OVERVIEW OF PROGRAM

• 2012: Public and private partners engage state legislature to fund program
• June 2012: LID Training Steering Committee
• 2012-2013: Washington State Low Impact Development Training Plan developed: www.wastormwatercenter.org/statewide-lid-training-program-plan
• Training program built from Washington State Low Impact Development Training Plan

PROJECT LEAD

HERRERA

CORE TEAM

CASCADIA

VEDA

ADDITIONAL TRAINING SUPPORT

CH2MHILL

ASPECT

WORKING FROG PLANS

SFK DESIGN COMPANY
Statewide LID Training Program

OVERVIEW OF PROGRAM

- Implementation of first round of trainings (September 2014 through May 2015)
- 64 trainings offered in current phase (through June 2015)
- Three levels: Introductory, Intermediate, and Advanced
- Train the Trainer program for service providers and LID topic experts

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
</table>
| 1.0 Introductory:
 1.1 Solar for
 Utilities, Washington
 1.2 Urban Systems:
 Utilities, Washington
 1.3 LID
 Design:
 Maintenance, Planning & Layout | 3.1 Advanced
 Topics:
 LID Design:
 Hydrologic
 Modeling | 5.1 Advanced
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015)
 5.2 Advanced
 Topics:
 LID Design:
 Permeable
 Pavement
 5.3 Advanced
 Topics:
 LID Design:
 Rainwater
 Harvesting &
 Vegetated Roofs,
 Planning & Layout | 6.1 Advanced
 Topics:
 LID Design:
 Hydrologic
 Modeling | 7.1 Advanced
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 8.1 Advanced
 Topics:
 LID Design:
 Permeable
 Pavement |
| 2.0 Introductory:
 2.1 LID for Improving
 & Maintaining Storm
 Water Quality for Cities | 3.3 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement | 5.4 Intermediate
 Topics:
 LID Design:
 Rainwater
 Harvesting &
 Vegetated Roofs,
 Planning & Layout | 6.2 Intermediate
 Topics:
 LID Design:
 Hydrologic
 Modeling | 7.2 Intermediate
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 8.2 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement |
| 3.0 Introductory:
 3.2 LID for Improving
 & Maintaining Storm
 Water Quality for Cities | 3.4 Intermediate
 Topics:
 LID Design:
 Hydrologic
 Modeling | 5.5 Intermediate
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 6.3 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement | 7.3 Intermediate
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 8.3 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement |

TRAIN THE TRAINERS

- 9.1 Service Providers
- 9.2 LID Experts

Statewide LID Training Program

OVERVIEW OF PROGRAM

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
</table>
| 1.0 Introductory:
 1.1 Solar for
 Utilities, Washington
 1.2 Urban Systems:
 Utilities, Washington
 1.3 LID
 Design:
 Maintenance, Planning & Layout | 3.1 Advanced
 Topics:
 LID Design:
 Hydrologic
 Modeling | 5.1 Advanced
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015)
 5.2 Advanced
 Topics:
 LID Design:
 Permeable
 Pavement | 6.1 Advanced
 Topics:
 LID Design:
 Hydrologic
 Modeling | 7.1 Advanced
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 8.1 Advanced
 Topics:
 LID Design:
 Permeable
 Pavement |
| 2.0 Introductory:
 2.1 LID for Improving
 & Maintaining Storm
 Water Quality for Cities | 3.3 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement | 5.4 Intermediate
 Topics:
 LID Design:
 Rainwater
 Harvesting &
 Vegetated Roofs,
 Planning & Layout | 6.2 Intermediate
 Topics:
 LID Design:
 Hydrologic
 Modeling | 7.2 Intermediate
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 8.2 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement |
| 3.0 Introductory:
 3.2 LID for Improving
 & Maintaining Storm
 Water Quality for Cities | 3.4 Intermediate
 Topics:
 LID Design:
 Hydrologic
 Modeling | 5.5 Intermediate
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 6.3 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement | 7.3 Intermediate
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 8.3 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement |

TRAIN THE TRAINERS

- 9.1 Service Providers
- 9.2 LID Experts

Statewide LID Training Program

TODAY’S TRAINING

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
</table>
| 1.0 Introductory:
 1.1 Solar for
 Utilities, Washington
 1.2 Urban Systems:
 Utilities, Washington
 1.3 LID
 Design:
 Maintenance, Planning & Layout | 3.1 Advanced
 Topics:
 LID Design:
 Hydrologic
 Modeling | 5.1 Advanced
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015)
 5.2 Advanced
 Topics:
 LID Design:
 Permeable
 Pavement | 6.1 Advanced
 Topics:
 LID Design:
 Hydrologic
 Modeling | 7.1 Advanced
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 8.1 Advanced
 Topics:
 LID Design:
 Permeable
 Pavement |
| 2.0 Introductory:
 2.1 LID for Improving
 & Maintaining Storm
 Water Quality for Cities | 3.3 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement | 5.4 Intermediate
 Topics:
 LID Design:
 Rainwater
 Harvesting &
 Vegetated Roofs,
 Planning & Layout | 6.2 Intermediate
 Topics:
 LID Design:
 Hydrologic
 Modeling | 7.2 Intermediate
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 8.2 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement |
| 3.0 Introductory:
 3.2 LID for Improving
 & Maintaining Storm
 Water Quality for Cities | 3.4 Intermediate
 Topics:
 LID Design:
 Hydrologic
 Modeling | 5.5 Intermediate
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 6.3 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement | 7.3 Intermediate
 Topics:
 LID Design:
 Vegetated
 Systems, 5 Year
 (through June 2015) | 8.3 Intermediate
 Topics:
 LID Design:
 Permeable
 Pavement |

