PROGRAM OVERVIEW

• 2012: Public and private partners engage state legislature to fund program
• June 2012: LID Training Steering Committee convened
• 2012-2013: Washington State LID Training Plan developed: www.wastormwatercenter.org/statewide-lid-training-program-plan
• 2014: Training program built from state LID Training Plan.

PROJECT LEAD CORE TEAM

HERRERA

ADDITIONAL TRAINING SUPPORT
Statewide LID Training Program

PROGRAM OVERVIEW

- Implement first phase of trainings (September 2014 through May 2015)
- 64 trainings offered in first phase
- Three levels: Introductory, Intermediate, and Advanced
- Train the Trainer program for service providers and LID topic experts

INTRODUCTORY
- 1.0 Introduction to LID for Seattle, Washington
- 2.1 Introduction to LID for Designers & Providers - Gathering Data for Design
- 2.2 Introduction to LID for Designers & Providers - Site Planning for Design

INTERMEDIATE
- 3.1 Introduction to LID Topics, WPBAA Phase 1 & 7 Requirements
- 3.2 Intermediate LID Design, Maintenance
- 3.3 Intermediate LID Pavement, Planning & Layout

ADVANCED
- 4.1 Intermediate LID Green Construction & Vegetated Roofs
- 5.1 Advanced Topics in LID Design, Bioretention
- 5.2 Advanced Topics in LID Design, Permeable Pavement
- 5.3 Advanced Topics in Long-term LID Bioretention
- 5.4 Advanced Topics in Long-term LID Permeable Pavement
- 6.1 Advanced Topics in LID Design, Hydrologic Modeling

TRAIN THE TRAINERS
- 9.1 Service Providers
- 9.2 LID Topic Experts

TODAY’S TRAINING

- 5.1 Advanced Topics in LID Design, Bioretention
- 6.0 Advanced Topics in LID Design, Hydrologic Modeling
- 7.0 Advanced Topics in LID Design, Site Planning & Layout
- 8.0 Advanced Topics in LID Design, Vegetation Systems & Vegetated Roofs

TRAIN THE TRAINERS
- 9.1 Service Providers
- 9.2 LID Topic Experts
INSTRUCTORS

REBECCA DUGOPOLSKI, PE
Senior Engineer
Key project experience: Stormwater monitoring, design, and NPDES Permit compliance

KATHY GWILYM, PE
Principal Civil Engineer
Key project experience: Complete street design, LID and permeable pavements for public works and private projects

LOGISTICS

SCHEDULE
• Classroom training (9:00-12:00)
• 1-hour lunch break (12:00-1:00)
• Classroom training (1:00-2:00)
• Field exercises (2:00-4:00)

OTHER LOGISTICS
• Restroom location
• Food
• Turn off cell phones
• Sign in and sign out
LEARNING OBJECTIVES

1. Understand the structure and function of permeable pavement components.
2. Gain an in-depth understanding of the primary inspection activities and tools to maintain permeable pavement function over time.
3. Know the primary maintenance requirements for permeable pavement.
4. Identify maintenance problems and associated solutions necessary for long-term function of permeable pavement areas.

AGENDA

introduction
permeable pavement O&M
O&M costs
administrative tools
wrap up & field exercises
INTRODUCTION

TOPICS

• Intro to LID
• NPS Permit
• LID O&M Guidance Document

LOW IMPACT DEVELOPMENT (LID): Introduction to Principles

• Site design & planning techniques emphasizing conservation

• Use of small-scale engineered controls to closely mimic pre-development hydrologic processes

• Careful assessment of site soils and strategic site planning to best use those soils for stormwater management

LID: Introduction to Principles: Pre-developed Forest Hydrology
LID: Introduction to Principles: Developed Condition Hydrology

- Minimize disturbance
- Reduce impervious surface
- Protect and restore native soils and vegetation
- Manage stormwater close to the source

Traditional LID vs. LID

LID: Site Design and Planning Techniques

- Minimize disturbance
- Reduce impervious surface
- Protect and restore native soils and vegetation
- Manage stormwater close to the source

LID: Small-Scale Engineering Controls

- Infiltration
- Filtration
- Storage
- Evaporation
- Transpiration

Synonyms for LID BMPs:

- Green Stormwater Infrastructure (GSI), Integrated Management Practices (IMPs), and On-Site Stormwater Management BMPs

Conserve or regain pre-developed hydrologic functions
INTRODUCTION

LID: Best Management Practices (BMPs)

- Rain Gardens (BMP T5.14A)
- Bioretention (BMP T5.14B)
- Permeable Pavement (BMP T5.15)
- Vegetated Roofs (BMP T5.17)
- Downspout Full Infiltration (BMP T5.10A)
- Downspout Dispersion (BMP T5.10B)
- Concentrated Flow Dispersion (BMP T5.11)
- Sheet Flow Dispersion (BMP T5.12)
- Compost Amended Soils (BMP T5.13)

LID: Permeable Pavement

- Infiltration
- Filtration
- Storage
- Evaporation
- Transpiration

INTRODUCTION

TOPICS

- Intro to LID
- NPOES Permit
- LID O&M Guidance Document
INTRODUCTION
NPDES PERMIT LID O&M REQUIREMENTS:
Western WA NPDES Permit

