

Statewide LID Training Program INSTRUCTORS

Curtis Hinman

Senior Scientist

Key project experience: Research specialist in the performance and design of LID practices.

Dylan Ahearn PhD

Associate Scientist

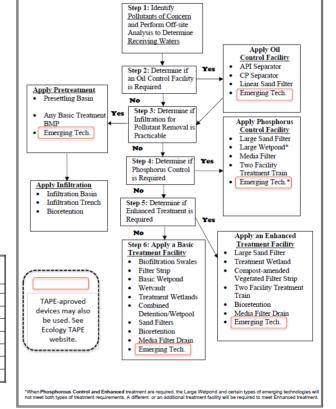
Key project experience: Stormwater monitoring and proprietary treatment verification and certification specialist.

Statewide LID Training Program

ECOLOGY

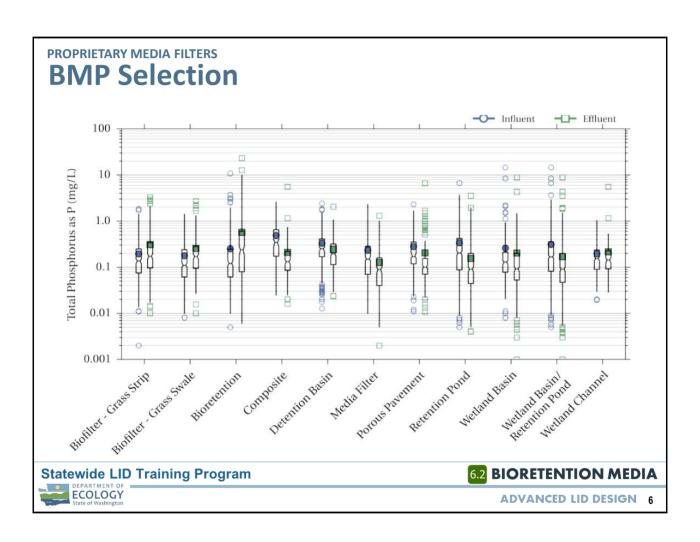
ADVANCED LID DESIGN 2

2



PROPRIETARY MEDIA FILTERS BMP Selection

- Ecology sets guidance for which BMPs can be used
- Specific BMPs are required for specific pollutants
- Most BMPs are grandfathered in



Statewide LID Training Program

6.2 BIORETENTION MEDIA

PROPRIETARY MEDIA FILTERS BMP Selection

Something Doesn't Quite Look Right...

Statewide LID Training Program

PROBLEM STATEMENT OF ECOLOGY

BMP Selection

Ecology attempts to verify BMP effectiveness with 2007 permit required monitoring

Phase I Municipal Stormwater Permit Monitoring: Stormwater Treatment and Hydrologic Management Best Management Practice (BMP) Evaluation Monitoring (S8.F)

SR.F. requires Phase I Municipal Stormwater Permittees to measure the effectiveness of stormwater treatment and hydrologic management BMPs. Permittees are required to collect influent and effluent water quality and flow data from each BMP in accordance with Ecology's <u>Studence for Evaluating Emerginas Stormwater Treatment, Technology Assessment Protocol-Ecology (TAEE)</u>. This monotroning component also includes a requirement for Phase I Permittees (with the exception of Ports) to monitor the effectiveness of one flow reductions instrugely that is in use or planned for installation. This monotroning includes

Ecology required Phase I Permittees to develop Quality Assurance Project Plans (QAPPs). The following describes each Phase I permittee's effectiveness study with links to each QAPP.

King Count

King County is monitoring two, large sand filters and two, pre-settling basins. These stormwater facilities are located at a multi-family development on the East-Lake Sammamish Plateau.

SS.P.1.7 NOW MEDICATOR STRATEGY King Country is montrolling organic compost added as a soil amendment in an urban planned housing development (part of the Redmond Ridge project). Amending soil is an attempt to mitigate the traditional clearing and grading of land for buil strategy or the property of t

King County's OAPP for S8.F and S8.F.7

Snohomish County

Snohemish County is monitoring four modified wet ponds to determine which design is most effective at removing pollutants from stormwater. These wet ponds are located northeast of Mill Creek, southeast of Mill Creek and two ponds located south of Eversity.

S8.F.7 Flow Reduction Strategy
For flow reduction, the County is monitoring a modified drainage structure in a subdivision southeast of Mill Creek to determine if a reduction of stormwater volume is occurring from retrofits designed to encourage infiltration.

Snohomish County's OAPP for S8.F and S8.F.7

Clark County

Clark County is monitoring two treatment vetlands located in the City of Vancouver, WA and a two-facility treatment train located may the Killer vetla system expenses the Clark County is monitoring two treatment vetlands located may be first treatment facility is a bio-filtration swale followed by a Stormiffering model after vetlat system expenses with zeolite-perindur activated carbon filtration media.

Clark County's QAPP for S8.F

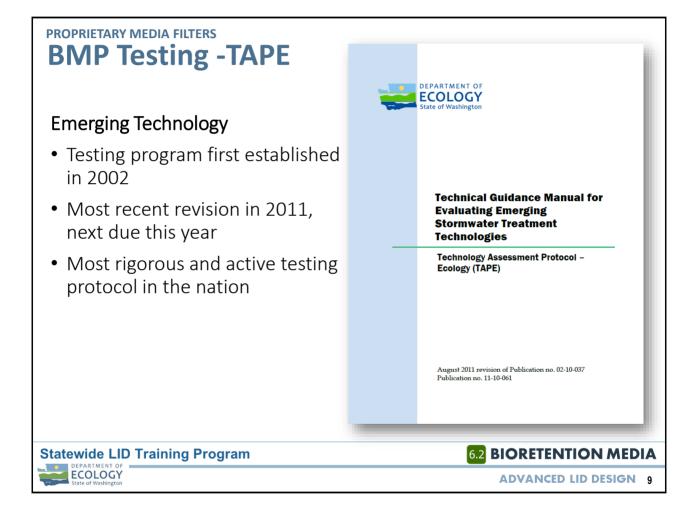
S8.F.7 Flow Reduction Strategy
The County is also monitoring the flow reduction capability of permeable pavers as a low impact development (LID) practice at the Vancouver Toyota car dealership