TRAIN THE TRAINERS

- 9.1 Service Providers
- 9.2 LID Experts
INSTRUCTORS

REBECCA DUGOPOLSKI, PE
Senior Engineer
Key project experience: Stormwater monitoring, design, and NPDES Permit compliance

KATE FORESTER
Environmental Designer
Key project experience: Stormwater design, maintenance, and manual development

AGENDA

1. Introduction
2. Bioretention O&M
3. Plants
4. O&M costs
5. Administrative tools
6. Wrap up
LEARNING OBJECTIVES

1. Gain an understanding of the structure and function of bioretention components
2. Develop an in-depth understanding of inspection activities to track and guide long-term facility maintenance
3. Know the requirements for primary preventative and intensive maintenance of bioretention facilities
4. Understand how to adaptively manage bioretention facilities by tracking trends in facility conditions and outcomes of maintenance activities

LOGISTICS

SCHEDULE
- Full day training
- Classroom training (9:00-1:00)
- 1-hour lunch break (1:00-2:00)
- Field exercises (2:00-5:00)

OTHER LOGISTICS
- Restroom location
- Food
- Turn off cell phones
- Sign in and sign out
INTRODUCTION

LOW IMPACT DEVELOPMENT (LID):
Stormwater Management Strategy

• Site design & planning techniques emphasizing conservation

• Use of small-scale engineered controls to closely mimic pre-development hydrologic processes

INTRODUCTION

LID: Principles
pre-developed forest vs. developed condition
INTRODUCTION

LID: Small-Scale Engineering Controls

- Infiltration
- Filtration
- Storage
- Evaporation
- Transpiration

Synonyms for LID BMPs:
- Green Stormwater Infrastructure (GSI), Integrated Management Practices (IMPs), and On-Site Stormwater Management BMPs

INTRODUCTION

TOPICS

- Intro to LID
- NPDES Permit
- LID O&M Overview

INTRODUCTION

NPDES PERMIT REQUIREMENTS

National Pollutant Discharge Elimination System (NPDES) Municipal Stormwater Permits

<table>
<thead>
<tr>
<th>Municipal Stormwater Permits in Washington State</th>
<th>Western Washington Phase II Permits</th>
<th>Eastern Washington Phase II Permits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I Permits</td>
<td>23 Cities</td>
<td>18 Cities</td>
</tr>
<tr>
<td>Phase II Permits</td>
<td>5 Counties</td>
<td>5 Counties</td>
</tr>
</tbody>
</table>

Secondary Permittees: Approximately 45; such as ports and universities

To see a listing of permits visit http://www.ecy.wa.gov/programs/wq/stormwater/municipal/MuniStrmWtrPermList.html
INTRODUCTION
NPDES PERMIT REQUIREMENTS:
Requirements Vary By Permittee

• Phase II requirements are somewhat less extensive
• Secondary permittee requirements vary

Timeline for updating maintenance standards

<table>
<thead>
<tr>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2014</td>
<td>June 2015</td>
</tr>
<tr>
<td>June 30, 2016</td>
<td>June 30, 2017</td>
</tr>
<tr>
<td>June 30, 2017</td>
<td>June 30, 2018</td>
</tr>
</tbody>
</table>

INTRODUCTION
NPDES PERMIT REQUIREMENTS:
Requirements Vary By BMP Classification

• On-site Stormwater Management BMPs
• Stormwater Treatment and Flow Control BMPs/Facilities

INTRODUCTION
NPDES PERMIT REQUIREMENTS: Minimum Requirements (MRs)

1. Preparation of Stormwater Site Plans
2. Construction SWPPP
3. Source Control
4. Preserve natural Drainage
5. On-Site Stormwater management
6. Run-off Treatment
7. Flow Control
8. Wetlands Protection
9. O&M
INTRODUCTION

NPDES PERMIT REQUIREMENTS: Minimum Requirements (MRs)

- **MR #2** – Construction Stormwater Pollution Prevention Plan (SWPPP)
 - Protect LID BMPs from sediment and compaction

- **MR #5** – On-site Stormwater Management
 - Infiltrate, disperse, and retain runoff on-site to the extent feasible

- **MR #6** – Runoff Treatment
 - Water quality treatment for pollution generating areas

- **MR #7** – Flow Control
 - Control of flow peaks and flow durations

INTRODUCTION

NPDES PERMIT REQUIREMENTS: On-site Stormwater Management BMPs

- Used to help meet MR #5

- May be used to help meet MR #6 and/or MR #7

- "On-site Stormwater Management BMPs" = LID BMPs
INTRODUCTION

NPDES PERMIT REQUIREMENTS: On-site Stormwater Management BMPs
- Includes the following LID BMPs:
 - Rain Gardens (BMP T5.14A)
 - Bioretention (BMP T5.14B)
 - Permeable Pavement (BMP T5.15)
 - Vegetated Roofs (BMP T5.17)
 - Downspout Full Infiltration (BMP T5.10A)
 - Downspout Dispersion (BMP T5.10B)
 - Concentrated Flow Dispersion (BMP T5.11)
 - Sheet Flow Dispersion (BMP T5.12)
 - Compost-amended soils (BMP T5.13)

LID O&M OVERVIEW

NPDES PERMIT REQUIREMENTS: Treatment and Flow Control BMPs/Facilities
- Subset of On-site Stormwater Management BMPs
- Used to meet MR #6 or MR #7
- May also be used to meet MR #5
- Includes the following BMPs:
 - Bioretention (BMP T5.14B)
 - Permeable Pavement (BMP T5.15)
 - Vegetated Roofs (BMP T5.17)
 - Detention facilities
 - Standard infiltration facilities
 - Treatment BMPs/Facilities