National Pollutant Discharge Elimination System (NPDES) Municipal Stormwater Permits

<table>
<thead>
<tr>
<th>Municipal Stormwater Permittees in Washington State</th>
<th>Western Washington Phase II Permittees</th>
<th>Eastern Washington Phase II Permittees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I Permittees</td>
<td>Phase II Permittees</td>
<td>Phase II Permittees</td>
</tr>
<tr>
<td>Seattle</td>
<td>82 Cities</td>
<td>18 Cities</td>
</tr>
<tr>
<td>Tacoma</td>
<td>5 Counties</td>
<td></td>
</tr>
<tr>
<td>Clark County</td>
<td>WSDOT</td>
<td></td>
</tr>
<tr>
<td>King County</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pierce County</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snohomish County</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSDOT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary Permittees: Approximately 45; such as ports and universities

To see a listing of permittees visit:

INTRODUCTION
NPDES PERMIT LID O&M REQUIREMENTS:
Requirements Vary By Permittee

• Phase II requirements are somewhat less extensive
• Secondary permittee requirements vary

Timeline for updating maintenance standards

<table>
<thead>
<tr>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Section SS.C.9.a of</td>
<td>Per Section SS.C.9.a of</td>
</tr>
<tr>
<td>the Phase I Permit</td>
<td>the Phase I Permit</td>
</tr>
<tr>
<td>June 2014</td>
<td>June 30, 2015</td>
</tr>
<tr>
<td>June 30, 2016</td>
<td>June 30, 2017</td>
</tr>
<tr>
<td>June 30, 2017</td>
<td>June 30, 2018</td>
</tr>
</tbody>
</table>

INTRODUCTION
NPDES PERMIT LID O&M REQUIREMENTS:
Requirements Vary By BMP Classification

• On-site Stormwater Management BMPs
• Stormwater Treatment and Flow Control BMPs/Facilities
INTRODUCTION
NPDES MUNICIPAL STORMWATER PERMIT:
Minimum Requirements (MRs)

1. Preparation of Stormwater Site Plans
2. Construction SWPPP
3. Source Control
4. Preserve natural Drainage
5. On-Site Stormwater management
6. Run-off Treatment
7. Flow Control
8. Wetlands Protection
9. O&M

INTRODUCTION
NPDES PERMIT LID O&M REQUIREMENTS:
Minimum Requirements (MRs)

- MR #2 – Construction Stormwater Pollution Prevention Plan (SWPPP)
 - Protect LID BMPs from sediment and compaction
- MR #5 – On-site Stormwater Management
 - Infiltrate, disperse, and retain runoff on-site to the extent feasible

INTRODUCTION
NPDES PERMIT LID O&M REQUIREMENTS:
Minimum Requirements (MRs)

- MR #6 – Runoff Treatment
 - Water quality treatment for pollution-generating areas
- MR #7 – Flow Control
 - Control of flow peaks and flow durations
NPDES PERMIT LID O&M REQUIREMENTS:
On-site Stormwater Management BMPs

- Used to help meet MR #5
- May be used to help meet MR #6 and/or MR #7
- "On-site Stormwater Management BMPs" = LID BMPs

INTRODUCTION

NPDES PERMIT LID O&M REQUIREMENTS:
On-site Stormwater Management BMPs

- Includes the following LID BMPs:
 - Rain Gardens (BMP T5.14A)
 - Bioretention (BMP T5.14B)
 - Permeable Pavement (BMP T5.15)
 - Vegetated Roofs (BMP T5.17)
 - Downspout Full Infiltration (BMP T5.10A)
 - Downspout Dispersion (BMP T5.10B)
 - Concentrated Flow Dispersion (BMP T5.11)
 - Sheet Flow Dispersion (BMP T5.12)
 - Compost Amended Soils (BMP T5.13)

DEFINITIONS

On-site SW Management BMPs (LID BMP)

- "Distributed stormwater management practices, integrated into a project design, that emphasize pre-disturbance hydrologic processes of infiltration, filtration, storage, evaporation and transpiration. LID BMPs include, but are not limited to, bioretention/raingardens, permeable pavements, roof downspout controls, dispersion, soil quality and depth, vegetated roofs, minimum excavation foundations, and water re-use."
INTRODUCTION
DEFINITIONS

\(\text{• SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)} \)

\(\text{\hspace{0.5cm} • “Detention facilities, treatment BMPs/facilities, bioretention, vegetated roofs, and permeable pavements that help meet Appendix A Minimum Requirements #6 (treatment), #7 (flow control), or both”} \)

INTRODUCTION
DEFINITIONS

Subset of On-site Stormwater Management BMPs used to meet MR #6 or MR #7 (may also be used to meet MR #5)

<table>
<thead>
<tr>
<th>Onsite SW Management BMP</th>
<th>Flow Control Credit</th>
<th>Treatment Credit¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Amendment</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dispersion</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Retaining & Planting Trees</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rainwater Harvesting</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bioretention²</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Permeable Pavement²</td>
<td>X</td>
<td>X²</td>
</tr>
<tr>
<td>Vegetated Roofs³</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

