Eastern Washington Stormwater Effectiveness Studies

Technical Evaluation Report

Bioretention Soil Media Thickness Study

Study Classification: Structural BMP

Study Objective(s):

☑ Evaluate Effectiveness

☑ Compare Effectiveness

December 2021

Prepared For:

Spokane County
Public Works Department
1116 W. Broadway Avenue
Spokane, Washington 99260
(509)477-3600

Prepared By:

Osborn Consulting, Inc. 101 S Stevens St. Spokane, Washington 99201 (509)867-3654

QAPP and TER Publication Information

The project Quality Assurance Project Plan (QAPP) and Technical Evaluation Report are stored and accessible to the public on the Spokane County's website at the following link: https://www.spokanecounty.org/918/Stormwater-Utility. For questions regarding either document, please contact Matt Zarecor by email MZarecor@spokanecounty.org or phone (509) 477-7255.

TER Authors and Contact Information

Aimee Navickis-Brasch, P.E., Ph.D. Engineering Manager Osborn Consulting, Inc. 101 S Stevens St. Spokane, WA 99201 aimeen@osbornconsulting.com (509) 867-3654 Ext. 301

Taylor Hoffman-Ballard, P.E. Stormwater Engineer Osborn Consulting, Inc. 101 S Stevens St. Spokane, WA 99201 taylorh@osbornconsulting.com (509) 867-3654 Ext. 302

Nicole Chen, E.I.T.
Project Engineer
Osborn Consulting, Inc.
1402 3rd Avenue, Suite 415
Seattle, WA 98101
nicolec@osbornconsulting.com
(206)628-9133 Ext. 232

QC Contact Information

Mark Maurer, PE, PLS Senior Stormwater Engineer Osborn Consulting, Inc. 101 S. Stevens Street, Suite 103 Spokane, WA 99201 markm@osbornconsulting.com

Document History

The study was conducted following the QAPP which can be accessed at the link on the previous page. The study started in September 2018 and the last data was collected in January 2021. Sample collection continued through the spring 2021 however due to an unusually dry spring, there were no qualifying events. The draft Technical Evaluation Report (TER) was presented and submitted to the Technical Advisory Group (TAG) in October 2021 for review and comment. Appendix E of the TER contains a summary of the TAG's comments along with a summary of responses to the comments including how they were addressed in the document. The final TER was completed in December 2021.

Distribution List

Name, Title	Organization	Contact Information: Email, Telephone				
Matt Zarecor Assistant County Engineer	Spokane County	MZarecor@spokanecounty.org 509.477.7255				
Bill Gale Stormwater Utility Manager	Spokane County	bgalle@spokanecounty.org 509.477.7261				
Ethan Murnin Project Manager	Spokane County	emurnin@spokanecounty.org 509.477.7420				
Jack Wells Natural Resources Specialist	Yakima County	jack.wells@co.yakima.wa.us 509.574.2350				
Chad Philips Stormwater Engineer	City of Spokane Valley	cphillips@spokanevalley.org 509.720.5018				
Seth Walker Walla Walla County	Participating Entity TAG Member ⁶	swalker@wwcountyroads.com 509.524.2715				
Shilo Sprouse Stormwater Services Program Manager	City of Pullman	shilo.sprouse@pullman-wa.gov 509.432.9052				
Randy Meloy Surface Water Engineer	City of Yakima	Randy.Meloy@yakimawa.gov 509.576.6781				
Bill Aukett, Stormwater Program Manager	City of Moses Lake	baukett@cityofml.com 509.764.3792				
Brittany Whitfield Senior Engineer	City of Pasco	whitfieldb@pasco-wa.gov 509.544.3080				
Karen Dinicola Water Quality Project Manager	Department of Ecology	kdin461@ecy.wa.gov 360.407.6550				
Doug Howie Water Quality Project Manager	Department of Ecology	DOHO461@ecy.wa.gov 360.407.6444				
Brandi Lubliner Water Quality Project Manager	Department of Ecology	<u>brwa461@ecy.wa.gov</u> 360.407.7140				
Amanda Mars WQ Program – ERO	Department of Ecology	<u>amar461@ecy.wa.gov</u> 509.329.3554				
Aimee Navickis-Brasch Engineering Manager	Osborn Consulting, Inc.	aimeen@osbornconsulting.com 509.867.3654				
Taylor Hoffman Stormwater Research Engineer	Osborn Consulting, Inc.	taylorh@osbornconsulting.com 509.867.3654				
Kathy Sattler, Laboratory Project Manager	Anatek Laboratories	technical@anateklabs.com 509.838.3999				
Medhanie Tecle Engineering Manager	Materials Testing & Consulting, Inc.	medhanie.tecle@mtc-inc.net 360.534.9777				

