations
- Limit clearing and grading to road, utility, building pad, landscape areas
SITE ASSESSMENT AND LAYOUT: Open Space

• Preserve open space through clustering, building design, site planning

Clearwater Commons
SITE ASSESSMENT AND LAYOUT: Costs and Benefits

• Reduce O&M costs
• Reduce in storm drainage infrastructure
• Reduce paving

• Triple Bottom Line Benefits:
 • Jobs and economic benefits
 • Community livability and neighborhood vitality
 • Sustainable product life cycle
 • Energy impact and production
 • Eco-system benefits
 • Agriculture and food production
 • Innovations and new market development
introduction and regulations
principles of LID site design
LID site design process
site assessment and layout
site planning and infrastructure
trees
exercises
wrap up
SITE PLANNING AND INFRASTRUCTURE:

Zoning

- Comprehensive Plan goals and policies
- Zoning code
 - Landscaping, Native Vegetation, Tree Protection, and Open Space
 - Impervious Surface Standards
 - Bulk and Dimensional Standards
 - Site Plan Review
 - Parking
- Development Code and Standards
 - Clearing and Grading Standards
 - Engineering and Street Standards
SITE PLANNING AND INFRASTRUCTURE: Small Lots

- Small lots often require:
 - Flexible code
 - Narrow side and front yard setbacks...consider fire and safety (sprinklers, fireproof siding)
 - Effective use of open space and lot layout
SITE PLANNING AND INFRASTRUCTURE:
Small Lots
SITE PLANNING AND INFRASTRUCTURE:
Small Lots
SITE PLANNING AND INFRASTRUCTURE: Stormwater

- Strategic Stormwater Management
 - Reduce TIA and eliminate EIA where possible
 - Increase infiltration
 - Combined stormwater treatment and open space/landscaping
SITE PLANNING AND INFRASTRUCTURE: Utilities

- Place water and sewer lines in disturbed areas
- Cluster water meters to minimize construction disturbance
- Cluster dry utilities under proposed sidewalks in joint trenches
SITE PLANNING AND INFRASTRUCTURE: Utilities
SITE PLANNING AND INFRASTRUCTURE: Circulation Layout

- Integrate pedestrian with storm where possible
- Layout pedestrian to access open space
- Fire and safety!

2012 LID Technical Guidance Manual for Puget Sound
SITE PLANNING AND INFRASTRUCTURE: Integrating Open Space

- Create open space areas as community amenity and to store and slow stormwater flows during winter when the areas are less active recreationally.

- Integrate open space into traffic calming designs.

- Use open space to break up visual landscape for homes facing the road/each other.

- Create open space pathways between homes (green streets).

Danielson Grove
SITE PLANNING AND INFRASTRUCTURE: Case Study

“We’re going to Design Bioretention for a Water Reclamation Facility in Belfair, WA.”
SITE PLANNING AND INFRASTRUCTURE: Case Study
SITE PLANNING AND INFRASTRUCTURE:
Case Study

Water Street Gateway Green Street, Syracuse, NY

Rendering by: Atlantic States Legal Foundation
SITE PLANNING AND INFRASTRUCTURE: Case Study

GI Implementation at the Water Street Gateway achieves multiple complete street benefits, including enhanced pedestrian/bicyclist safety, tree canopy, and stormwater capture.

Design Considerations
• Bike boulevard
• Traffic calming
• Private / commercial collaboration
• Porous paver parking lanes
• Curb extensions
• Robust tree planters

Limiting Site Conditions
• Mid-street pedestrian crossing
• Snow plow considerations
• Turning radii for tractor trailers
SITE PLANNING AND INFRASTRUCTURE: Case Study

Water Street Gateway Project: Before and After
Brandon Park, Lancaster PA

Vegetated Curb Extensions for Stormwater Capture and Traffic Calming

Terre Kleen Pretreatment by Terre Hill

Urban Protector Pretreatment by Terre Hill

New Crosswalks and Designated ADA Parking Space

Brandon Park
SITE PLANNING AND INFRASTRUCTURE:
Case Study Wabank Road at Brandon Park– Before and After

