

Determining Infiltration Rates: Approaches, Challenges & Lessons Learned

May 16, 2017

Presented by Andrew Austreng, LHG

Presentation Outline

- Overview of Site Characterization & Testing
- Pilot Infiltration Test (PIT) Specifics
- Approaches and Challenges
- Lessons Learned & Tools Available

Infiltration Testing: Site Characterization

Suitability Criteria

- Max Infiltration Rates <u>with</u> Treatment
 - Western: 3 in/hr (design)
 - Eastern: 2.4 in/hr
- Minimum Rate <u>without</u> Treatment
 - Western: 48-hr drain
 - Eastern: 72-hr drain
- 5' separation between GW and/or low *k* (3' possible)

- Setback from 15% slope
- Subsurface Investigation (Report)

Subsurface Investigation: Approaches

Western WA

- Assume 0.5 in/hr for investigation area
- 5x pond depth (at least 10 ft)
- Characterize GW (<50 ft) monitor 1 wet season

Eastern WA

- 3 excavations within pond
- 5 ft below bottom (at least 10 ft if no info available)

Key to determining mounding potential.....

Subsurface Investigation: Existing Info

Geologic Maps/Studies

- Consider Scale
- Evaluate Source of Info

Eastern WA: Determining Infiltration Rates

Four Recommended Tests

- 1. Borehole (deep or high k)
- 2. Drywell (confirmatory)
- 3. Ring Infiltrometer (surficial or high k)

4. Test Pit

Single-Ring Inflitrometer

100 ft ² PIT (large-scale)

Western WA: Infiltration Testing

Three Recommended Tests

- 1. Large-scale PIT (100 ft²)
- 2. Small-scale PIT (12-36 ft²)
 - < 1 acre</p>
 - High rates
 - Permeable pavement, etc.
- 3. Grain Size
 - When not compacted (recessional outwash)

PIT: *Eastern & Western Procedures*

	Western	Eastern
Depth of Test	Pit Bottom	2 to 5 ft Below
Testing Season	12/1 – 4/1	
Pit Area	$12 - 100 ft^2$	8 ft ²
Saturation Time	> 5hrs	< 2hrs
Stable Flow	≥1 hr	0.5 hrs
Falling Head	Until Dry	30 min

- Flow Stable at 5% variation
- Western more conservative (mounding)

PIT Method: Qualitative Mounding (Western)

Over-excavate

Boreholes

Eastern WA: PIT Calculations

Reclamation Procedure

Low Water Table:

$$k_{20} = \frac{qV}{2\pi\hbar^2} \left\{ \ln\left[\frac{h}{r} + \sqrt{\left(\frac{h}{r}\right)^2 + 1}\right] - \frac{\sqrt{1 + \left(\frac{h}{r}\right)^2}}{\frac{h}{r}} + \frac{1}{\frac{h}{r}} \right\}$$

High Water Table:

$$k_{20} = \frac{qV}{2\pi\hbar^2} \left[\frac{\ln\left(\frac{h}{r}\right)}{\frac{1}{6} + \frac{1}{3} \left(\frac{h}{T_u}\right)^{-1}} \right]$$

• Determines permeability coefficient (not gradient)

Western WA: PIT Calculations

Calculations

• Ki = Q/A50 $gpm = 400 \frac{ft^3}{hr}; \frac{400 ft^3 hr^{-1}}{100 ft^2} = 4 ft/hr$

Correction Factors

Issue	Factor
Heterogeneity	0.33 - 1
Large PIT	0.75
Small PIT	0.5
Other (small scale)	0.4
Grain Size	0.4
Long-term fouling	0.9

= 0.12 to 0.68

<u>Western</u> WA: Calculations (Detailed Design)

Described in <u>Western</u> for:

- Drainage > 10 acres
- Low k within 15 feet (10 feet)
- 6. Calculate Conservative Gradient (mounding)
- 7. Correct for Aspect ratio (pit bottom)
- 8. Size for 48-hr drawdown (6 ft max head)
- 9. Run MODRET (or other analytical)

Western WA: Grain Size Calculations

Calculations:

- Massmann (2003)
- Harmonic mean, or
- Lowest k if w/in 5 feet

Need to Consider:

- Hydraulic gradient
- Soil structure (e.g., varves, laminae)
- Compaction during construction

Western WA: Grain Size Calculations

Confirm with Other Methods....