Clark County's QAPP for S8.F.7

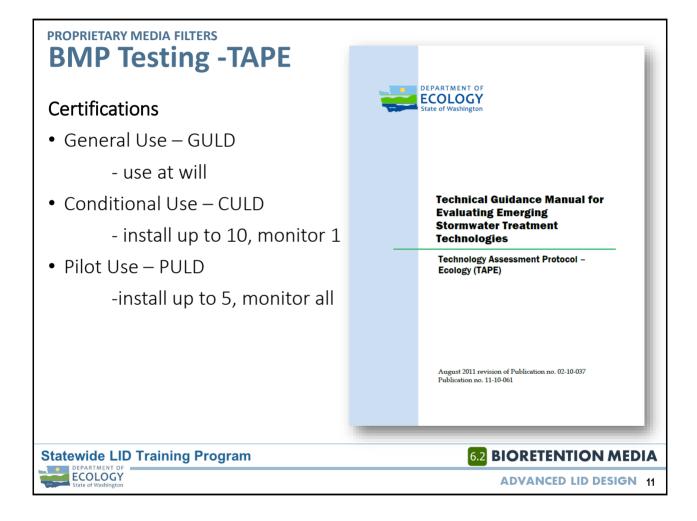
Stormwater Monitoring Report Guidance-Phase

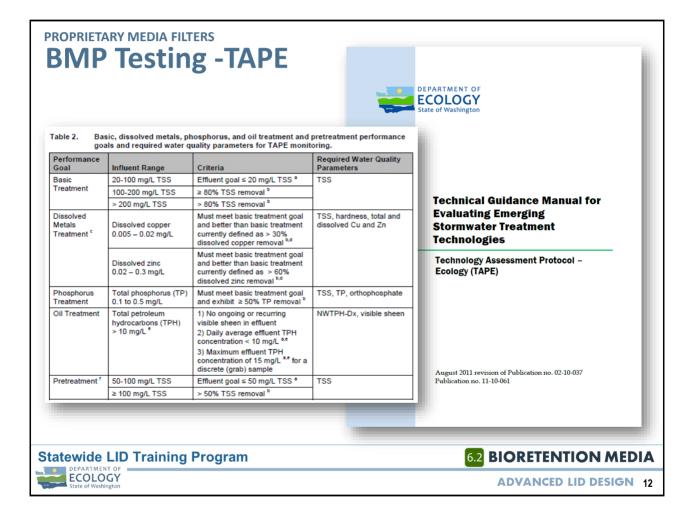
I EAP Quality Assurance

Phase I Permit


Phase I S8.D Monitoring

Phase I S8.E Monitoring


Statewide LID Training Program



PROPRIETARY MEDIA FILTERS BMP Testing -TAPE DEPARTMENT OF **ECOLOGY** Jurisdictions that recognize TAPE Washington 2. Oregon **Technical Guidance Manual for** 3. New York **Evaluating Emerging Stormwater Treatment** 4. Virginia **Technologies** Technology Assessment Protocol -5. New Hampshire Ecology (TAPE) 6. Rhode Island 7. Many smaller jurisdictions August 2011 revision of Publication no. 02-10-037 Publication no. 11-10-061 **Statewide LID Training Program 6.2 BIORETENTION MEDIA ECOLOGY ADVANCED LID DESIGN 10**

BMP Testing -TAPE

What Does TAPE Monitoring Look Like?

Statewide LID Training Program

6.2 BIORETENTION MEDIA

DEPARTMENT OF ECOLOGY

BMP Testing -TAPE

- Continuous Flow Monitoring
- Collect flow-weighted composite samples

Statewide LID Training Program

DEPARTMENT OF ECOLOGY
State of Washington

6.2 BIORETENTION MEDIA

BMP Testing -TAPE

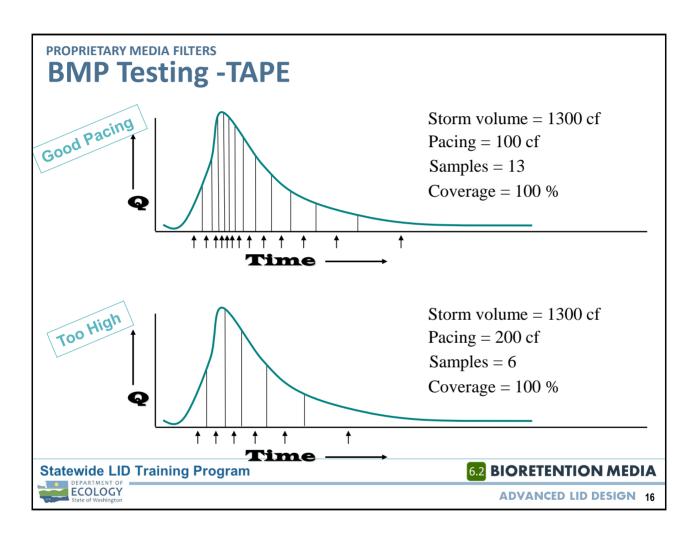
Rigorous Acceptance Criteria

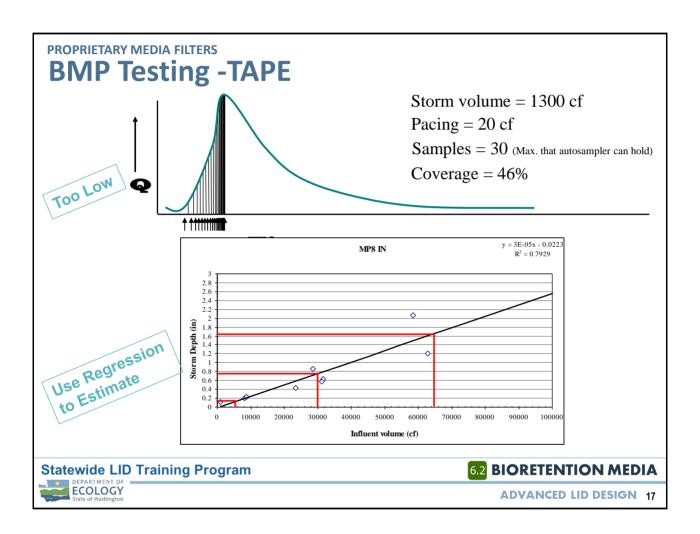
Table 5. Storm event guidelines for TAPE monitoring.