¹Marlins basic, enhanced and phosphorus treatment when infiltrating through soil per Ecology treatment requirements
²Where permeable pavement is over soil meeting the suitability criteria or a treatment layer is included
³Also considered SW Treatment & Flow Control BMPs/Facilities (additional requirements in regards to long term inspection, operations, and maintenance apply)

INTRODUCTION
NPDES PERMIT LID O&M REQUIREMENTS:
O&M Standards

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMP</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement maintenance standards</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt or update ordinance or other enforceable documents</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Implement practices, policies, & procedures to reduce SW impacts associated with runoff⁴</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

⁴Requirements for O&M including (but not limited to): pipe cleaning, cleaning conveyance structures, sediment and erosion control, and vegetation management
NPDES PERMIT LID O&M REQUIREMENTS: Plan Review

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify maintenance plan completed & O&M responsibility assigned</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Verify submission of maintenance instructions</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Verify that O&M manual is complete</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Review and approve declaration of covenant (including design details, figures and maintenance instructions) and grant of easement</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NPDES PERMIT LID O&M REQUIREMENTS: Inspection

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal authority to inspect private stormwater facilities and enforce maintenance standards</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Conduct post-construction inspections to ensure proper installation</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

NPDES PERMIT LID O&M REQUIREMENTS: Inspection (continued)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduct inspections during construction in new residential developments*</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Conduct ongoing annual inspections</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Perform spot checks for potentially damaged BMPs owned/operated by Permittee after major storm events</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

*Every 6 months until 90% of the lots are constructed or when construction is stopped and the site is fully stabilized.
NPDES PERMIT LID O&M REQUIREMENTS:

Enforcement

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enforce compliance with maintenance standards as needed based on inspection</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Training

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train staff involved in plan review, permitting, construction site inspections, & enforcement</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Implement an ongoing training program for employees who have primary O&M job functions that may impact SW quality</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Record Keeping

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep records of inspections and enforcement actions (e.g., inspection reports, notices of violations)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
NPDES PERMIT LID O&M REQUIREMENTS:
Mapping

<table>
<thead>
<tr>
<th>Requirement</th>
<th>On-site SW Management BMPs</th>
<th>SW Treatment & Flow Control BMPs/Facilities (MR #6 and/or MR #7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale drawing of the lot(s) and public ROW that show BMP locations</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Map BMPs owned/operated by Permittee</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Map connections between BMPs and tributary conveyances*</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

*Phase I Only

TOPICS

LID O&M GUIDANCE DOCUMENT: Objective

• Support permittees in implementing LID maintenance programs
• Provide specific O&M guidance so permittees can create maintenance standards that preserve facility function
• Note: Jurisdictions may want to tailor the tables in the O&M guidance document to address varying levels of service
INTRODUCTION
LID O&M GUIDANCE DOCUMENT: Development
• Two advisory committees
 • LID Maintenance Advisory Committee
 • LID Maintenance Administrative Issues Advisory Committee
• Best available information
 • Advisory committee input
 • Literature review
 • Targeted surveys sent to jurisdictions, contractors/landscapers, and vendors
• Guidance will evolve over time

INTRODUCTION
LID O&M GUIDANCE DOCUMENT: Content
• Summary of NPDES Permit Requirements
• Maintaining LID BMPs
 • Bioretention facilities
 • Rain gardens
 • Permeable pavement
 • Vegetated roofs
 • Downspout infiltration systems
 • Downspout, sheet flow, and conc. dispersion systems
 • Compost amended soils
• Programmatic & Administrative Guidance

INTRODUCTION
LID O&M GUIDANCE DOCUMENT: Content
• BMP description
 • How water moves through facility
• Key maintenance considerations to ensure facility function
 • Function by BMP component
 • Key maintenance by BMP component
• Key operations to preserve facility function
LID O&M GUIDANCE DOCUMENT: Maintenance Standard and Procedures

LID O&M GUIDANCE DOCUMENT: Equipment and Materials List

LID O&M GUIDANCE DOCUMENT: Skills and Staffing

- List of general skills required
- List of additional specialized skills
- Staffing survey estimates (e.g., crew hours per facility, per linear foot, or per square foot)
TOPICS

- Types
- How the system works
- Maintenance considerations for facility function
- General maintenance for all
- Routine maintenance activities specific to each type
- Corrective maintenance activities
- Equipment and material recommendations
- Skills

Permeable pavement O&M

O&M costs

Administrative tools

Wrap up & field exercises
TYPES & TERMS

- Pervious Concrete
- Porous Asphalt
- Permeable Interlocking Concrete Pavers
- Open Celled Systems (Flexible & Rigid)

TYPES: Porous Asphalt

- Flexible, non-proprietary
- Placement is similar to conventional asphalt but need large quantity
- Typically used for parking and light traffic loads; however, has been used for medium and heavy applications
- Initial infiltration rate: 200+ inches/hour

TYPES: Pervious Concrete

- Rigid, non-proprietary
- Placement differs from conventional. Small batches feasible.
- 3/8” typical (round or crushed) aggregate w/o to minimal fines. Admixtures (optional) to increase workability and strength.
- Initial infiltration rate 200+ inches/hour
Types: Permeable Interlocking Pavers