Design Considerations
• Belt and suspenders approach: incorporate backup/overflow drainage mechanisms
• Check turning radii when implementing curb extensions (especially for emergency vehicles)
• Anticipated maintenance needs may lead to minimal landscape approach
• Soils must drain and support vegetation

Limiting Site Conditions
• Slope
• Local flooding
• Existing trees
• Vocal residents (NIMBYs and IMBYs)
SITE PLANNING AND INFRASTRUCTURE: Case Study

- GIS Based – City of Burien Shown
 - Prohibitive Areas (Red)
 - Wetlands/Shallow Groundwater
 - Steep slopes, landslide and seismic hazards
 - Preferred Areas (Green)
 - Limited Areas (Yellow)
SITE PLANNING AND INFRASTRUCTURE: Case Study

Not What you Build but Where
Seattle Public Utilities
SITE PLANNING AND INFRASTRUCTURE: Case Study

Site Constraints
AGENDA

introduction and regulations

principles of LID site design

LID site design process

site assessment and layout

site planning and infrastructure

trees

exercises

wrap up
TREES: Integrating Stormwater Management

Multiple benefits

• Energy conservation
• Air quality
• Carbon sequestration
• Aesthetics and increased property value
• Stormwater flow reduction
TREES: Integrating Stormwater Management

• Trees may be used for stormwater management through careful assessment of subgrade soils, groundwater levels, and site drainage patterns

• Volume of storage for stormwater dependent on volume and type of soil

• Preventing compaction and increasing volume of soil increases volume for stormwater storage
TREES: Integrating Stormwater Management

Stormwater concepts:

1. Larger mature trees provide more stormwater benefits than small trees
2. Evergreen trees provide more stormwater benefits than deciduous trees
3. Adequate soil volume and quality are critical for healthy long-lived trees
4. Proper drainage design is critical...too much water can kill a tree faster than too little
TREES: Integrating Stormwater Management

Site Assessment:

- Available above ground growing space
- Overhead wires and other utilities
- Vehicle and pedestrian sight lines
TREES: Integrating Stormwater Management

Considerations for location and type of tree (cont’d):

• Below ground root space and ground level planting
 • Proximity to paved areas, utilities, and underground structures

• General:
 • Availability of soil and water
 • Prevailing wind direction and sun exposure
 • Maintenance
 • Shade, windbreak, privacy screening, air quality....
Guidelines for tree placement and Protection

• Plant in the best/appropriate places with highest quality soils and adequate soil volume
• Design for larger growing spaces
• Do not restrict trunk flare of mature tree
• Use pervious pavement for hard surfaces around trees
• Protect the tree from surrounding activities
• Drainage
TREES: Integrating Stormwater Management

Drainage

• If not directing flow to tree area and seasonally high GW below tree pit subgrade then likely no under-drain needed.

• If directing flow to tree area careful consideration of soils, tree species and under-drain.

• Generally planting pit above rooting zone (18-24 in.) should drain down within 48hrs.

• If under-drains used, incorporate an accessible control structure if possible.

• SilvaCell has GULD for WA.
TREES: Integrating Stormwater Management

Reducing soil compaction

• Clearly mark protection areas, soil storage/staging areas, existing tree protection areas on plans and site
• Review plans and coordinate throughout construction with construction foreman and crew
• Robust fencing and signage declaring protection objectives and penalties to violating protection areas
• If access unavoidable:
 • Foot access: 6 inch layer of arborist wood chip mulch (AWC) and water
 • Vehicle access: 1 inch steel plate or 4 inch thick timber plank over 2-3 inches of AWC (min of ¾ inch plywood over 6-8 inches of mulch)
TREES: Construction Impacts

Reducing compaction (long-term)

1. New Trees
 • Mulch tree planting bed with 2-4” of AWC. Keep chips 1’ back from trunk. Replenish 1-3 years
 • Barriers
 • Wheel stops.
 • Low fences.
 • Curbs.