Parameter	Definition	Guideline ^a
Minimum storm depth	Total rainfall amount during the storm event	0.15 inches
Storm start (antecedent dry-period)	Defines the storm event's beginning as designated by minimum time interval without significant rainfall	6 hours minimum with less than 0.04 inches of rain
Storm end (post storm dry period)	Defines the storm event's end as designated by minimum time interval without significant rainfall	6 hours minimum with less than 0.04 inches of rain
Minimum storm duration	Shortest acceptable rainfall duration	1 hour
Average storm intensity	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	Range of rainfall intensities ^b

Table 6. Sample collection requirements for automated, flow-proportional composite sampling.

Parameter	Definition	Requirement
Minimum aliquot number	The number of equal-volume samples collected during a storm event that are combined to create a composite sample	10 aliquots ^a
Storm event coverage	The percentage of the total storm volume that the collected aliquots represent	For storm events lasting less than 24 hours, samples shall be collected for at least 75% of the storm event hydrograph (by volume). For storm events lasting longer than 24 hours, samples shall be collected for at least 75% of the hydrograph (by volume) of the first 24 hours of the storm.
Maximum sampling duration	Time in hours between the collection of the first and last aliquots	36 hours
Minimum number of samples	Number of storm events with successfully collected flow- proportional composite samples that meet the influent concentration ranges and the storm event guidelines	12 samples ^b


Statewide LID Training Program



Provide justification in the Technical Evaluation Report (TER) for storm event data that does not meet the storm event guidelines, but is included in the data analysis.

To assess performance on an annual average basis and performance at the system's peak design rate, proponents should collect samples over a range of rainfall intensities.

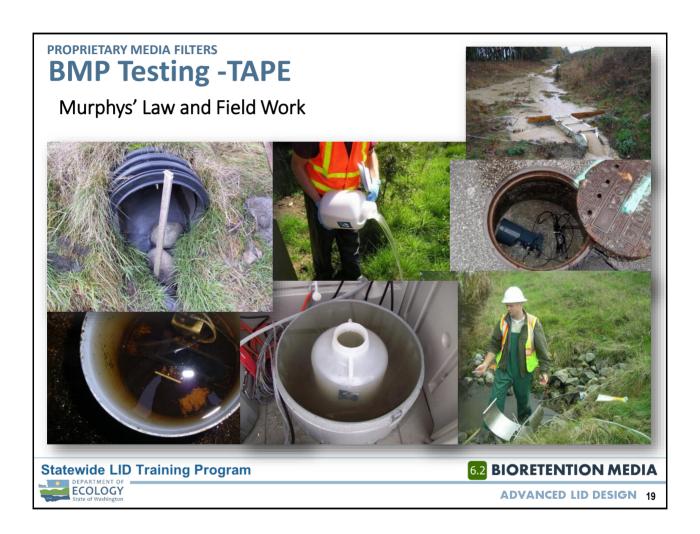
BMP Testing -TAPE

Basic Treatment

- 80% removal of TSS (influent = 100 to 200 mg/L)
- 20 mg/L TSS effluent goal (influent <100 mg/L)

Enhanced Treatment

- Influent dissolved copper range = 0.003 to 0.02 mg/L
- Influent dissolved zinc range = 0.02 to 0.3 mg/L
- Significantly higher removal rates than basic treatment


Oil Treatment

- No ongoing or recurring visible sheen
- Daily average TPH <10 mg/L
- Maximum TPH discrete (grab) sample = 15 mg/L

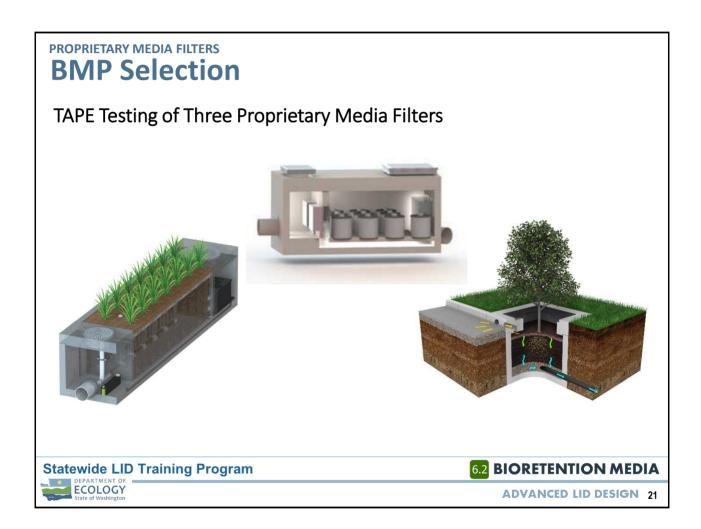
Statewide LID Training Program

6.2 BIORETENTION MEDIA

BMP Testing -TAPE

Labor and Tech Intensive

- \$15,000 equipment
- \$200,000 total cost



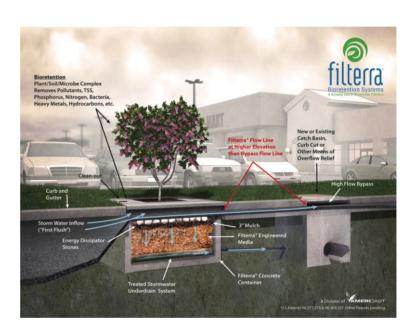
Statewide LID Training Program

DEPARTMENT OF ECOLOGY State of Washington

6.2 BIORETENTION MEDIA

BMP Selection

TAPE Testing of Three Proprietary Media Filters


Statewide LID Training Program

DEPARTMENT OF ECOLOGY

Filterra - Tacoma

- Inlet
- Concrete container
- Surface storage
- Mulch layer
- Filter media
- Vegetation
- Underdrain
- Bypass

Statewide LID Training Program

Filterra - Tacoma

- November 2006
 - Conditional Short-Term Use Level Designation (CULD) for basic and phosphorus treatment
 - Pilot Use Level Designation (PULD) for enhanced and oil treatment
- Monitoring design developed based on the Technology Assessment Protocol – Ecology (TAPE) (Ecology 2008)