- Flexible, proprietary
- Capable of high vehicle loads. Used for lower speeds
- High-density concrete that interlock and transfer vertical loads to surrounding pavers
- Clean aggregate (w/o fines) filled within the openings/gaps
- Initial infiltration rates can vary depending upon paver type

Types: Plastic Grids

- Flexible, proprietary
- Plastic grid filled with clean gravel (w/o fines) or soil and planted with grass
- Trails, paths, maintenance access in a park, parking
- Highest percent voids

How The Facility Works

- [Diagram explaining how the facility works]
PERMEABLE PAVEMENT O&M

HOW THE FACILITY WORKS

- Sections vary – check as-builts
 - Top Wearing Course
 - Leveling Course?
 - Sub-base (storage)
 - Water quality treatment layer?
 - Geotextile?
 - Native soil
- Storage within Sub-base
 - Slope conditions – check dams
- Overflow (pipe or structure)

INTRODUCTION TO MAINTENANCE

- "The maintenance of LID facilities is essential to ensure that design stormwater management and other benefits continue over the full lifecycle of the installation."

- What to look for?
 - Drainage Function
 - Safety
 - Aesthetics

- Is it different?
 - Long term infiltration capacity can remain high however..............

O&M TRANSITION

- O&M starts at the Planning phase
- Transitioning from Construction to O&M
 - Purpose?
 - What are the regulatory reporting requirements?
 - Record/As-built?
 - Training new staff
 - Mapping
Inform crews about protecting permeable pavements
Use tarps/cover under stockpiles

Maintain stabilization of adjacent areas to protect from sediment transport
• Proactive vs. reactive
• Address the source

• Ground Cover Migration
• Cover if Hydroseeding
• Options for Maintenance
 • Modify planting plan and remove invasive plants
 • Maintain adjacent landscaping

Ground cover migration happens even with conventional pavement
GENERAL: Moss Growth

- Be careful with expectations
- Moss is present regardless of pavement type in PNW
- More prevalent in shady areas and under trees
- Remove if it's observed to affect drainage
- Some is okay
- Perception

Pervious concrete sidewalk with moss

GENERAL: Moss Growth

- If severe, options for removal:
 - Pressure washing (concrete)
 - Weed burner
 - Sweeping (during dry periods)
 - Vacuuming (effectiveness varies)
- During planning & design, consider impacts of shade to maintenance frequency

Non-Pervious Concrete urban sidewalk with moss

GENERAL: Moss Growth

Installed ~10 years ago:
12516 NE 90th Street

Photo taken w/in 1 year of installation
GENERAL: Moss Growth

Moss Growth installed in 2010 – no routine maintenance, Photo July 2014

Moss Growth installed in 2005 – no routine maintenance, Photo May 2014

GENERAL: Protection From Staining

• Applies to pavers, asphalt, cement concrete. Same as conventional pavements
• During construction, keeping pervious concrete covered for curing & protection can lead to some discoloration but fades with time
• Avoid placement of organic/compost material on pavement

GENERAL: Snow Removal

• Modify snow management procedures
• Avoid sanding since it will clog the system, except in cases of emergencies/safety issues (vacuum sediment as soon as possible after melt)
• Avoid sanding adjacent streets since tires will track it onto the porous pavement
• Avoid stockpiling snow on porous pavement
GENERAL: Snow Removal

- Adjust snow plow height to avoid scratching
- UNH reported up to 75% decrease in salt use but it will depend on site conditions (shade, location etc)
- Permeable sub-base provides drainage
- Voids in wearing course provides space for freeze thaw
- Installed in cold climates such as Iowa, Pennsylvania, Colorado, Ohio, Lake Tahoe

GENERAL: Snow Removal

Parking Lot, Denver, CO – Next AM Following 12” Snow

Pervious Concrete
Conventional Asphalt

Photos courtesy of National Ready Mixed Concrete Association and slide courtesy of Center for Portland Cement Concrete Pavement Technology, 2005 via John Kevern at National Concrete Pavement Technology, Iowa State University

GENERAL: Drainage Function Inspection

- Inspect drainage function in the rain and identify areas for maintenance
 - Is there runoff from the surface?
 - Is water still ponding on the surface 1 hour after rain has stopped?
 - Is there ponding water in the observation port 24 hours after the rain has stopped?
- If ponding, then corrective action required for cleaning surface.
GENERAL: Drainage Function Inspection

- Video/photos of overall area during rain event
- If no ponding on the surface then its flowing through top wearing course

GENERAL: Drainage Function Inspection

- Inspect drainage function in dry weather
 - Cylinder test: ASTM C1701 results indicate an infiltration rate of 10 inches per hour or less then corrective action required.
 - Test the surface infiltration rate using ASTM C1701 (perform 1 test/installation but not < 1 test/2,500 sf)
 - Run cylinder tests over multiple areas
 - Turn on sprinklers/garden hose to test larger area?
 - Does water pool or drain out?