1.0 Table of Contents

1.0	TABLE OF CONTENTS	V
2.0	EXECUTIVE SUMMARY	1
3.0	INTRODUCTION	4
3.1	INTRODUCTION TO THE STRUCTURAL BMP	4
3.2	Problem Description	5
3.3	Project Goals and Objectives	6
3.4	Project Overview	6
3.5	STUDY LOCATION	6
4.0	SAMPLING PROCEDURES	9
4.1	TYPES OF DATA COLLECTED	9
4.2	SAMPLE COLLECTION PROCESS	11
4.	.2.1 SOP Overview	11
4.	.2.2 Audit Overview	11
4.2.3	3 MONITORING EQUIPMENT OVERVIEW	11
5.0	DATA QUALITY ASSESSMENT	15
5.1	DATA VERIFICATION	15
5.2	DATA USABILITY ASSESSMENT	17
5.	.2.1 TAPE Qualifying Event and Pollutant Concentration Criteria	18
6.0	RESULTS AND DISCUSSION	23
6.1	Water Quality Data Analysis	23
6.1.1	1 STORM REPORTS	23
6.1.2	2 STATISTICAL ANALYSIS	25
6.1.3	3 POLLUTANT REMOVAL EFFICIENCY	26
6.2	COMPARISON OF RESULTS TO TAPE TREATMENT PERFORMANCE GOALS	29
6.3	Infiltration Performance	36
7.0	FUTURE ACTION RECOMMENDATIONS	
8.0	CONCLUSIONS	42
9.0	REFERENCES	44
10.0	APPENDICES	46
App	PENDIX A. LABORATORY ANALYTICAL REPORTS	47
	Appendix A.2 Bioretention Soil Media Reports	
APP	PENDIX B. STORM REPORTS	51
App	PENDIX C. DATA QUALITY ASSESSMENT	52
Α	Appendix C.1 Quality Objectives	54

Appendix C.2 Quality Assurance Worksheets	62
Appendix C.3 Field Forms	63
Appendix C.4 Field Audit	66
Appendix C.5 Deviations from QAPP	67
Appendix C.6 Identification of Quality Assurance Issues & Recommended Solutions	70
Appendix D. Statistical and Data Analysis	74
Appendix D.1 Statistical Comparison of Influent and Effluent	75
Appendix D.2 Pollutant Effluent Concentrations and Removal Efficiencies	76
Appendix D.3 Ecology Bootstrapping Method	77
APPENDIX E. TAG COMMENT RESPONSES	78

2.0 Executive Summary

The focus of this study is to evaluate the effectiveness of bioretention cells containing an 18-inch bioretention soil media (BSM) layer in comparison to a 12-inch BSM layer. Bioretention cells are shallow landscaped depressions which are designed to capture and treat stormwater runoff from small contributing areas. The cells utilize an engineered BSM containing compost (40%) and sand (60%) to remove total suspended solids (TSS), dissolved metals, and oils from stormwater as runoff infiltrates through the media. Research studying BSM has suggested that removal of these pollutants primarily occurs in the top 6 inches of the media layer. Further research has shown that BSM containing compost leaches nutrients and that higher content of compost in the bioretention cell is associated with higher concentrations of nutrients being leached from the media. This study will compare the treatment performance of 18-inch media depth required by the Department of Ecology Eastern Washington (EWA) Stormwater Management Manual (SWMMEW) to a 12-inch media depth. The goal for this study is to justify a modified bioretention BMP which uses the existing BSM to a depth of 12-inches (rather than the current required 18-inch depth) for providing treatment of TSS and dissolved copper and zinc.