Statewide LID Training Program

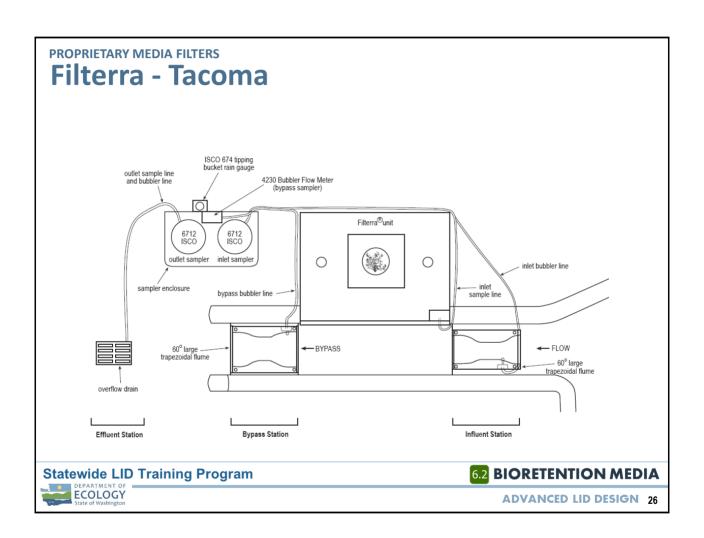
ECOLOGY

6.2 BIORETENTION MEDIA

Filterra - Tacoma

- Two Filterra test systems installed at the Port of Tacoma (POT) in Tacoma, WA
- Hydrologic and water quality monitoring from May

2008 through May 2009


- 27 storm events sampled
 - 29 grab samples
 - 35 composite samples

Statewide LID Training Program

6.2 BIORETENTION MEDIA

Filterra - Tacoma

Statewide LID Training Program

Filterra - Tacoma

Statewide LID Training Program

6.2 BIORETENTION MEDIA

DEPARTMENT OF ECOLOGY

Filterra - Tacoma

Basic Treatment (TSS) Results

Test System	Storm Events	Influent TSS (mg/L)	Effluent TSS (mg/L)	TSS Removal Efficiency (%)
POT1	22	11 – 40	1.7 – 7.8	65 – 90
POT2	13	0.83 - 8.0	0.5 U – 5.0	-79 – 91
Meets TAPE	10	20 – 40	2.0 – 7.8	79 – 90
		(median = 28)	(median = 4.2)	(median = 86)

Statewide LID Training Program

ECOLOGY

ECOLOGY

6.2 BIORETENTION MEDIA

Filterra - Tacoma

- Irreducible = 20-40 mg/L using conventional stormwater treatment technologies (Schueler 1996)
- Based on the POT data, influent TSS concentrations as low as 5.0 mg/L resulted in TSS removal efficiencies that met or exceeded the 80% goal
- to less than 8.0 mg/L regardless of influent concentration

Statewide LID Training Program

ECOLOGY

Filterra - Tacoma

Enhanced Treatment Results (Diss. Copper)

Test System	Storm Events	Influent Dissolved Cu (mg/L)	Effluent Dissolved Cu (mg/L)	Dissolved Cu Removal Efficiency (%)
POT1	18	0.0029 - 0.017	0.0015 – 0.10	24 – 74
POT2	11	0.001 U - 0.0056	0.001 U - 0.0033	27 – 62
Meets TAPE	23	0.0029 - 0.017	0.0015 - 0.0099	24 – 74
		(median = 0.0056)	(median = 0.0033)	(median = 44)

Statewide LID Training Program

ECOLOGY

ECOLOGY

6.2 BIORETENTION MEDIA

Filterra - Tacoma

Enhanced Treatment Results (Diss. Copper)

BMP Type	n	Median Dissolved Cu Removal (%)	Comparison
Filterra	23	44	NA
Biofilter – Grass Strip	151	20	Filterra > Basic
Biofilter – Grass Swale	86	7	Filterra > Basic
Filter – Peat Mixed with Sand	9	15	Filterra > Basic
Filter – Sand	78	14	Filterra > Basic
Wet Pond	56	33	Filterra > Basic
Wet Vault	29	19	Filterra > Basic
Ecology Embankment	10	39.2	Filterra > EE

Statewide LID Training Program

DEPARTMENT OF ECOLOGY

Filterra - Tacoma

General Use Level Designation

- GULD for basic, enhanced, and oil treatment received in December 2009
- May be installed anywhere in the state of Washington (subject to Ecology's conditions)
- CULD extended for phosphorus monitoring until December 2011