Test Pit	Hydraulic Conductivity (ft/hr)			PIT
	Massmann	USBR	Pavchich	Results
PIT 1	5.1	0.9	1	0.9 to 1.2
PIT 2	2.9	0.4	0.4	0.4 to 0.5

.....WDOT

PIT Method: Data Collection Tips

- Dimensions are Critical!!
 - $Ki = \frac{Q}{A}$

Consider Shoring

PIT Method: Data Collection Tips

Flow Metering

• Adjusting Valves (5% threshold)

• Rate Will Vary with Head

MJ Series

PIT Method: Data Collection Tips

Automation

- Pressure Transducer
- Pulse Meter + datalogger

PIT Method: Challenges

"Constant Head"

Tools Available...

ithin each blank cell, enter	comment codes as follows:
C = Complete	R = Revise (i.e., make corrections)
N/A = Not Applicable	M = Missing (i.e., please include)
IC = Incomplete	
	DETERMINE METHOD OF ANALYSIS
Typically use the Sim	ple Method for the following types of sites (subject to City approval):
• For small fact of contributin	g area
 High infiltrat 	on capacity soils (NRCS [SCS] soil types A or B)
 Other infiltration 	tion facilities performing successfully at nearby locations
 No drinking v 	vater wells, steep slopes, or other sensitive features within 500 feet
 Low risk of f of the infiltration 	ooding and property damage in the event of clogging or other failure tion system
Typically use the Det approval):	ailed Method for the following types of sites (subject to City
A large contr	buting drainage area
 Low infiltrati 	on capacity soils (NRCS [SCS] soil types C or D)
 History of un 	successful infiltration facility performance, or no history of
successful inf	iltration performance at nearby locations
 High grounds 	vater levels or depth to low permeability layer less than 10 feet
 High risk of f 	looding in the event of clogging or other failure.
STEPS F	OR THE DESIGN OF INFILTRATION FACILITIES SIMPLIFIED APPROACH
	(SWMMWW Volume III Section 3 3 4)
Applies	to Infiltration Ponds/Basins Trenches Vaults and Tanks
(note:	does not apply to Downspout Full Infiltration Systems)
	Step 1: Select a Location
Location selected bas (SWMMWW Volume	ed on preliminary surface and sub-surface characterization study e III, Section 3.3.5) and preliminary check of Site Suitability Criteria
(SWMMWW Volum	e III, Section 3.3.7). (See also Step 4.)
	Step 2: Estimate Volume of Stormwater
WWHM, MGSFlood	or other approved continuous runoff model is used to generate an
Sto	n 3: Develop Trial Infiltration Facility Coometry
(for initial modeling	p 5. Develop 11 at initiation 1 atinty Geometry
	Man Detailed Site Characterization Study and C 11 Site
Step 4: Complete	Suitability Criteria

Public Works Department, Engineering Division 121 5th Ave N Edmonds, WA 98020

Pilot Infiltration Test (PIT) Field Checklist

Call before you dig - Utility Locates 811

Project Address: Permit Number: Contact Information

Other Project Information:

Include site map or drainage control plan, with test locations clearly marked.

The intent of this checklist is to provide a summary of stormwater BMP infiltration testing requirements associated with the Pilot Infiltration Test (PIT). All projects and associated plans are also subject to the minimum requirements outlined in ECDC Chapter 18.30, as well as the specific subsurface investigation and infiltration testing requirements outlined in the City of Edmonds Stormwater Addendum, Appendix B. See also Stormwater Addendum Appendix A for site constraints that may preclude infiltration facility feasibility for some BMPs.

This checklist does not preclude the use of professional judgment to evaluate and manage risk associated with design, construction, and operation of infiltration BMPs. Justification for testing procedures that deviate from the minimum investigation requirements specified in Appendix B shall be documented in a stamped and signed letter from a professional soil scientist certified by the Soil Science Society of America (or an equivalent national program). a professional engineer licensed in the State of Washington in civil engineering, a geologist, a hydrogeologist, or a licensed engineering geologist registered in the State of Washington, any of whom must also have experience in infiltration and groundwater testing and infiltration facility design.

Before you start call Utility Locates 811 to request locates of utilities at your site.