VIDEO IN THE RAIN
PERMEABLE PAVEMENT O&M

GENERAL: Corrective Action for Drainage

- If not draining through top wearing course then corrective maintenance options include:
 - Pressure wash and/or vacuum system
 - Hand held pressure wash or power wash with rotating brushes
 - Pure vacuum sweeper (calibrated to not dislodge wearing course aggregate)
 - Gravel grid and pavers – removing and replacing aggregate

PERMEABLE PAVEMENT O&M

GENERAL: Under- and Elevated-Drains

- Under-drain/Elevated drain is clogged:
 - Jet clean or rotary cut debris/roots from under-drain
 - Clean flow restrict/orifice
 - Identify the source of the blockage and take actions to prevent future blockages

- If pipe daylights, check for erosion damage at discharge point:
 - Identify source of problem
 - Repair erosion and stabilize surface

PERMEABLE PAVEMENT O&M

GENERAL: Under- and Elevated- Drains

- Water remains in storage aggregate longer than anticipated:
 - Inspect standpipes for under-drain
 - Inspect drains
 - If structural problems possible schedule investigation of subsurface materials or other potential causes of extended ponding
GENERAL: Inspect Overflow/Backup System

- Check overflow drainage path
 - What is the flow path if water does not infiltrate?
 - If has under-drain pipes, verify they are draining
 - Verify that the overflow structure is not plugged.

GENERAL NON-ROUTINE: Utility Cuts

- Temporary Patch
- Protect adjacent porous to remain
- Permanent Panel replacement
- Permanent Restoration: Use same material as original, except use conventional asphalt for porous asphalt

ROUTINE AND CORRECTIVE MAINTENANCE BY COMPONENT

- Pavement surface
 - Porous Asphalt and Pervious Concrete
 - Permeable Interlocking Concrete Pavers
 - Open Celled Gravel grid
 - Open Celled Grass grid
ROUTINE: Porous Asphalt & Pervious Concrete

- Cleaning surface debris
 - Large areas: vacuum sweep (regenerative air or high efficiency vacuum)
 - Small areas: walk behind vacuums, shop vacs, hand held pressure washer or power washer with rotating brushes
- Frequency: 1-2 times annually or as determined by site conditions
- Consult with equipment manufacturer/rep for optimum operation

ROUTINE: Porous Asphalt & Pervious Concrete

- No Overlay
- No black topping/sealing
- May need to re stripe parking lot more frequently

NON-ROUTINE: Pervious Concrete Structural

- Major cracks or trip hazards and concrete spalling and raveling
- Determine cause
- Replace panel with porous material if feasible
- Modify operations?
PERMEABLE PAVEMENT O&M

NON-ROUTINE: Raveling at Construction Joints
- Consult with industry, engineer
- Patch?
- Cut out and replace with new panel (pervious concrete)
- Replace with conventional asphalt?

NON-ROUTINE: Drainage Function Rehabilitation
- Consult with industry, engineer
- Significant decline in infiltration when system is not routinely maintained

ROUTINE: PICP & Pavers
- Routine maintenance (cleaning surface debris)
 - Large areas: vacuum sweep (regenerative air or high efficiency vacuum)
 - Small areas: walk behind vacuums, shop vacs
 - Frequency: 1-2 times annually or as determined by site conditions
 - Consult with equipment manufacturer/rep for optimum operation
 - Vacuum settings may have to be adjusted to prevent excess uptake of aggregate from paver openings or joints
 - Vacuum surface openings in dry weather to remove dry, encrusted sediment
PERMEABLE PAVEMENT O&M

ROUTINE: PICP & Pavers

• Routine maintenance (vegetation)
 • Remove weeds if they start to affect drainage performance
 • Aesthetics
 • Do not use herbicides (this is a stormwater facility)
 • Weed burner
 • Vinegar? (small applications)
 • Larger gaps between pavers easier for removal of weeds (shovel)

CORRECTIVE: PICP & Pavers

• Clogged wearing course
 • Review overall performance of the facility
 • If water ponds or flows off pavement surface during rain event, corrective maintenance or testing is needed
 • Dry Weather: Test the surface infiltration rate using ASTM C1781 (perform 1 test/installation but not < 1 test/2,500 sf)

• Clogged wearing course
 • Corrective maintenance options include:
 • Pure vacuum sweeper
 • Pressure wash and vacuum system calibrated to remove all visible sediment (likely 2-3 cm of aggregate) in the joints or infiltration cells
 • Replace aggregate in joints or infiltration cells per manufacturer specifications
NON-Routine: PICP & Pavers

- Utility work
 - Pavers can be removed individually and replaced after work is complete
 - Clean sub-base material (no to minimal fines)

NON-Routine: PICP & Pavers

- Structural integrity
 - Loss of aggregate material between paver blocks: Refill per manufacturer’s recommendations
 - Paver block missing or damaged: Remove individual damaged paver blocks by hand and replace or repair per manufacturer’s recommendations
 - Surface settling: May require resetting

NON-Routine: PICP & Pavers

- Structural integrity and snow
 - The structure of the top edge of the paver blocks reduces chipping from snowplows
 - Skids on the corner of plow blades are recommended
ROUTINE: Gravel Grid