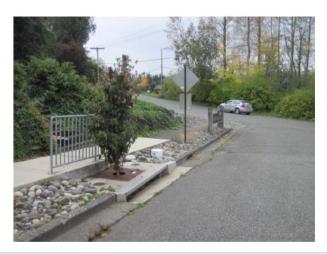
Statewide LID Training Program

Filterra - Bellingham

The Search for Phos Treatment

Statewide LID Training Program

PERSON BETWEEN TOP BETWEEN TOT BETWEEN TOP BETWEEN TOP BETWEEN TOP BETWEEN TOP BETWEEN TOP BET

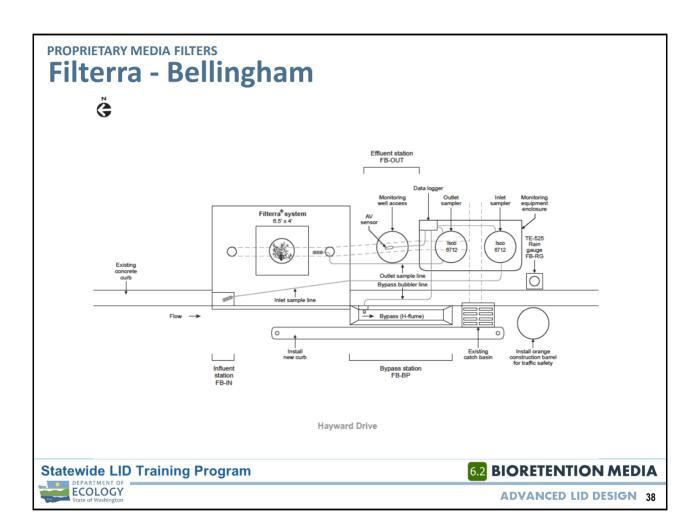

6.2 BIORETENTION MEDIA

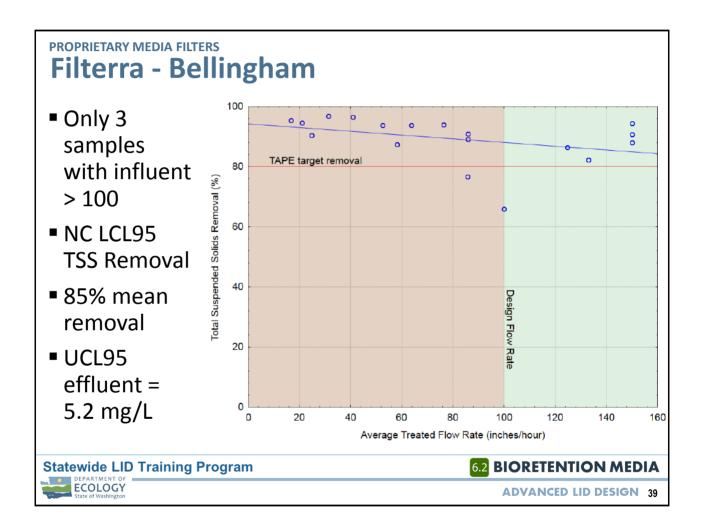
Filterra - Tacoma

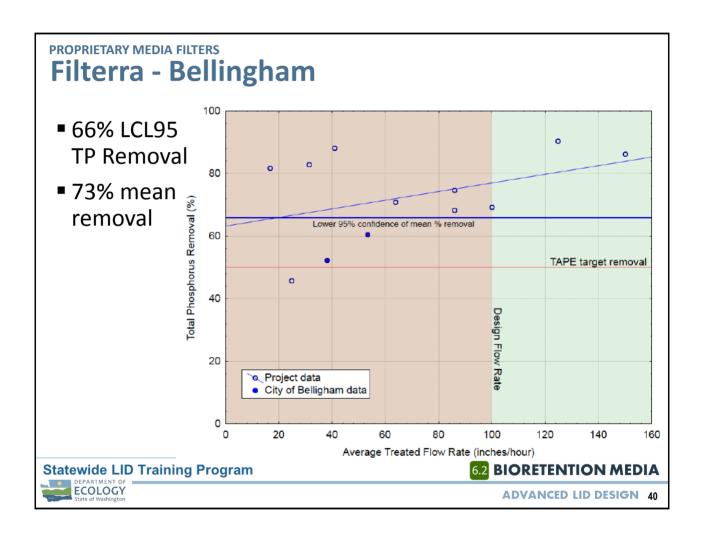
- Filterra test system installed at Hayward Dr., Bellingham, WA
- Hydrologic and water quality monitoring from Jan

2013 through July 2013

22 storm events sampled

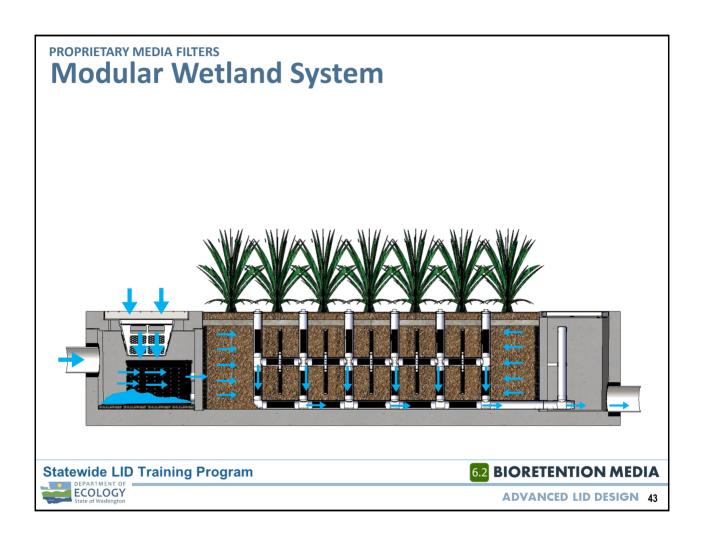

Statewide LID Training Program


ECOLOGY



Filterra Summary

- Certified for Basic, Phosphorus, Enhanced, and Oil treatment
- 3 monitoring installations
- Maintenance is simple
- Dual structure design can be difficult for engineers
- Mulch is an effective prefilter and bioturbation keeping infiltration rate high. A living filter!


Statewide LID Training Program

ECOLOGY

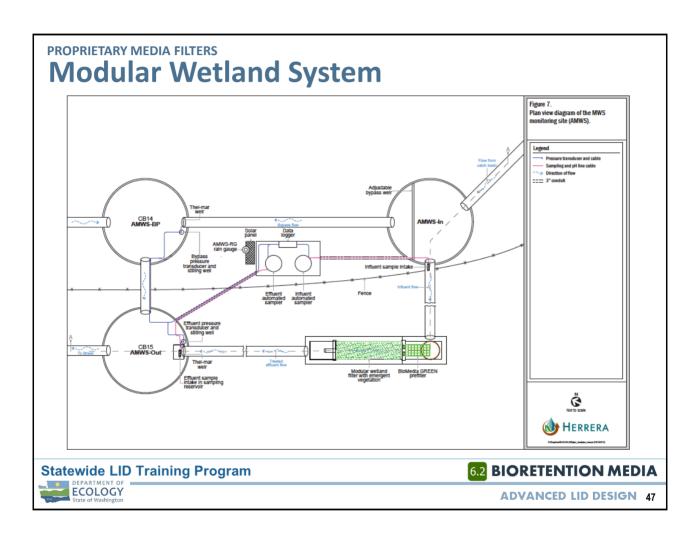
PROPRIETARY MEDIA FILTERS Modular Wetland System WWS-Linear Statewide LID Training Program S.2 BIORETENTION MEDIA

ECOLOGY

Modular Wetland System

- One test system installed in Portland, OR in a city maintenance yard
- Hydrologic and water quality monitoring from April