The goal for this study was achieved by conducting field testing of two bioretention cells each containing BSM depths of 18-inches and 12-inches. The field testing was conducted at a site located on Gonzaga University's campus in Spokane, Washington. The test site was constructed in 2014, automated monitoring equipment was installed in the fall of 2017, and field testing was conducted from Fall 2018 to Spring 2021. Automated monitoring equipment installed at the test site was used to collect composite influent and effluent water quality samples, flow rate, temperature, and precipitation data. The water quality parameters tested included the required and screening parameters defined in the 2011 Technology Assessment Protocol Ecology (TAPE) for basic, dissolved metals, and oil treatment. The physiochemical properties of the BSM were also analyzed. The media infiltration rate and saturated hydraulic conducting were measured using the effluent flow rate data and a modified falling head test.

Samples were collected from a total of 29 storm events. For each of these events, a storm report was created, and the data was evaluated to determine whether the storm met the TAPE qualifying storm criteria and sample collection criteria. These criteria define the minimum storm depth and duration, storm antecedent and post storm dry period, minimum number of aliquots, sample event coverage, and minimum number of samples. The evaluation results determined that 9 storm events met the TAPE criteria for qualifying conditions, 8 storm events met all except for one to two of the TAPE criteria for qualifying conditions (potentially qualifying), and 12 storms did not meet three or more of the TAPE criteria (non-qualifying).

The collected data was analyzed for qualifying and potentially qualifying events to determine the effectiveness of the 12-inch BSM depth compared to the 18-inch BSM depth. The specific objectives completed to meet the study goals are summarized below along with a summary of the results.

Objective 1: Determine the pollutant removal efficiency of the BSM mix at a depth of 18-inches compared to 12-inches.

No statistically significant difference was noted between the treatment performance of the 18-inch BSM depth compared to the 12-inch depth for TSS, dissolved copper, or dissolved zinc. A statistically significant difference was measured for leaching of TP; the 18-inch BSM depth leached more TP (-381%) on average than the 12-inch depth (-198%). TSS was removed at a rate of 74.5% for the 12-inch cell and 71.1% for the 18-inch cell. Dissolved zinc was removed at a rate of 39.5% for the 12-inch cell and 34.9% for the 18-inch cell. Like TP, dissolved copper was observed to be leaching from the 12-inch (-50.3%) and 18-inch (-93.4%) cells. The physiochemical properties of the BSM were measured when the cells were constructed and approximately five years after installation. A comparison of the data indicates that copper was not being retained in the BSM, while zinc was retained. The measurements of copper and zinc retained in the BSM support the findings that dissolved copper is leaching from the BSM while dissolved zinc is removed by the BSM.

Objective 2: Determine whether the treatment performance goals were achieved for basic (TSS) and dissolved metals (copper and zinc) by comparing study results to TAPE treatment goals.

Whether TAPE treatment performance goals were met by the 12-inch cell and 18-inch cell was assessed using the bootstrap statistical method. The 12-inch cell and 18-inch cell met TAPE treatment performance goals for TSS but did not meet treatment performance goals for dissolved copper and zinc. The treatment performance goal for oils was not assessed due to the number of non-detect results received during the study.

Objective 3: Determine change in infiltration rate and saturated hydraulic conductivity of each cell over the duration of the study.