2. Existing trees
 • Mechanical
 • Soil amendments (compost and other biological products)
TREES: Tree Protection Zone

Tree Protection Zone (TPZ)

- Area (radial distance) based on the radial distance m/ft
- Identified by a certified arborist
- Protect during development

Determining the Tree Protection Zone

To calculate the optimum tree protection zone (see Table 11-1):

1. Evaluate the species tolerance of the tree: good, moderate, or poor.
2. Identify tree age: young, mature, or overmature.
3. In Table 11-1, find the distance from the trunk that should be protected per unit of trunk diameter.
4. Multiply the distance by the trunk diameter to calculate the optimum radius for the tree protection zone.

Examples:

(Left) A 15-year-old, healthy, 33-cm (13-in.) diameter Raywood ash (*Fraxinus* `Raywood`) (good tolerance, young age):

\[
0.06 \text{ m} \times 33 \text{ cm} = 1.98 \text{-m radius tree protection zone} \\
0.5 \text{ ft} \times 13 \text{ in.} = 6.5 \text{-ft radius tree protection zone}
\]

(Right) A healthy 60-year-old, 76-cm (30-in.) diameter black walnut (*Juglans hindsii*) (poor tolerance, mature age):

\[
0.15 \text{ m} \times 76 \text{ cm} = 11.4 \text{-m radius tree protection zone} \\
1.25 \text{ ft} \times 30 \text{ in.} = 37.5 \text{-ft radius tree protection zone}
\]
TREES: Tree Protection Zone

Tree Protection Barriers

- Protection zone that covers the trees optimum rooting zone
- Use plywood, chain-link or sheet metal fence
- Fines and penalties for violating the area demarcated by the barrier (included in the contract or specifications)
- Location of the barrier determined by the certified arborist based on species tolerance, condition, and age
- Barrier placement should also account for working space
TREES: Construction Impacts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Impact</th>
<th>Methods to minimize damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Stripping site of organic surface soil</td>
<td>Root loss</td>
<td>• Restrict stripping of topsoil around trees</td>
</tr>
<tr>
<td>• Clearing unwanted vegetation</td>
<td></td>
<td>• Install fences to protect trees from injury</td>
</tr>
<tr>
<td>• Demolishing existing structures</td>
<td></td>
<td>• Any woody vegetation to be removed adjacent to trees remain should be cut at ground level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Not pulled out by equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Otherwise root injury to remaining trees may result</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Arborist may be needed for adjacent tree removal if crowns are intertwined</td>
</tr>
</tbody>
</table>
TREES: Construction Impacts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Impact</th>
<th>Methods to minimize damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lowering of grade, scarifying</td>
<td>Root loss</td>
<td>• Before grading, root prune tree at edge of excavation to a depth required</td>
</tr>
<tr>
<td>• Preparing sub-grade for fill and structures</td>
<td></td>
<td>• Spoil beyond cut face can be removed by equipment sitting outside the drip line of the tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use retaining walls with discontinuous footings to increase the distance that natural grade is maintained from trunk</td>
</tr>
</tbody>
</table>

Images:
- Construction site with trees and equipment.
- Trees being cleared for construction.
- Retaining walls along a slope.
TREES: Construction Impacts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Impact</th>
<th>Methods to minimize damage</th>
</tr>
</thead>
</table>
| Trenching for utilities, stormwater system, drains | Root loss | • Avoid open trenching in rooting area
• Tunnel under roots, if possible. If not, within root area, dig trench by hand, bridging roots greater than 1 inches / 254 mm
• Consolidate utilities into one trench |
TREES: Construction Impacts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Impact</th>
<th>Methods to minimize damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compacted surface soils</td>
<td>• Unfavorable conditions for root growth</td>
<td>• Fence trees to keep traffic and storage out of root area</td>
</tr>
<tr>
<td></td>
<td>• Chronic stress from reduced root systems</td>
<td>• Provide a storage area and traffic route/area for construction activity away from trees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Where traffic cannot be diverted, protect soil surface</td>
</tr>
</tbody>
</table>
TREES: Integrating Stormwater Management