TOPICS

Intro to LID NPDES Permit LID O&M Overview
INTRODUCTION

NPDES PERMIT LID O&M REQUIREMENTS:

O&M Standards

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement maintenance standards</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt or update ordinance or other enforceable documents</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Implement practices, policies, & procedures to reduce stormwater impacts associated with runoff</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Plan Review

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify maintenance plan completed & O&M responsibility assigned</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Verify submission of maintenance instructions</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Verify that O&M manual is complete</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Review and approve declaration of covenant (including design details, figures and maintenance instructions) and grant of easement</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Inspection

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal authority to inspect private stormwater facilities and enforce maintenance standards</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Conduct post-construction inspections to ensure proper installation</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
NPDES PERMIT LID O&M REQUIREMENTS: Inspection (continued)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduct inspections during construction in new residential developments*</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Conduct ongoing annual inspections</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Perform spot checks for potentially damaged BMPs owned/operated by Permittee after major storm events</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

*Every 6 months until 90% of the lots are constructed or when construction is stopped and the site is fully stabilized.

NPDES PERMIT LID O&M REQUIREMENTS: Enforcement

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enforce compliance with maintenance standards, as needed, based on inspection</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

NPDES PERMIT LID O&M REQUIREMENTS: Training

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train staff involved in plan review, permitting, construction site inspections, & enforcement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Implement an ongoing training program for employees who have primary O&M job functions that may impact SW quality</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
INTRODUCTION

NPDES PERMIT LID O&M REQUIREMENTS: Record Keeping

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep records of inspections and enforcement actions (e.g., inspection reports, notices of violations)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

INTRODUCTION

NPDES PERMIT LID O&M REQUIREMENTS: Mapping

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale drawing of the lot(s) and public ROW that show BMP locations</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Map BMPs owned/operated by Permittee</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Map connections between BMPs and tributary conveyances*</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
*Phase I Only

INTRODUCTION

LID O&M GUIDANCE DOCUMENT: Objectives

- Support permittees in implementing LID maintenance programs
- Provide specific O&M guidance so permittees can create maintenance standards that preserve facility function
- Note: Jurisdictions may want to tailor the tables in the O&M guidance document to address varying levels-of-service
INTRODUCTION
LID O&M GUIDANCE DOCUMENT: Development

- Two advisory committees
 - LID Maintenance Advisory Committee
 - LID Maintenance Administrative Issues Advisory Committee
- Best available information
 - Advisory committee input
 - Literature review
 - Targeted surveys sent to jurisdictions, contractors/landscapers, and vendors
- Guidance will evolve over time

INTRODUCTION
LID O&M GUIDANCE DOCUMENT: Content

- Summary of NPDES Permit Requirements
- Maintaining LID BMPs
 - Bioretention facilities
 - Rain gardens
 - Permeable pavement
 - Vegetated roofs
- Programmatic & Administrative Guidance

INTRODUCTION
LID O&M GUIDANCE DOCUMENT: Content

- BMP description
 - How water moves through facility
- Key maintenance considerations to ensure facility function
 - Function by BMP component
 - Key maintenance by BMP component
- Key operations to preserve facility function
INTRODUCTION

LID O&M GUIDANCE DOCUMENT: Maintenance Standard and Procedures

<table>
<thead>
<tr>
<th>Component</th>
<th>Inspection</th>
<th>Standards/Procedures</th>
<th>Action Needed/Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>Weekly</td>
<td>Inspect and clean inlets and grooves.</td>
<td>Replace or repair damaged parts.</td>
</tr>
<tr>
<td>Lift Station</td>
<td>Monthly</td>
<td>Inspect pumps and valves for proper operation.</td>
<td>Replace damaged parts.</td>
</tr>
<tr>
<td>Storm Drain System</td>
<td>Quarterly</td>
<td>Conduct a visual inspection of the system.</td>
<td>Clean and repair damaged parts.</td>
</tr>
</tbody>
</table>

INTRODUCTION

LID O&M GUIDANCE DOCUMENT: Skills and Staffing

- List of general skills required
- List of additional specialized skills
- Staffing survey estimates (e.g., crew hours per facility, per linear foot, or per square foot)

Skills Needed for Maintenance of Bioretention Facilities

- Landscaping skills (e.g., general plant care)
- Plant identification skills
- Invasive vs. common weed identification
- Preparation of soil for revegetation
- Irrigation system operation
- General drainage system maintenance skills (e.g., tile, pop-up, outfall, cleaning experience)

Bioretention O&M

Plants

O&M costs

Administrative tools

Wrap up
OVERVIEW

- Definition and Types
- Components
- How the facility works
- Bioretention vs. rain gardens
- Maintenance standards & procedures by component
- Equipment and materials
- Skills

DEFINITION AND TYPES

- Shallow landscaped depressions that receive stormwater from small contributing areas
- Small scale, dispersed facilities
- Types:
 - Bioretention cells
 - Bioretention swales
 - Infiltration planters
 - Flow-through planters

COMPONENTS

- Flow Entrance
- Pre-Settling
- Ponding Area
- Bioretention Soil
- Mulch/Compost
- Vegetation
- Filter Fabric (?)
- Liner (optional)
- Underdrain (optional)
- Overflow
HOW THE FACILITY WORKS

Bioretention Cell

- Water enters facility
- Ponds
- Infiltrates through bioretention soil/gravel bed
- Infiltrates into underlying soil
- Ponded water exceeding max. depth overflows

Bioretention Planter

- Water enters facility
- Ponds
- Infiltrates through bioretention soil/gravel bed
- Infiltrates into underlying soil
- Ponded water exceeding max. depth overflows
- Underdrain collects water in gravel layer and routes to overflow
BIORETENTION VS RAIN GARDENS

- Bioretention:
 - Often includes surface and subsurface infrastructure
 - Designed soil mix
 - Meets requirements for MR #6 and #7 and required for MR #5 if MR #1-9 required

- Rain gardens
 - Usually do not include under-drains
 - May use less restrictive soil mix guidelines (e.g., existing soil augmented with compost and sand)
 - Meets MR #5 requirements.