- Cleaning surface debris
 - Large areas: vacuum sweep? (regenerative air or high efficiency vacuum)
 - Small areas: walk behind vacuums, shop vacs, rake, leaf blower
- Frequency: 1-2 times annually or as determined by site conditions
- Consult with equipment manufacturer/rep for optimum operation
- Vacuum settings may have to be adjusted to prevent excess uptake of aggregate from paver openings or joints
- Vacuum surface openings in dry weather to remove dry, encrusted sediment
- Maintain aggregate 0.25 inches above grid structure

CORRECTIVE: Gravel Grid

- Clogged wearing course
 - Observe the pavement system after a rain event (testing infiltration rate using ASTM C1701 likely not applicable)
 - Corrective action needed, if ponding on surface or water flows off aggregate surface during rain event

- Clogged wearing course
 - Use vacuum system calibrated to remove all visible sediment (likely 2-3 cm of aggregate)
 - Replace aggregate per manufacturer specifications (usually 0.25 inches above grid structure)
PERMEABLE PAVEMENT O&M

NON-ROUTINE: Gravel Grid

- **Structural integrity**
 - **Grid damaged:**
 - Remove pins (if present), pry up grid segments, and replace grid, pins and gravel
 - Replace grid segments where three or more adjacent rings are broken or damaged
 - **Loss of aggregate material:** Refill per manufacturer’s recommendations (usually 0.25 inches above grid structure)

ROUTINE: Grass Grid

- **Cleaning surface debris**
 - **Large and small areas:** rakes, leaf blowers
 - Consult manufacturer guidelines
 - **Frequency:** 1-2 times annually or as determined by site conditions
 - Maintain soil/sand slightly below grid structure

CORRECTIVE: Grass Grid

- **Clogged wearing course**
 - Observe the grass pavement system after a rain event (testing infiltration rate using ASTM C1701 likely not applicable)
 - Corrective action needed if ponding on surface or water flows off grass surface during rain event
 - Follow manufacturer’s guidelines for repairing surface
NON-ROUTINE: Grass Grid

- Structural integrity
 - Grid damaged:
 - Remove pins (if present), pry up grid segments, and replace grid, pins and grass.
 - Replace grid segments where 3 or more adjacent rings are broken or damaged
 - Grass growth:
 - Mulch mower
 - Top dress with 0.5 inches of compost if nutrient deficient (do not use fertilizer)
 - Surface settling: May require resetting

- Poor grass coverage:
 - Restore growing medium, reseed or plant and/or amend vegetated area as needed
 - Traffic loading may be inhibiting grass growth; reconsider traffic loading if feasible
 - Growing media elevation should be maintained slightly below grid structure
 - Consult manufacturer/sales representative
 - May need occasional reseeding

NON-ROUTINE: Grid Systems

- Structural integrity and snow
 - Snow plows should use skids to elevate the blades to prevent loss of aggregate and damage to the grid

- Fire lane/Maintenance road for housing site. Geoweb® Cellular Confinement system adjacent to walk.
EQUIPMENT & MATERIALS: Routine Maintenance

Equipment to address clogging of wearing course, such as:
- Hand held pressure washer or power washer with rotating brushes
- Walk-behind vacuum
- Pure vacuum sweeper
- Brush broom
- Combined higher pressure wash and vacuum system

EQUIPMENT & MATERIALS: Routine Maintenance

Equipment to remove sediment, debris, and leaf litter, such as:
- High efficiency regenerative air or vacuum sweeper
- Push broom
- Brush broom
- Leaf blower
EQUIPMENT & MATERIALS: Routine Maintenance

Weed/vegetation removal equipment, such as:
• Weeding tools
• Weed burner
• Edging and trimming equipment control groundcover and other vegetation)

EQUIPMENT & MATERIALS: Routine Maintenance

Additional equipment for grass-filled open-celled grid systems, such as:
• Mower or mulch mower
• Topdress grass seed
• Compost
• Replacement grid segments

EQUIPMENT & MATERIALS: Routine Maintenance

Additional equipment for gravel-filled open-celled grid systems, such as:
• Rakes and shovels
• Replacement grid segments
• Replacement aggregate
• Wheelbarrow (for transporting replacement aggregate)
EQUIPMENT & MATERIALS: Routine Maintenance

Additional equipment for permeable paver systems, such as:

- Rakes and shovels
- Extra pavers and bedding material
- Replacement aggregate
- Wheelbarrow (for transporting replacement aggregate)

EQUIPMENT & MATERIALS: Routine Maintenance

Snow removal equipment, such as:

- Plow with skids to prevent damage to permeable pavement
- Snow blower

EQUIPMENT & MATERIALS: Routine Maintenance

Pipe/structure inspection and maintenance equipment:

- Hand tools
- Wrench or manhole opener
- Flashlight
- Mirror
- Garden hose
- Plumbing snake
- Measuring tape or ruler
PERMEABLE PAVEMENT & MATERIALS: Corrective Maintenance

- Elgin’s Whirlwind (pure vacuum sweeper)
- Bunyan B.I.R.D. vacuum attached to vactor truck (10 gpm): $7,800 + power if not on vactor
- Paragon Industries
- Stay tuned — supply and demand affect technology

EQUIPMENT & MATERIALS:

Corrective Maintenance

Timm Sowders
with Paragon Industries

EQUIPMENT & MATERIALS:
PERMEABLE PAVEMENT & MATERIALS: Corrective Maintenance

Erosion control equipment:
- Erosion control matting
- Rocks
- Mulch
- Plants
- Landscaping tools
- Tarps (to protect pavement)