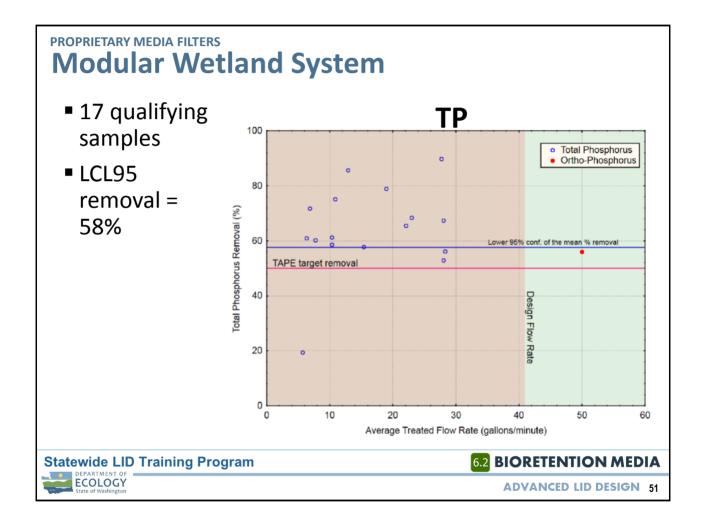
2012 through May 2013

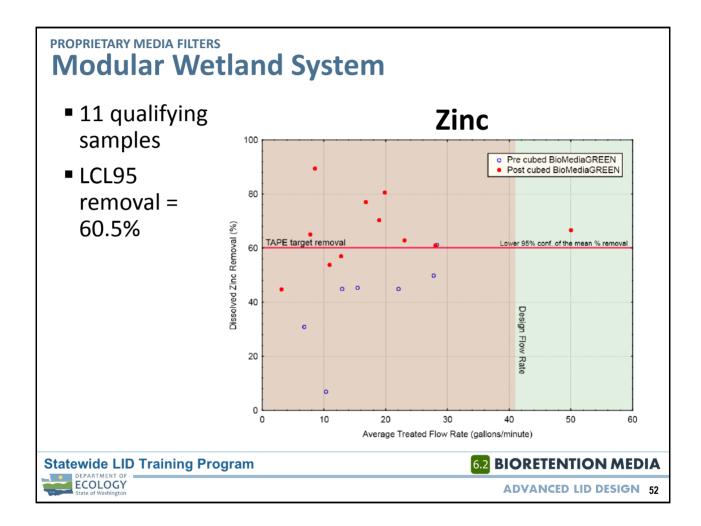

28 storm events sampled

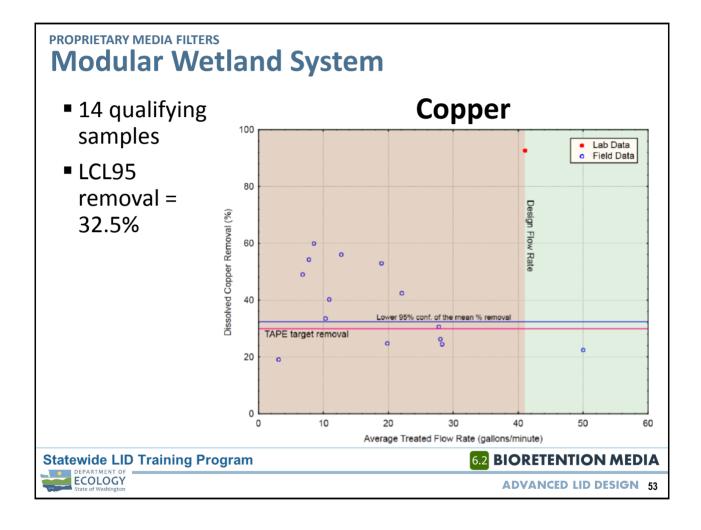
Statewide LID Training Program

PROPRIETARY MEDIA FILTERS Modular Wetland System | Installation of temporary perfite prefilter with new cartridge design | Cubed BioMediaGREEN ready for installation | High sediment loading in drainage basin | High sediment loading in drainage | High sediment loading in drai


Statewide LID Training Program

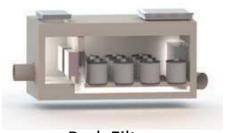

ECOLOGY


6.2 BIORETENTION MEDIA


PROPRIETARY MEDIA FILTERS Modular Wetland System Statewide LID Training Program 6.2 BIORETENTION MEDIA

ECOLOGY

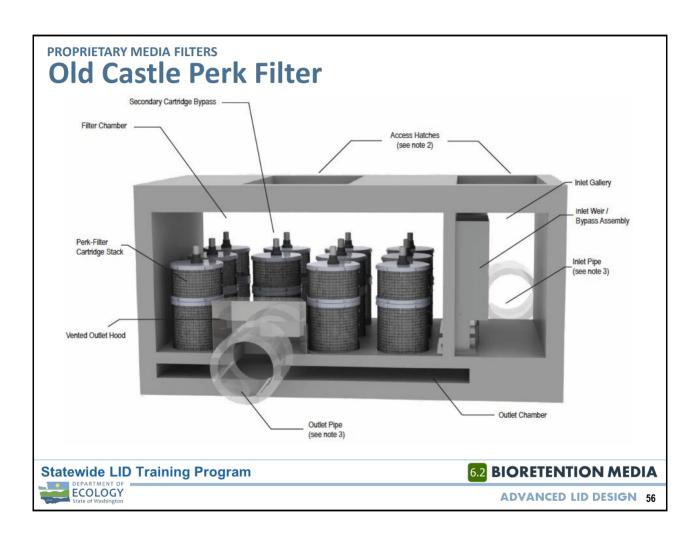
MWS Summary


- Certified for Basic, Phosphorus, Enhanced treatment
- Maintenance is relatively simple
- Flexible design options
- Two stage filter and large surface area extend the life of the filter
- Living filter?

Statewide LID Training Program

ECOLOGY

Old Castle Perk Filter



Perk Filter

Statewide LID Training Program

Old Castle Perk Filter

Statewide LID Training Program

PECOLOGY

ECOLOGY

Old Castle Perk Filter

System installed on Bainbridge Island Hydrologic and water quality monitoring from May 2009 through Feb 2010 22 storm events sampled