BIORETENTION O&M

Maintenance Standards & Procedures By Component

- Inlets
- Ponding area
- Check dams/weirs
- Bioretention soil
- Outlets
- Underdrains
- Mulch

INLETS: Types

- Sheet flow from sidewalk
- Sheet flow from parking lot
INLETS: Types

- Curb cut
- Curb cut with grate
- Trench drain from upslope BMP
- Trench drain from roadway
- Piped inlet from upslope BMP
- Piped inlet from roadway/parking lot
Stormwater must freely enter facility (no obstructions)

Water entering facility should not cause erosion

INLETS: Maintenance Considerations

INLETS: Maintenance

- Maintain erosion control at concentrated flow inlets (e.g., rock pad)
- Ensure pipe is not damaged or clogged

INLETS: Maintenance

- Remove accumulated sediment, debris, leaves
- Clear/move vegetation inhibiting flow into facility
PONDING AREA: Types

- Earthen depression
- Rockery walls

PONDING AREA: Types

- In-ground concrete planter
- Aboveground metal planter

PONDING AREA: Maintenance Considerations

- Ponding area provides temporary surface storage before infiltration
- Must infiltrate within 48 hour “drawdown” time after the end of a storm
 - Restores hydraulic capacity of system
 - Prevent mosquito breeding conditions
PONDING AREA: Maintenance

Integrity
- Concrete or metal planter: ensure integrity (e.g., cracks, leaks)
- Rockery: ensure rockery sidewalls are secure
- Earthen side slopes/berms:
 - Erosion: stabilize and address cause of erosion, if feasible
 - Settlement: restore to design height
 - Leaks/seeps on face of berm: repair/compact

PONDING AREA: Maintenance

Material Accumulation
- Remove trash and debris
- Remove leaves if impacting facility function
- Accumulated sediment to extent that infiltration rate is reduced (see “excessive ponded water”) or storage capacity reduced
 - Remove excess sediment
 - Replace any vegetation damaged or destroyed by sediment accumulation and removal
 - Identify and control the sediment source, if feasible

PONDING AREA: Maintenance

Excessive Ponded Water
- Overflows during small storms or
- Does not fully infiltrate within 48 hours of end of storm
 - Determine cause:
 - Leaves/debris in bottom impeding infiltration?
 - Underdrain, if present, is clogged?
 - Water inputs (e.g., groundwater, illicit connections)
 - Verify sized for contributing area (and area has not increased)
 - If Steps 1-4 do not solve problem: bioretention soil is likely clogged
 - Consult with an engineer or facility designer (May need to remove/replace bioretention soil)
PONDING AREA: Integrity

- Concrete or metal planter: ensure integrity (e.g., cracks, leaks)
- Rockery: ensure rockery sidewalls are secure
- Earthen side slopes/berms:
 - Erosion: stabilize and address cause of erosion, if feasible
 - Settlement: restore to design height
 - Leaks/seeps on face of berm: repair/compact
- Consult with an engineer when any major structural instability occurs

PONDING AREA: Material Accumulation

- Remove trash and debris
- Remove leaves, if impacting facility function
- Accumulated sediment to extent that infiltration rate is reduced (see "excessive ponded water") or storage capacity reduced
 - Remove excess sediment
 - Replace any vegetation damaged or destroyed by sediment accumulation and removal
 - Identify and control the sediment source, if feasible
- If continual significant sediment issues occur, consult with engineer or designer and consider retrofit options

PONDING AREA: Excessive Ponded Water

- Overflows during small storms or
- Does not fully infiltrate within 48 hours of end of storm
 - Determine cause:
 - Leaves/debris in bottom impeding infiltration?
 - Underdrain, if present, is clogged?
 - Water inputs (e.g., groundwater)
 - Verify sized for contributing area (and area has not increased)*
 - If Steps 1-4 do not solve problem: bioretention soil is likely clogged and/or consultation should occur with an engineer or facility designer
 - Water inputs (e.g., illicit connections*)
 - Soil medium is clogged beyond routine repair

BIORETENTION/O&M

CHECK DAMS/WEIRS: Purpose

- Provides ponding on sloped facilities
- Provides detention/some water quality (settling)

CHECK DAMS/WEIRS: Types

- Concrete
- Log/Wooden
- Gravel
- Earthen

CHECK DAMS/WEIRS: Other Types

- Portland
- JEV LID Manual
- Meadow on the Hylebos
- 110th Street Cascade, Seattle, WA

CHECK DAMS/WEIRS: Purpose

- Provides ponding on sloped facilities
- Provides detention/some water quality (settling)
CHECK DAMS/WEIRS: Maintenance

- Remove accumulated sediment, debris, leaves blocking flow
- Repair any erosion/undercutting and take preventative measures

BIORETENTION SOIL: Maintenance

- Infiltration through soil mix provides water quality treatment
- Stormwater must infiltrate freely into bioretention soil
- Infiltration rate may be reduced by compaction or clogging with fine sediment