- **Soil depth**
 - 30-48” extended for a 10’ radius around tree in lawn areas

- **Soil volume**
 - Recommendations vary
 - Urban: 0.38 m³ soil per 1 m² canopy projection for loam, no irrigation with 30” annual rainfall
 - Lindsey and Bussuk: 0.24 m³ per 1 m² canopy projection

 - Structural Soils require volume for structural component => less available soil
 - CU Structural Soil™ has ~ 20% available soil
1. Rigid cell systems
 • Modular frames
 • Support high loads
 • Most volume available for soil and tree roots
TREES: Integrating Stormwater Management

Soil and rooting volume strategies

2. Structural soil
 • Crushed aggregate (typ. 0.75-1.5” fine grained soil and polymer.
 • Good porosity (25-30%) and permeability (>20in/hr), load bearing. Lower soil availability (~20%).
3. Sand-based structural soil
 - Medium to coarse uniformly graded sand with compost
 - (2-3% by volume) and 2-4in/hr Ksat typical.
 - Typically 30” deep
 - Non-proprietary.
4. Root paths
 • Guide roots out of confined planting areas.
 • Do not add much soil volume, but interconnect planting areas.
Soil and rooting volume strategies

5. Root trenches
 • Increase soil and rooting volume.
 • Typically 5” wide filled with topsoil or designed mix.
 • Reinforce sidewalk to span trench.
TREES: Stormwater Management Performance

Interception and evaporation

• Xaio (2000)...Mediterranean climate
 • Deciduous: 15% annual precip intercepted and evaporated.
 • Evergreen: 27% annual precip intercepted and evaporated.

• Asadian (2009)...Vancouver, BC
 • Evergreens
 • Seven events, 377mm total precip.
 • Interception and evaporation ranged from 17-89%.
 • Note that 89% is high...authors speculate high rate due to increased temps in urban area.
TREES: Stormwater Management Performance

Infiltration

• Bartens (2008)
 • Black oak (course root structure) and red maple (finer root structure).
 • Both penetrated soils in containers with bulk densities of 1.3 and 1.6 g/cm³.
 • Infiltration rates were 63% higher in lower compaction soil and 153% higher in higher compaction soil compared to control with no plants.
Q&A
AGENDA

- introduction and regulations
- principles of LID site design
- LID site design process
- site assessment and layout
- site planning and infrastructure
- trees
- exercises
- wrap up
THE BOOT – MULTI-FAMILY RESIDENTIAL DEVELOPMENT

GOALS

• Maintain pre-development hydrologic conditions as much as possible.

• Maintain or enhance existing native vegetation and connections to adjacent Riparian Habitat Zones

• Protect wetland, and mitigate any impacts

• Provide space for program of buildings, parking, and utilities

• Provide access for residents, site circulation, and amenities
THE BOOT – MULTI-FAMILY RESIDENTIAL DEVELOPMENT

MATERIALS

• A site survey of existing conditions

• A list of factors to consider for consideration of opportunities & constraints including soils, utilities, access issues, adjacent land use, habitat connections.

• A program of development

• Strategies for compact development, clustering, and location of buildings and road to maximize site function and aesthetics.

• A set of low-impact stormwater treatment practices.

• Access to “consultants” to offer suggestions and opinions on your plan.
THE BOOT – MULTI-FAMILY RESIDENTIAL DEVELOPMENT

• 3.2 acres
• 2 roadway access points to west
• Utility connections along southwest road corridor

• Wetlands
• Riparian Zone & Buffer
• Existing trees & Heritage Trees
• Trail connection at south and north

• Most of site good infiltration
• Area of yellow is low infiltration
EXERCISE 1: SITE ASSESSMENT (45 mins)