Statewide LID Training Program

Old Castle Perk Filter

Statewide LID Training Program

6.2 BIORETENTION MEDIA

Old Castle Perk Filter

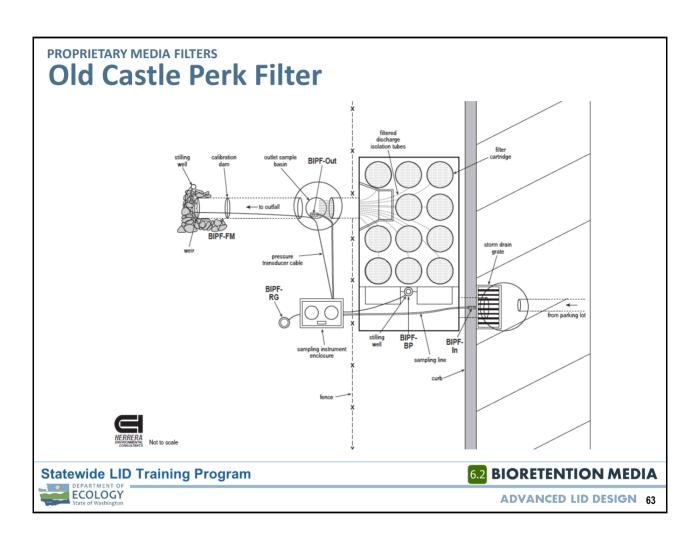
Statewide LID Training Program

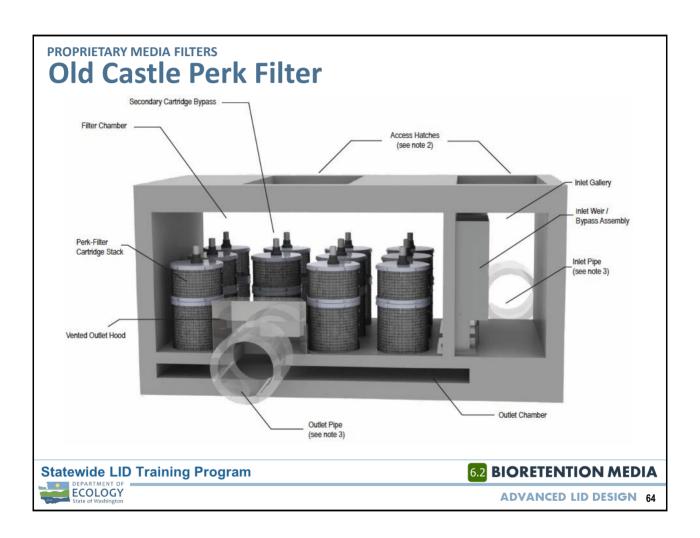
6.2 BIORETENTION MEDIA

Old Castle Perk Filter

Statewide LID Training Program

Old Castle Perk Filter


Our Unique Challenge



Statewide LID Training Program

DEPARTMENT OF ECOLOGY

6.2 BIORETENTION MEDIA

PROPRIETARY MEDIA FILTERS Old Castle Perk Filter

Statewide LID Training Program

DEPARTMENT OF ECOLOGY

6.2 BIORETENTION MEDIA

Old Castle Perk Filter Old Castle Perk Filter

Statewide LID Training Program

ECOLOGY

6.2 BIORETENTION MEDIA

PROPRIETARY MEDIA FILTERS **Old Castle Perk Filter** Median Percent Export (lines at axis) **TSS** 200 Effluent Total Suspended Solids in mg/L (points) △ BIPF Only 7 samples with 180 10 BIPF median % change (0.95 CL) BIPF median % change (81.1) Median Percent Reduction (lines at axis) influent > 100 C* Irreducible concentration (Schueler 1996) 160 20 (20 mg/L) 30 ■ NC LCL95 TSS 140 120 40 Removal 100 50 ■ 81% median 80 removal 70 60 80 20 100 120 140 180 200 160 Influent Total Suspended Solids in mg/L (points) **Statewide LID Training Program** 6.2 BIORETENTION MEDIA ECOLOGY **ADVANCED LID DESIGN 67**

Old Castle Perk Filter

Table 19. Total suspended solids summary statistics for 16 sampling events at the BIPF test system with influent total suspended solids concentrations of 20 mg/L or greater.

All Data	Influent (mg/L)	Effluent (mg/L)	Percent Removal
n	16	16	16
Mean	95	14	82
Median	71	12	83
Standard Deviation	57.5	9.8	12
COV	60.5	70	14
Bootstrapped Median Lower CI	53	7	80
Bootstrapped Median	71	12	83
Bootstrapped Median Upper CI	139	19	90
25th Percentile	49.5	6.4	79
75th Percentile	153.5	21.8	92
IQR	104.0	15.4	13
Minimum	28	3	50
Maximum	190	36	95

mg/L: milligrams per liter n: number of samples COV: coefficient of variance CI: 95% confidence interval

IQR: interquartile range

Statewide LID Training Program

PROPRIETARY MEDIA FILTERS Old Castle Perk Filter Median Percent Export (lines at axis) **TP** 200 1.0 • 13 samples with BIPF Effluent Total Phosphorus in mg/L (points) 10 BIPF median % change (0.95 CL) BIPF median % change (63.6) influent > 0.1 ■ 64% median Percent Reduction (lines at axis) removal 60 70 0.2 80 100 0.6 0.0 0.8 1.0 Influent Total Phosphorus in mg/L (points) **Statewide LID Training Program 6.2 BIORETENTION MEDIA** ECOLOGY **ADVANCED LID DESIGN 69**

Old Castle Perk Filter

Table 21. Total phosphorus summary statistics for 11 sampling events at the BIPF test system with influent total phosphorus concentrations between 0.100 and 0.500 mg/L.

All Data	Influent (mg/L)	Effluent (mg/L)	Percent Removal
n	11	11	11
Mean	0.237	0.083	62
Median	0.174	0.059	71
Standard Deviation	0.138	0.058	25
COV	58	70	40
Bootstrapped Median Lower CI	0.113	0.048	60
Bootstrapped Median	0.174	0.059	71
Bootstrapped Median Upper CI	0.381	0.126	78
25th Percentile	0.113	0.048	60
75th Percentile	0.381	0.126	78
IQR	0.268	0.078	18
Minimum	0.107	0.017	-1
Maximum	0.464	0.203	88

mg/L: milligrams per liter n: number of samples COV: coefficient of variance CI: 95% confidence interval IQR: interquartile range

Statewide LID Training Program

Perk Filter Summary

- Certified for Basic and Phosphorus treatment
- Flexible design options
- Fluidized media inhibits occlusion
- Cheaper than StormFilter
- Maintenance relatively involved

Statewide LID Training Program

ECOLOGY

Filter Longevity

Treatment is all well and good, but what if the thing clogs after 1 month?