BIORETENTION SOIL: Maintenance

- Remove and replace, if clogged (see "excessive ponded water")
- Minimize loading in cell to protect bioretention soil from compaction during maintenance
- Check for spills, replace spill areas if contaminated
OUTLETS: Types and Maintenance Considerations

- Stormwater must freely exit facility once capacity exceeded (above maximum ponding depth)
- Overflows must be conveyed to safe discharge point (e.g., storm drain system)

OUTLETS: Maintenance

- Remove accumulated sediment, debris, leaves at outlet/grate/trash rack
- Clear/move vegetation within 1 foot of outlet to maintain access
- Clear pipes of accumulated material

UNDERDRAINS: Types

- Perforated or slotted pipe wrapped in an aggregate blanket (or filter fabric)
- May have flow restrictor (e.g., orifice) to detain flow
- Can be included to collect treated water under the bioretention soil (e.g., where infiltration to native soil is not feasible)
UNDERDRAINS: Prolonged Surface Ponding

- Prolonged surface ponding
 - Jet clean or rotary cut debris/roots from underdrain
 - If equipped with flow restrictor (orifice), clean regularly

EQUIPMENT AND MATERIALS
BIORETENTION O&M SKILLS

- Landscaping skills (e.g., general plant care)
- Plant identification skills
- Erosion control knowledge
- General drainage system maintenance skills
- Operation of specialized equipment
- Engineer and/or landscape architect for major maintenance
- Certified arborist (or equivalently trained staff) for pruning of mature trees

Break

1. Introduction
2. Bioretention O&M
3. Plants
4. O&M Costs
5. Administrative tools
6. Wrap up
OVERVIEW

- Plants and bioretention
 - Functions
 - Performance goals
 - Maintenance issues

- Maintenance tools
 - Pruning
 - Plant thinning and replacement
 - Watering

- Species examples

- The weeds
 - Common and invasive
 - Identification resources
 - Species examples

- Plant health
 - Strategies supporting plant health
 - Common pest or disease symptoms

PLANTS AND BIORETENTION: Functions

- Groundcovers, shrubs and trees:
 - Intercept rain before it hits the soil and facilitates evaporation
 - Uptakes water from the soil and transpires it to the atmosphere

- Improves soil structure and increases infiltration capacity

- Promotes water quality treatment

PLANTS AND BIORETENTION:

Performance Goals

- Maintain healthy vegetation that has 75% or greater survival rate so that it can support proper facility functions

- Vegetation that follows public safety guidelines
 - Does not interfere with vehicular or pedestrian sight distance triangles
 - Does not create pedestrian or vehicular hazards
PLANTS

PLANTS AND BIORETENTION:

Maintenance Issues

• Poor plant health (low vigor)
 • Compaction of soil
 • Improper care, handling, or planting
 • Excessive or inappropriate pruning
 • Planted too shallow
 • Planted too deep
 • Improper watering
 • Nutrient deficiency
 • Chemical or herbicide injury
• 30 days to replace dead or dying vegetation
 (as weather and planting season allow)

Bare Ground

MAINTENANCE TOOLS: Pruning

Trees and shrubs

• Prune trees and shrubs at the right time of year
 • Deciduous trees: November–February
 • Hazardous trees should be pruned any time of the year to avoid risk or injury
 • Do not prune trees with thin bark in the summer to reduce sun scald injury (e.g. birch (Betula spp.) cherry (Prunus spp.) and crabapple (Malus spp.))
 • Pine (Pinus spp.) or Elm (Ulmus spp.). Do not prune May–October to reduce possible exposure to bark beetle (pine) or Dutch Elm Disease (elm)
 • Avoid pruning during spring growth flush

Q & A

Refer to Seattle Street Tree Manual or ISA website for more information.
MAINTENANCE TOOLS: Pruning

Emergent vegetation and grasses

- Hand rake with small rake or fingers to remove dead foliage in spring or earlier only if foliage is blocking water flow
 - Emergent vegetation: Sedges and rushes do not like continuous pruning.
 - Perennial ornamental grasses: Leave dry foliage for winter interest (e.g. switchgrass (Panicum) and Karl Forester grass (Calamagrostis acutiflora ‘Karl Forester’))
 - Evergreen ornamental grasses: Clean, rake, and comb grasses when they become too tall. Cut back to the ground or thin every 2 to 3 years.

MAINTENANCE TOOLS: Plant Thinning and Replacement

- Edge or trim groundcovers that grow beyond the facility edge onto sidewalks, paths, or street edges when they create pedestrian safety hazards or clog adjacent permeable pavement surfaces
- Prune, trim, or if necessary, replace plants when vegetation density negatively impacts facility function OR becomes a safety hazard
- Divide and replant when grasses die back in the center

MAINTENANCE TOOLS: Watering

Summer watering - first year

- Once every 1-2 weeks or as needed during prolonged dry periods
 - Trees: 10-15 gallons
 - Shrubs: 3-5 gallons
 - Groundcovers: 2 gallons/square foot

Summer watering - second and third year

- Once every 2-4 weeks or as needed during prolonged dry periods
 - Trees: 10-15 gallons
 - Shrubs: 3-5 gallons
 - Groundcovers: 2 gallons/square foot
PLANTS
MAINTENANCE TOOLS: Watering

After 3-year establishment period

- Trees may take up to 5 years to become fully established
- Identify trigger mechanisms for drought-stress of different species and water immediately after initial signs of stress appear
 - Leaf wilt
 - Rapid increase in life-cycle development (e.g., leaf and flower drop)
- Water during drought conditions

SPECIES EXAMPLES: Planting Zones

Zone A: Wet zone. For plants that can withstand temporarily high water levels.