• Using LID principles, develop diagram for the site that identifies opportunities and constraints for future development, including, but not limited to:
 • Zones of Native Vegetation to be Retained
 • Setbacks, buffers and other constraints
 • Areas for location of Access, Roadways, Parking, Utilities and other site features
 • Building Location Zones
 • Areas for potential stormwater management
 • Locations of Key amenities, trails, views, or other potential site assets

• The result should be a plan showing constraints (i.e. buffers, protected zones, poor infiltration) and opportunities (locations for roads, parking, amenities, stormwater management, etc.) to provide guidance for location of future development. (30 mins)

• Exercise 1 Group Presentations & Discussion: 15 mins
EXERCISE 1: SITE ASSESSMENT
• EXERCISE 2: SITE PLANNING AND LAYOUT (2 hours)

In this phase, you are to focus on preliminary layout (arrows and basic bubble diagrams) that address a potential viable scenario for situating buildings, roads, parking per the program for the site.

Site Design Goals & Guidelines:
• Limit building footprint; Minimize effective impervious area
• Maintain natural hydrologic conditions
• Produce a marketable development
• Maximize open space and natural areas
• Incorporate stormwater BMP’s into site design
• Maintain access for vehicles; pedestrians, parking
• Provide logical routing of Utilities
• **EXERCISE 2: SITE PLANNING AND LAYOUT**

• Locate building footprints of housing
 • Total of 20 townhouses in 3, 4, and 5 unit clusters
 • Total of 12 flats – in 2, 4, or 6 unit clusters

• Locate a clubhouse/community building

• Provide roadway access on-site and space for parking of 40 cars – close to units (max 5 spaces before island)

• Provide space for playground, basketball court

• Provide circulation for pedestrians to all elements, plus trail and seating in open space zones

• Provide conceptual routing of utilities

• Provide a conceptual approach to stormwater management that maximizes on-site treatment and infiltration.
• EXERCISE 2: SITE PLANNING AND LAYOUT
AGENDA

1. introduction and regulations
2. principles of LID site design
3. LID site design process
4. site assessment and layout
5. site planning and infrastructure
6. trees
7. exercises
8. wrap up
Statewide LID Training Program

OVERVIEW OF PROGRAM

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction to LID for Inspection & Maintenance Staff</td>
<td>3.1 Intermediate LID Topics: NPDES Phase I & II Requirements</td>
<td>5.0 Advanced Topics for Long-term LID Operations: Bioretention</td>
</tr>
<tr>
<td></td>
<td>3.2 Intermediate LID Design: Bioretention</td>
<td>5.1 Advanced Topics for Long-term LID Operations: Permeable Pavement</td>
</tr>
<tr>
<td></td>
<td>3.3 Intermediate LID Design: Permeable Pavement</td>
<td>5.2 Advanced Topics in LID Design: Bioretention</td>
</tr>
<tr>
<td></td>
<td>3.4 Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>5.3 Advanced Topics in LID Design: Permeable Pavement</td>
</tr>
<tr>
<td></td>
<td>3.5 Intermediate LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
<td>5.4 Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
<tr>
<td></td>
<td>3.6 Intermediate LID Design: Hydrologic Modeling</td>
<td>5.5 Advanced Topics in LID Design: Rainwater Collection Systems & Vegetated Roofs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6 Advanced Topics in LID Design: Hydrologic Modeling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.2 Advanced Topics in LID Design: Bioretention Media and Compost Amended Soils</td>
</tr>
</tbody>
</table>

OVERVIEW OF PROGRAM
Statewide LID Training Program

www.wastormwatercenter.org/lidswtrainingprogram/
ONLINE EVALUATION

• An on-line evaluation will be sent to you within 5 days following this training.

• Feedback will help to refine future trainings.
Two certificates:

- LID Design certificate.
- LID Operations and Maintenance certificate.

You will receive an e-mail with login information following relevant courses.

Remember to sign in and sign out!
For information on training and other resources, visit the Washington Stormwater Center website:

http://www.wastormwatercenter.org

Stay connected through Social Media

• Come “Like” our Page
• Sign up to follow and get Tweets
Further questions? Contact:

training@cascadiaconsulting.com

(206) 449-1163