PERMEABLE PAVEMENT & MATERIALS: City of Olympia

2006 Study Findings:
- Leaf/Litter vacuums are more effective than sweepers with dust control vacuum systems
- Vacuum machines had difficulty removing leaf piles when they were more than 2 to 3 inches thick
PERMEABLE PAVEMENT O&M

EQUIPMENT & MATERIALS: City of Portland

N Gay Avenue & Westmoreland Projects:

- Pavers, porous asphalt and pervious concrete public streets
- 1X to 2X/year - Vacuum sweepers used to collect fines:
 - Tymco's 500x,
 - Schwarze's A7000,
 - Elgin's Crosswind J-Plus
- Infiltration testing with flusher truck
- "Vegetation growth in pavers did not appear to hinder infiltration on Rex St." (~63 in/hr)

Q&A
Introduction

Permeable Pavement O&M

O&M Costs

Administrative Tools

Wrap up & Field Exercises

O&M Costs

Conventional vs LID O&M Activities

<table>
<thead>
<tr>
<th>Conventional</th>
<th>LID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweeping</td>
<td>Sweeping/clean surface debris</td>
</tr>
<tr>
<td>Repair structural damage</td>
<td>Unclog wearing course</td>
</tr>
<tr>
<td>Typically Streets Department maintains roadways</td>
<td>Unclog drain and inspect for damage</td>
</tr>
<tr>
<td>Run-on from adjacent landscaping</td>
<td></td>
</tr>
</tbody>
</table>
O&M Costs

Permeable Pavement

WERF LID Cost Calculator (Last updated 5/9/2009)

<table>
<thead>
<tr>
<th>Item</th>
<th>Maintenance Frequency</th>
<th>Frequency</th>
<th>Annual O&M Cost for 5,000 SF (Medium)</th>
<th>Cost/SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection, reporting, and data management</td>
<td>Every 3 years, 1/year</td>
<td>Medium</td>
<td>$47</td>
<td>$0.01</td>
</tr>
<tr>
<td>Litter & minor debris removal</td>
<td>Every 3 years, 1/year</td>
<td>Medium</td>
<td>$120</td>
<td>$0.03</td>
</tr>
<tr>
<td>Sweeping</td>
<td>Every 3 years, 1/year</td>
<td>Medium</td>
<td>$80</td>
<td>$0.02</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$247</td>
<td></td>
</tr>
</tbody>
</table>

Statewide LID Training Program

Permeable Pavement

Puget Sound Stormwater BMP Cost Database Technical Memorandum (Herrera 2013)

<table>
<thead>
<tr>
<th>O&M Activities</th>
<th>Unit</th>
<th>n</th>
<th>Low</th>
<th>Average</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine sweeping (2X per year)</td>
<td>SF</td>
<td>1</td>
<td>$0.02</td>
<td>$0.02</td>
<td>$0.02</td>
</tr>
</tbody>
</table>

- Restorative maintenance (power washing followed by vactoring to unclog the upper layer and restore porosity) is estimated at $1/SF

O&M Cost per BMP

Source: Herrera - Cost Analysis for Western Washington LID Requirements and Best Management Practices

<table>
<thead>
<tr>
<th>BMP</th>
<th>30-year Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeable Sidewalk</td>
<td>$15.30 / SF</td>
</tr>
<tr>
<td>Permeable Pavement</td>
<td>$1.16 / SF</td>
</tr>
<tr>
<td>Conventional Pavement</td>
<td>$1.16 / SF</td>
</tr>
</tbody>
</table>
introduction
permeable pavement O&M
O&M costs
administrative tools
wrap up & field exercises

Administrative Tools
Topics
- Inspection checklist
- Record keeping and tracking
- Interpreting plans and as-buils
- Inspection programs
ADMINISTRATIVE TOOLS

INSPECTION CHECKLIST

Based on visual assessment of the site, answer the following questions and take photographs of the site:

Surface/Fracturing
1. Are there indications of any of the following on the surface of the permeable pavement facility? (If yes, mark on site sketch)
 □ Excessive sediment
 □ More growth
 □ Cracks, chip hazards, or concrete / asphalt spalling
 □ Trash and debris
 □ Leaf accumulation
 □ Settlement of surface
 □ Other:
 □ None

2. Is there ponding on the surface of the permeable pavement? □ Yes □ No

 If yes, describe the potential reasons for ponded water below (leaf or debris build up, non-functional underdrains, groundwater input, illicit connections, inadequate capacity in facility, etc.)

 Notes:

INPUT/OUTLETS/FLUXES

3. How many inlet pipes are present? □ 0 □ 1 □ 2 □ 3 □ 4 □ 5 □ 6+?

4. Are any of the inlet pipes clogged? (If yes, mark the location on your site sketch and fill in the box below with the cause of the clogging (e.g., debris, sediment, vegetation, etc.) □ No □ Partially □ Completely □ NA

5. Are any of the inlet pipes altered from the original design or otherwise in need of maintenance? (If yes, verify in reason: Post hole, vandalism, etc. etc.)