Statewide LID Training Program

PERSON BETWEEN TOP BETWEEN TOT BETWEEN TOP BETWEEN TOP BETWEEN TOP BETWEEN TOP BETWEEN TOP BET

6.2 BIORETENTION MEDIA

Filter Longevity

- City of Seattle CatchBasin StormFilter Study
- Studies 15 CBSF units across the City
- Conducted quarterly testing
- Tested rate of clogging

StormFilter Hydrologic Performance and Sizing Study

By: Sotheary Ouk, Kevin Wood, Doug Hutchinson June 4, 2013

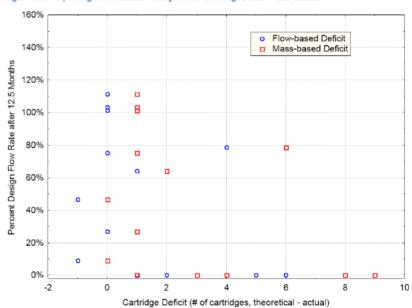
Statewide LID Training Program

6.2 BIORETENTION MEDIA

PROPRIETARY MEDIA FILTERS Filter Longevity

Statewide LID Training Program

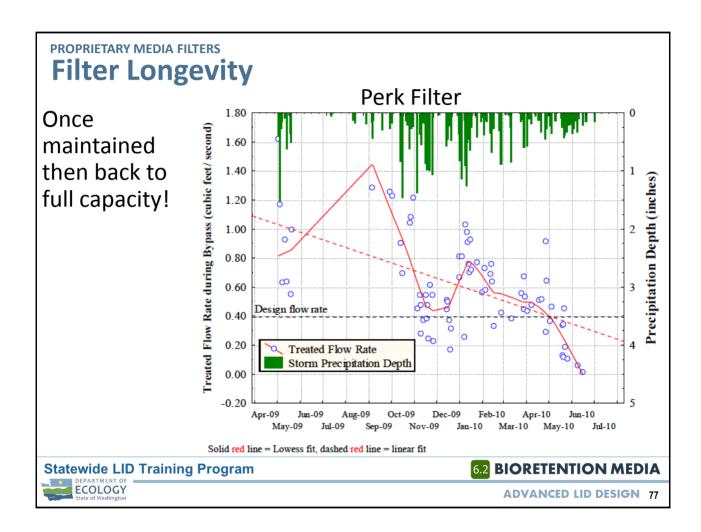
DEPARTMENT OF
ECOLOGY

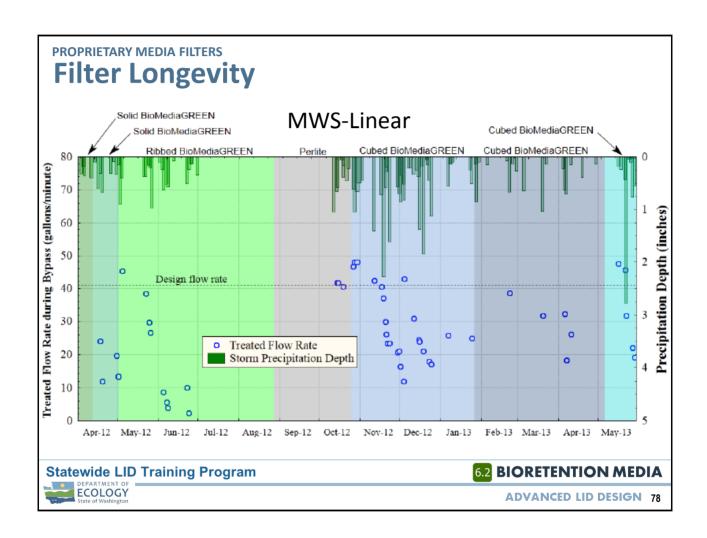

6.2 BIORETENTION MEDIA

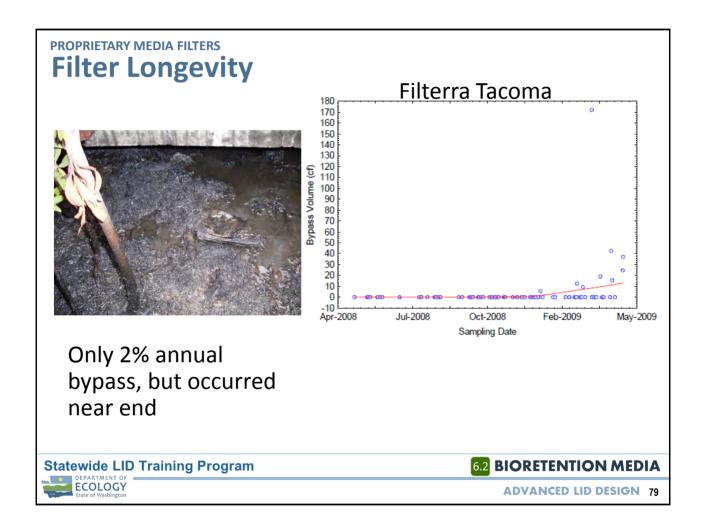
PROPRIETARY MEDIA FILTERS **Filter Longevity** ■ 6-months old Figure 5.3a – Hydrologic Performance Compared to Cartridge Deficit – 6 months (with trend lines) loading 160% ■ Sized right = 120% Flow-based Deficit Mass-based Deficit 140% ■ Undersized = 74% Percent Design Flow Rate after 6 Months 120% 100% $R^2 = 0.65$, p<0.001 80% 60% $R^2 = 0.65$, p<0.001 40% 20% 0 6 Cartridge Deficit (# of cartridges, theoretical - actual) **Statewide LID Training Program BIORETENTION MEDIA** ECOLOGY **ADVANCED LID DESIGN 75**

Filter Longevity

- 12.5-months old loading
- Sized right = 68%
- Undersized = 18%






Statewide LID Training Program

ECOLOGY

Filter Longevity

Filterra Bellingham

Table 9. Summary Statistics for Storms That Produced Bypass Flow at the Filterra Test
System from January 1, 2013, through July 23, 2013.

System from Sandary 1, 2015, diredgir Sury 25, 2015.									
Storm Start Date & Time	Storm Depth (inches)	Peak Storm Intensity (in/hr)	Total Volume (gpm)	Bypass Volume (gallons)	% of Total Volume Bypassed	Peak Treated Flow Rate during Bypass (gpm)	Peak Infiltration Rate during Bypass (in/hr)		
New media installed on 12/11/2012									
1/8/2013 7:35	1.42	0.48	14,076	368	2.6	60	222		
3/19/2013 17:00	0.5	0.48	3,300	144	4.4	42	155		
4/6/2013 17:25	1.38	0.48	14,491	618	4.3	52	192		
5/11/2013 22:20	0.7	0.72	5,890	52	0.9	151	559		
Mulch replaced and routine maintenance on 8/31/2013									

Statewide LID Training Program

DEPARTMENT OF ECOLOGY

The Take Home

- All certified systems are high performance and use state of the science media
- BMPs are systematically undersized
- Proprietary BMPs are sized to sell
- Sediment loading to polishing systems is their downfall
- "Living" filters may last longer, but when will the main filter clog?
- TAPE style testing should be applied to all BMPs

Statewide LID Training Program

6.2 BIORETENTION MEDIA

ECOLOGY