SMALL-SCALE PILOT INFILTRATION TEST (SMALL PIT) AND LARGE-SCALE PILOT INFILTRATION TEST (LARGE PIT):

(Note: The test methods outlined below may be modified due to site conditions if recommended by the licensed professional and the reasoning is documented in the testing report.)

- 1. Indicate type of test:
- Small PIT
- Date and time of tests:
 Will the infiltration test be within the footprint of the proposed infiltration facility? (Yes / No)
- If "no," explain why:
- Dig an infiltration test pit
- Test pit excavated to bottom elevation of the proposed facility (Yes / No) 6. (See City of Edmonds Stormwater Addendum, Appendix B for additional details.)

2	Pierce County BMP Sizing Calculator for Flow Control				
	Project Information:			Precipitation Zone	
				Site Mean Annual Precipitation	in
				Soil Type	
				New and Replaced Impervious Area	sf
1				Flow Control Standard Achieved?	
1					
	LID Runoff Reduction Methods	Facility Size		Credit	Area Mitigated
	Partial Dispersion				
	Downspout, Sheet Flow, or Concentrated	Dispersed Impervious Area	sf	X (X +) =	sf
-	Green Roof			enter precipitation zone	
6	>4" Growth Medium	Green Roof Area	sf	x (x +) =	sf
				"enter precipitation zone"	
	Permeable Pavement Surface				
	Subgrade Slope ≤ 2%	Permeable Pavement Area	sf	x =	sf
	Design Infiltration Rate in/hr			"enter precipitation zone"	
				Aggregate Storage Depth for Flow Control =	ħ
	Subgrade Slope 2-5%	Permeable Pavement Area	sf	x(x +)=	sf
	Design Infiltration Rate in/hr			*enter precipitation zone*	
				Aggregate Storage Depth for Flow Control =	ft

Infiltration Feasibility Assessment for Seattle-Tacoma International Airport

2017 Washington Municipal Stormwater Conference

Tom Atkins, PE, LG

Presentation Outline

STIA Overview

- Airport layout and operations
- □ Stormwater management
- Geology/hydrogeology
- Need for infiltration assessment

- Approach
- Results

Project Location - SeaTac, WA

Seattle-Tacoma International Airport Project Location

1

STIA Overview

- Located in City of SeaTac 12 miles south of downtown Seattle
- Largest airport in the Pacific Northwest
- 1600 acres with 3 streams discharging to Puget Sound
- 45 million passengers in 2016
- Largest generator of vehicle trips in the state and a 13,000-car parking garage*
- Substantial future development plans

Study Area

Stormwater Management

- 2 Collection and Conveyance Systems
 - Industrial Wastewater System (IWS)
 - Aircraft/vehicle maintenance
 - Storm Drainage System (SDS)
 - Runways/expressways, terminal, service roads

- Individual NPDES Permit

 - Non-construction stormwater
 - Construction stormwater

Low Impact Development

- Port's LID Guidelines being developed
- Stormwater Management Manual for Aviation Division Property being updated
- Broad-scale infiltration assessment needed to provide guidance for identifying future stormwater infiltration opportunities

earth+water

 Assessment primarily focused on hydrogeologic considerations

Infiltration Assessment Approach

- Determine important factors
- Identify and obtain existing available information
- Create GIS layers of each factor
- Determine infiltration feasibility of each unique combination of factors
- Create summary shallow and deep infiltration feasibility maps

Information Sources

- Substantial amount of existing information
 - LiDAR elevation and Port topographic survey data
 - Surficial geologic maps
 - Subsurface geologic and hydrogeologic information from the 2008 Groundwater Study

- Sensitive and critical areas
- Other notable information

Topographic Layer

- Created using LiDAR that was adjusted to post-Third Runway conditions using Port survey data
- Ground elevations range from 60 ft (southwest area) to over 500 ft above mean sea level (central area)

Ground Surface Elevation

Surficial Geologic Units

- Based on regionally significant surficial geologic units modeled in 2008 Groundwater Study
- Also identified Airport fill and regraded areas

Geology/Hydrogeology

- Puget Sound lowland glaciation resulted in glacially sculpted uplands
- Post-glacial erosion has locally incised the uplands and created steep-sided ravines
- 2008 groundwater study identified 12 regional hydrostratigraphic units

- Vashon glacial till (Qvt) covers much of STIA's high plateau area
- Advance outwash (Qva) stratigraphically below the glacial till