 Partially clogged
 Completely clogged
 Reason for maintenance

ADMINISTRATIVE TOOLS

INSPECTION CHECKLIST

NAME(S) OF INSPECTOR:

DATE OF INSPECTION:

LOCATION OF THE PERMEABLE PAVEMENT FACILITY:

SURFACE FEATURES OF THE SITE:

ADDRESS OR INTERSECTION:

AGE OF PERMEABLE PAVEMENT FACILITY:

PERMEABLE PAVEMENT FACILITY AREA (FT. X FT.):

TIME SINCE LAST RAINFALL (HR):

QUANTITY OF LAST RAINFALL (IN):

SITE SKETCH (INCLUDE CURVES, ISLANDS, TREES, NORTH ARROW, ETC.)
ADMINISTRATIVE TOOLS

INSPECTION CHECKLIST

6. Are any overflow, underdrains, raised subsurface overflow pipes, or outlet structures clogged?
 - [] No
 - [] Partially
 - [] Completely
 - [] NA
 a. If yes, mark the location on your site sketch and fill in the box below with the cause of the clogging (e.g., debris, sediment, vegetation, root, etc.)
 b. Are any of the overflow structures altered from the original design or otherwise in need of maintenance? (If yes, write in reason: flood, debris, vandalism, erosion)

<table>
<thead>
<tr>
<th>Outlet 1</th>
<th>Outlet 2</th>
<th>Outlet 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partially clogged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completely clogged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reason for maintenance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observation: Porc (if present)

7. Is water remaining in the storage aggregate longer than anticipated by design after the end of a storm?
 - [] Yes (T)
 - [] No (F)
 - [] Unknown
 a. If yes, identify potential cause of extended ponding and mark the location of observed extended ponding on your site sketch.

ADMINISTRATIVE TOOLS

INSPECTION CHECKLIST

SUMMARY

6. Inspector’s Recommendations. When is maintenance needed?
 - [] Immediately
 - [] Within a month or two
 - [] Within a year
 - [] No sign that any maintenance is required

9. Summarize the results of this inspection and write any other observations in the box below.

Summary and other observations:

ADMINISTRATIVE TOOLS

RECORD KEEPING & TRACKING

- Parcel information
- City/County permit (ROW and/or building permit)
- Relevant sections of the Stormwater Site Plan
- “As-builts” or “record drawings” (individual lots and public ROW)
- Legal agreements (covenants, easements)
ADMINISTRATIVE TOOLS

RECORD KEEPING & TRACKING

- Location information (GPS data, digital maps)
- Project O&M manual (where applicable)
- Maintenance logs (typically included in a Project O&M Manual)
- Inspection forms
- Enforcement documents

ADMINISTRATIVE TOOLS

INTERPRETING PLANS & AS-BUILTS

- How to interpret construction plans, installation photos, and as-builts

ADMINISTRATIVE TOOLS

INSPECTION PROGRAMS

- Immediately post-construction for all UD BMPs - installed per plan and functioning properly
- Every 6 months (until 90% of lots are constructed) for permanent Stormwater Treatment and Flow Control BMPs/Facilities in new residential developments - identify maintenance needs and enforce maintenance standards
- Ongoing annual inspections for all Stormwater Treatment and Flow Control BMPs/Facilities (MR #6 and/or MR #7)
- Immediately post-construction for all LID BMPs - installed per plan and functioning properly
- Every 6 months (until 90% of lots are constructed) for permanent Stormwater Treatment and Flow Control BMPs/Facilities in new residential developments - identify maintenance needs and enforce maintenance standards
- Ongoing annual inspections for all Stormwater Treatment and Flow Control BMPs/Facilities (MR #6 and/or MR #7)

Q&A

Wrap up & field exercises

Statewide LID Training Program

COURSE CATALOG

http://www.wastormwatercenter.org/lidstrainingprogram/
Statewide LID Training Program

OTHER COURSE OFFERINGS

<table>
<thead>
<tr>
<th>INTRODUCTORY</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to LID for Developers & Contractors</td>
<td>Introduction to LID for Inspection & Maintenance Staff</td>
<td>Advanced Topics in LID Design: Infrastructure</td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to LID for Inspectors</td>
<td>Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to LID for Developers & Contractors</td>
<td>Intermediate LID Design: Site Assessment, Planning & Layout</td>
<td>Advanced Topics in LID Design: Site Assessment, Planning & Layout</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRAIN THE TRainers

| 9.1 | 9.2 |
| Intermediate LID Design: Site Assessment, Planning & Layout | Intermediate LID Design: Site Assessment, Planning & Layout |

ONLINE EVALUATION

• An on-line evaluation will be sent to you within 5 days following this training

CERTIFICATE

Two certificates:
• Stay tuned for decisions on certificate
• LID Design certificate
• Long-term LID Operations certificate

Sign out!
For information on training and other resources, visit the Washington Stormwater Center website:
http://www.wastormwatercenter.org

Stay connected through Social Media
• Come “Like” our Page
• Sign up to follow and get Tweets

Further questions? Contact:
training@cascadiaconsulting.com
(206) 449-1163

Field Exercises
Site Inspection
Infiltration Tests
Moss Removal
Equipment Demos