Zone B: Intermediate zone. Side slope plants that can withstand occasional standing water and are resilient from wet to dry conditions.

Zone C: Upland zone. For plants that tolerate drier conditions.
PLANTS

SPECIES EXAMPLES: Zone A

Sedges: Carex

- Carex obnupta
 - Slough sedge, Native

- Carex testacea
 - Orange New Zealand sedge

Rushes and Bulrushes: Juncus and Schoenoplectus/Scirpus

- Juncus ensifolius
 - Daggerleaf rush, Native

- Juncus acuminatus
 - Tapertip rush, Native

- Scirpus microcarpus
 - Small-fruited bulrush, Native

Flowering Herbs

- Sidalcea spp.
 - Checkermallow, Native

- Camassia quamash
 - Common camas, Native

- Iris douglasiana
 - Douglas iris, Native

- Mimulus guttatus
 - Yellow monkey flower, Native
PLANTS

SPECIES EXAMPLES: Zone A
Shrubs and ferns

<table>
<thead>
<tr>
<th>Species</th>
<th>Zone A</th>
<th>Description</th>
<th>Native Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiraea douglasii</td>
<td>Zone A</td>
<td>Deer fern, Native</td>
<td>Native</td>
</tr>
<tr>
<td>Blechnum spicant</td>
<td>Zone B</td>
<td>Lady fern, Native</td>
<td>Native</td>
</tr>
<tr>
<td>Cornus sericeus</td>
<td>Zone C</td>
<td>Redtwig dogwood,</td>
<td>Native</td>
</tr>
</tbody>
</table>

SPECIES EXAMPLES: Zone B
Plants

<table>
<thead>
<tr>
<th>Species</th>
<th>Zone B</th>
<th>Description</th>
<th>Native Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amelanchier alnifolia</td>
<td>Zone A</td>
<td>Saskatoon, Native</td>
<td>Native</td>
</tr>
<tr>
<td>Oemleria cerasiformis</td>
<td>Zone B</td>
<td>Indian plum, Native</td>
<td>Native</td>
</tr>
<tr>
<td>Acer circinatum</td>
<td>Zone C</td>
<td>Vine maple, Native</td>
<td>Native</td>
</tr>
</tbody>
</table>

SPECIES EXAMPLES: Zone B
Shrubs

<table>
<thead>
<tr>
<th>Species</th>
<th>Zone B</th>
<th>Description</th>
<th>Native Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symphoricarpus albus</td>
<td>Zone A</td>
<td>Saskatoon, Native</td>
<td>Native</td>
</tr>
<tr>
<td>Gaultheria shallif</td>
<td>Zone B</td>
<td>Salal, Native</td>
<td>Native</td>
</tr>
<tr>
<td>Arctostaphylos uva-ursi</td>
<td>Zone C</td>
<td>Kinnikinnick, Native</td>
<td>Native</td>
</tr>
</tbody>
</table>
PLANTS
SPECIES EXAMPLES: Zone B

Herbaceous

- *Fragaria chiloensis*: Coastal strawberry, Native
- *Hemerocallis spp.*: Day lily
- *Heuchera spp.*: Alumroot
- *Aquilegia formosa*: Western columbine, Native

PLANTS
SPECIES EXAMPLES: Zone C

Trees

- *Betula albosinensis*: Chinese birch
- *Quercus macrocarpa*: Bur oak
- *Pinus sylvestris*: Scots pine
- *Juglans nigra*: Black walnut

PLANTS
SPECIES EXAMPLES: Zone C

Herbaceous

- *Panicum virgatum*: Switchgrass
- *Miscanthus spp.*: Silver grass
- *Rudbeckia hirta*: Black-eyed susan, Native
- *Lavandula spp.*: Lavender

WEEDS: Common vs. Listed

Common species
- Remove at facility performance threshold

Washington State Noxious Weed Lists
- Identify weed species, reproductive strategies, and control methods
- When in doubt, get help!
- Create Management Plan

WEEDS: Identify Noxious Weeds

Washington State Noxious Weed Control Board Website Identification and Control Steps
2. Click on Noxious Weed List Tab and select the weed class you think your weed might be in
 - Example (right): 37 species on Washington's 2014 Class A list
3. Click on the details link to learn more about a plant
4. If searching the weed lists does not help positively identify a species:
 1. Email photos
 2. Mail in a specimen
 3. Call to set up a site visit
WEEDS: Noxious Weed Classes

Washington State Noxious Weed Lists

Class A Noxious Weeds: Non-native species that are limited in distribution in WA and state law requires their eradication.

Class B Noxious Weeds: Target species must be controlled in areas where they have not already spread. County or local jurisdiction may require removal.

Class C Noxious Weeds: Non-native species that are already widespread. WA counties can enforce control or educate residents about control.

WEEDS: Example Identification

You think you may have found garlic mustard, but you are not completely sure:
1. Click on "details" link under garlic mustard
2. Review photos and information
3. If you want further verification:
 1. Email photos
 2. Mail in a specimen
 3. Call to set up a site visit

WEEDS: Control Methods

• Vary by species
 • Review reproductive strategies and control methods for target weed species.
• Example for Class A Species: Garlic Mustard
 Reproductive Strategy
 • Self-fertile and cross-pollinates
 • Disperses via seed
 Control Method
 • Hand pulling, but remove all roots. Bag all plant material and dispose of in landfill. Do not compost!
WEEDS: Control Methods

- Example for Class B Species: Polygonum cuspidatum (Japanese knotweed)

Reproductive Strategy:
- Spreads by rhizome and seed, but large colonies are from rhizomatous spread (even a small fraction of the plant can produce another plant!)