Surface Geology

Cross-Section B-B'

Sensitive, Critical and Other Notable Areas Layer

- Streams, ponds, lakes and wetlands with 100-ft buffers included
- FAA regulated areas
 - Runway Safety Areas
 - Object-free Areas
 - Protection Zones
- Areas of potential soil contamination

earth+water

Municipal water supply wells

Sensitive, Critical and Other Areas

Infiltration Feasibility Factors

- Surface geology/gross unit hydraulic conductivity
- Surface slope gradient
- Proximity to steep slopes and landslide hazard areas
- Thickness of permeable unsaturated zone
- Depth to permeable receptor unit

Surface Geology/Permeability

- Geologic units categorized into broad permeability categories
- High permeability
 - Vashon Recessional Outwash Qvr
- Moderate Permeability
 - Alluvium Qal
 - Vashon Advance Outwash Qva
 - Older coarse-grained deposits Qpf
- Low Permeability
 - Vashon Glacial Till Qvt and other fine-grained deposits

Surface Permeability

Surface Slope Gradient

 Surface slope was divided into three categories

earth+water

□ Low Gradient (<8%)

□ Moderate Gradient (8 – 20%)

□ High Gradient (>20%)

Surface Slope

Steep Slope Hazard Areas

- Two landslide hazard categories
 - High to Moderate Landslide Hazard
 - Slopes >40% plus 100-ft buffer or within 500 ft of a mapped landslide/steep hazard
 - Low Landslide Hazard
 - All other areas except embankment fill
- Infiltration to Third Runway embankment fill is prohibited
 - Fill area estimated by comparing pre- and postconstruction topography with a 500 ft buffer east of upper fill

Steep Slope Hazard Areas

Depth to Permeable Unsaturated Zone

- Three depth categories
 - Shallow depth to infiltration receptor (<20 ft)
 - Moderate depth to infiltration receptor (20-50 ft)

earth+water

Deep infiltration receptor (>50 ft)

Depth to Subsurface Permeable Unsaturated Zone

Thickness of Permeable Unsaturated Zones

Three thickness categories
 High thickness (>30 ft)
 Moderate thickness (10 – 30 ft)
 Low thickness (<10 ft)

Thickness of Subsurface Permeable Unsaturated Zone

Hydrogeomorphic Units

- Each unique combination of infiltration feasibility factors defines a hydrogeomorphic unit
- Shallow and deep infiltration hydrogeomorphic units determined

Criteria for Shallow Infiltration Hydrogeomorphic Unit Categories

Feasibility	Permeability	Surface Slope	Unsaturated Zone Thickness	Slope Hazard
	Generally the most favorable rating with up to one		Low	
Good	moderate rating			
	Generally the most favorable rating with up to two			Low
Moderate	moderate ratings			
Deer	Generally one or more least favorable rating.			Low
Poor	Any rating			High to
				moderate

Criteria for Deep Infiltration Hydrogeomorphic Unit Categories

Feasibility	Unsaturated Zone Thickness	Depth to Permeable Unsaturated Zone	Slope Hazard
Good	>10 feet	< 50 feet	Low
Moderate	>10 feet	Any depth	Low
Poor	<10 feet	Any depth	Low
	An	High to moderate	

Shallow Infiltration Feasibility

Deep Infiltration Feasibility

Summary of Results

- Over half of the study area is not expected to be suitable for shallow infiltration due to the presence of low permeability glacial till soils or other factors
- Deep infiltration appears feasible in significant portions of the study area, including many areas that were identified as being unsuitable for shallow infiltration
- Areas with relatively thin till cap underlain by outwash soils supports the feasibility of dug or drilled drains

Recent Infiltration Testing Results

- Infiltration testing conducted inconjunction with a planned environmental remediation effort at Lake Reba – demonstrated good infiltration
- Result consistent with shallow infiltration feasibility mapping

Questions?

Tom Atkins, PE, LG

tatkins@aspectconsulting.com 206.418.8207

Andrew Austreng, LHG

aaustreng@aspectconsulting.com 701.740.7915

Aspect Consulting, LLC

Stormwater ~ Hydrogeology ~ Water Resources ~ Data Services Geotechnical Engineering ~ Environmental Remediation

Bainbridge Island - Bellingham - Seattle - Wenatchee - Yakima - Portland