Control Method:
- Small populations: Remove ENTIRE root system. Be thorough and leave no fragments. Place vegetation on tarps or other impervious surface protected from wind and upsetting, and allow to dry out. Or, burn all plant fragments.
- Large population: Cut or mow, spray low regrowth. Repeat cycle for several years.

WEEDS: Examples of Class B Weeds

- Buddleja davidii: Butterfly bush
- Lythrum salicaria: Purple loosestrife
- Centaurea stoebe: Spotted knapweed
- Cytisus scoparius: Scotch broom

WEEDS: Examples of Class C Weeds

- Hedera helix: English ivy
- Leucanthemum vulgare: Oxeye daisy
- Rubus laciniatus: Evergreen blackberry
- Cirsium arvense: Canada thistle
- Ulmus americana: Eastern cottonwood
PLANTS

WEEDS: References
- Washington State Noxious Weed Control Board

- USDA Plants Database

- Washington State University Integrated Weed Management Project

 http://invasives.wsu.edu/iwmanagement.htm
- King County Weed Program

 E-mail, photos, mail in specimens, call to set up a site visit, or report a weed site

Q & A

PLANT HEALTH

Proper maintenance to ensure plant health

- Know maintenance needs of species
- Use integrated pest management (IPM) and adaptive management
- Protect and nourish healthy soils
- Remove diseased or dying plant material
- Attract beneficial insects and birds

The best way to fight disease and pests is to support healthy living conditions for plants. Thriving plants can overcome most pests and diseases.
PLANT HEALTH
Plant Problem Diagnosis Steps
From Landscape Plant Problems: A Pictorial Diagnostic Manual
1. Identify the host plant
2. Examine affected plants
3. Look for patterns of damage
4. Note signs and symptoms
5. Determine cause

The best way to fight disease and pests is to support healthy living conditions for plants. Thriving plants can overcome most pests and diseases.

PLANT HEALTH: Common Symptoms
Wilting or Withering
Causes
• Heat stress
• Lack of water
• Too much water
Remedies
• Water plants
• Shade plants
• Apply mulch

Sunburn
Causes
• Intense sun exposure
Prevention Methods
• Wrap or paint thin-barked trees
• Avoid watering plant foliage and water during the morning and evening

Fungal diseases
Causes
• Over 1,000 species of fungus
• Wet, cool conditions with poor air circulation
• Susceptible host plant
Remedies
• Reduce plant stress
• Sanitation
• Improve air circulation
• Be patient and wait for drier days
• Plant resistant species and cultivars
PLANT HEALTH: Common Symptoms

Yellowing and Discolored Leaves
Causes
- Nutrient deficiency
- Plant is unable to make chlorophyll
- Moisture stress
Remedies
- Nutrient deficiencies
- Pests
- Chemical or herbicide-induced

Herbicide damage
Causes
- Residual herbicide in soil
- Direct herbicide application
- Herbicide drift or over-application
- Misapplication, etc.
Remedies
- May need to conduct soil analysis to confirm chemical and intensity of soil contamination
- Remediation will depend on the toxin and level of contamination

The Garden Hotline
Call or e-mail for help
http://gardenhotline.org/natural-pest-weed-disease-control/

Washington State Pest Management Association
Call or e-mail
http://www.wspa.org/

Washington State University Plant & Insect Diagnostic Laboratory
Reference the Pest Leaflet Series
http://puyallup.wsu.edu/plantclinic/resources/pls-res.html
Q & A

CONVENTIONAL VS LID O&M

<table>
<thead>
<tr>
<th>O&M Costs</th>
<th>Conventional (Biofiltration swale/pond)</th>
<th>LID (Bioretention/Rain gardens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mowing</td>
<td>Weeding & vegetation management</td>
<td></td>
</tr>
<tr>
<td>Inlet/outlet protection</td>
<td>Inlet/outlet protection</td>
<td></td>
</tr>
<tr>
<td>Sediment removal</td>
<td>Ponding area maintenance</td>
<td></td>
</tr>
<tr>
<td>Flow spreader/check dam/weir sediment management and erosion repair</td>
<td>Check dam/weir sediment management and erosion repair</td>
<td></td>
</tr>
<tr>
<td>Poor vegetation coverage</td>
<td>Protect bioretention soil from compaction</td>
<td></td>
</tr>
<tr>
<td>Mulching</td>
<td>Mulching</td>
<td></td>
</tr>
<tr>
<td>Underdrain clog removal</td>
<td>Underdrain clog removal</td>
<td></td>
</tr>
<tr>
<td>Watering</td>
<td>Watering</td>
<td></td>
</tr>
</tbody>
</table>
STANDARD MAINTENANCE

WERF LID Cost Calculator (last updated 5/9/2009)

<table>
<thead>
<tr>
<th>Item</th>
<th>Maintenance Frequency</th>
<th>Annual O&M Cost for 400 SF (Medium)</th>
<th>Cost/SF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Vegetation management</td>
<td>Every 3 years</td>
<td>1/year</td>
<td>2/2/year</td>
</tr>
<tr>
<td>Replace mulch</td>
<td>Every 5 years</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Till soil</td>
<td>Every 10 years</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Puget Sound Stormwater BMP Cost Database Technical Memorandum (Herrera 2013)

<table>
<thead>
<tr>
<th>O&M Activities</th>
<th>Unit</th>
<th>n</th>
<th>Low</th>
<th>Average</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watering, weeding, and mulching</td>
<td>SF</td>
<td>7</td>
<td>$0.19</td>
<td>$1.27</td>
<td>$2.78</td>
</tr>
</tbody>
</table>

30-YEAR COST COMPARISON

<table>
<thead>
<tr>
<th>BMP</th>
<th>30-year O&M Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioretention</td>
<td>$21.84 / SF</td>
</tr>
<tr>
<td>Wet Pond</td>
<td>$9.01 / SF</td>
</tr>
<tr>
<td>Combined Detention and Wetpool</td>
<td>$9.01 / SF</td>
</tr>
<tr>
<td>Stormwater Treatment Planter Vault</td>
<td>$27,903 / PV</td>
</tr>
<tr>
<td>Infiltration Basin</td>
<td>$3.36 / SF</td>
</tr>
<tr>
<td>Catch Basin</td>
<td>$1,331 / CB</td>
</tr>
</tbody>
</table>

CASE STUDY: Seattle Public Utilities

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>SW</th>
<th>LA</th>
<th>Other</th>
<th>Cost/SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex - A</td>
<td>36</td>
<td>12</td>
<td>23</td>
<td>1</td>
<td>$3.54</td>
</tr>
<tr>
<td>Simple - A</td>
<td>15</td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>$2.86</td>
</tr>
<tr>
<td>Complex - B</td>
<td>29</td>
<td>12</td>
<td>17</td>
<td>1</td>
<td>$2.87</td>
</tr>
<tr>
<td>Simple - B</td>
<td>15</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>$2.90</td>
</tr>
<tr>
<td>Complex - C</td>
<td>30</td>
<td>12</td>
<td>17</td>
<td>1</td>
<td>$2.94</td>
</tr>
<tr>
<td>Simple - C</td>
<td>15</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>$2.94</td>
</tr>
</tbody>
</table>

*197 sites; estimated field operations and maintenance costs
CASE STUDY: Seattle Public Utilities

- Total Cost = Vegetation + Hardscape
- Initial Vegetation – 3 years
 - SPU cost: $3/SF
 - Watering method and frequency increase cost up to 4X
- Established Vegetation – 4 plus
 - SPU cost: $0.75- $1.20/SF
- Replacement costs - $0.50/SF
- Hardscape - $0.31/SF

Source: Drena Donofrio

ADMINISTRATIVE TOOLS

TOPICS

- Resource list
- Record keeping and tracking
- Interpreting plans and as-buils
- Inspection programs
RESOURCE LIST

- Western WA LID O&M Guidance Document

RECORD KEEPING & TRACKING

- Parcel information
- City/County permit (ROW and/or building permit)
- Relevant sections of the Stormwater Site Plan
- “As‐built” or “record drawings” (individual lots and public ROW)
- Legal agreements (covenants, easements)

RECORD KEEPING & TRACKING

- Location information (GPS data, digital maps)
- Project O&M manual (where applicable)
- Maintenance logs (typically included in a Project O&M Manual)
- Inspection forms
- Enforcement documents
ADMINISTRATIVE TOOLS

INSPECTION CHALLENGES

• Examples from the City of Seattle

INSPECTION PROGRAMS

• Immediately post-construction for all LID BMPs - installed per plan and functioning properly

• Every 6 months (until 90% of lots are constructed) for permanent Stormwater Treatment and Flow Control BMPs/Facilities in new residential developments - identify maintenance needs and enforce maintenance standards

• Ongoing annual inspections for all Stormwater Treatment and Flow Control BMPs/Facilities (MR #6 and/or MR #7)

Q&A
Statewide LID Training Program

COURSE CATALOG

http://www.wastormwatercenter.org/lidswtrainingprogram/

INTRODUCTORY
1.0 Introduction to LID for Eastern Washington
21.1 Introduction to LID for Inspectors & Maintenance Staff
22.1 Introduction to LID for Developers & Contractors: Make Money be Green

INTERMEDIATE
3.1 Intermediate LID Design: SRP & Phase I Requirements
3.2 Intermediate LID Design: Moisture Management
3.3 Intermediate LID Design: Permeable Pavement
3.4 Intermediate LID Design: Site Assessment, Planning & Layout
3.5 Intermediate LID Design: Sediment System & Vegetative Buffer

ADVANCED
5.1 Advanced Topics in LID Design: Detention
5.2 Advanced Topics in LID Design: Permeable Pavement
5.3 Advanced Topics in LID Design: Vegetation Management
5.4 Advanced Topics in LID Design for Commercial & Industrial Sites
5.5 Advanced Topics in LID Design: Sediment Control Systems & Vegetation Buffer
5.6 Advanced Topics in LID Design: Site Assessment, Planning & Layout
5.7 Advanced Topics in LID Design: Sediment System & Vegetation Buffer

TRAIN THE TRAINERS
9.1 Service Providers
9.2 101 Topics Expert
Statewide LID Training Program

ONLINE EVALUATION

• An online evaluation will be sent to you within 5 days following this training

Statewide LID Training Program

CERTIFICATE

Two certificates:
• LID Design certificate
• Long-term LID Operations certificate
Stay tuned for developing certificate policies

Sign out!

Statewide LID Training Program

ONLINE RESOURCES

For information on training and other resources, visit the Washington Stormwater Center website:
http://www.wastormwatercenter.org

Stay connected through Social Media
• Come "Like" our Page
• Sign up to follow and get Tweets

129

130

131
Further questions? Contact:
training@cascadiaconsulting.com
(206) 449-1163

LOGISTICS

SCHEDULE
- 1-hour lunch break (1:00-2:00)
- Field exercises (2:00-5:00)
 - Bioretention inspections
 - Watering techniques
 - Plants
 - Infiltration testing
 - Lessons learned
- You will need to sign in and sign out to receive credit for the Long-term LID Operations certificate