Changes in the infiltration rate and saturated hydraulic conductivity of each cell was measured by examining effluent flow rates and performing modified falling head tests, respectively. Saturated hydraulic conductivity decreased for both cells (60% for the 12-inch cell and 78% for the 18-inch cell) from 2014 to 2019. Results from the infiltration testing indicate that the rate appeared to slightly increase from 2018 to 2020. These results may be due to the freeze thaw cycle which has been reported to increase infiltration rates over time. However, infiltration rate data was only collected following the installation of the monitoring equipment in 2017, missing the initial years after the BSM was installed and when infiltration rates are reportedly highest. It is possible that if a similar number of storm events were collected prior to the installation of the equipment as were collected after installation, the trend in infiltration rate would show a decline over the lifespan of the bioretention cells.

Objective 4: Summarize the study results into a final report and submit the report to Ecology for approval of the modified BMP.

This final report will be submitted to Ecology for the approval of the modified BSM depth BMP.

The results of this study will be used to justify the modification of BSM depth from 18-inches, as required in the EWA Stormwater Management Manual, to 12-inches. This effectiveness study will also fulfill the Phase II Municipal Stormwater Permit S8. Monitoring and Assessment

requirements for EWA. The requirements fulfilled include stormwater management program effectiveness studies and reporting. Results will also be used to provide guidance for future studies and research in order to continue improving bioretention BMP performance to effectively meet treatment goals.

Recommendations for future research are also included and focus on:

- Collecting outfall data from other eastern Washington sites to establish lower influent limits that represent the Spokane area. Additionally, determining how land use impacts influent concentrations for pollutants to allow for region-specific lower and upper influent concentration limits.
- The impact of cold weather conditions and maintenance practices like sand and deicer on treatment performance and infiltration.
- Developing BSMs that reduce the leaching of nutrients by BSM to prevent an increase in pollutant concentrations.
- Comparing the performance of vegetated and non-vegetated bioretention to determine if vegetation can be removed to reduce maintenance and watering practices.
- Re-evaluating qualifying storm event guidelines conditions and consider if the time between events could be extended to accommodate these EWA rainfall patterns which would increase the number of rainfall events that are considered qualifying based on TAPE.
- Conducting research to assess if there are other standard testing methods that could be used to analyze PSD in stormwater samples so more labs are able to run the analysis.

3.0 Introduction

3.1 Introduction to the Structural BMP

The focus of this study was to evaluate the effectiveness of a bioretention cell that contains a 12-inch depth of the bioretention soil media (BSM) compared to a cell that contains 18-inches of BSM. Bioretention cells are a common structural stormwater best management practice (BMP) in Spokane County (Figure 3.1). These BMPs are characterized as shallow landscaped depressions which are designed to capture stormwater runoff from small basin areas and provide treatment as stormwater infiltrates through engineered soils referred to as BSM (Figure 3.2). Treated stormwater then infiltrates into the existing soils beneath the bioretention cell or is collected in an underdrain and conveyed to a storm drain network.

Figure 3-1 Example of a bioretention area in the City of Spokane

The BSM specified in the Eastern Washington (EWA) LID Manual is composed of 60% sand and 40% compost by volume. This BSM is approved by Ecology to provide runoff treatment for TSS and dissolved metals (copper and zinc), and oils, to the level specified in the EWA Phase II NPDES MS4 Permit (Ecology, 2014). The primary treatment mechanisms responsible for reducing pollutants include sedimentation, as particles settle on the surface of the BMP; filtration, as runoff infiltrates into the BSM mix and particulates become physically trapped in the media pore spaces; and sorption, of dissolved metals onto the surface of organic materials amended into the BSM mix.

The site was constructed in 2014 for the purpose of conducting BSM stormwater effectiveness studies. At the test site, flow from the parking lot is collected in a catch basin inlet located on the curb and south of the bioretention cells. Runoff is conveyed to a second catch basin and is then distributed equally between the two bioretention cells. Runoff infiltrates through the bioretention media, is captured by an impermeable liner, and collects in an undrain pipe where it is conveyed to a manhole located between the two cells. Runoff collected in the manhole is pumped to a nearby drywell via two sump pumps in the base of the manhole. Section 4.2 of this report provides a more detailed description of the monitoring equipment at the site and the sample collection process.

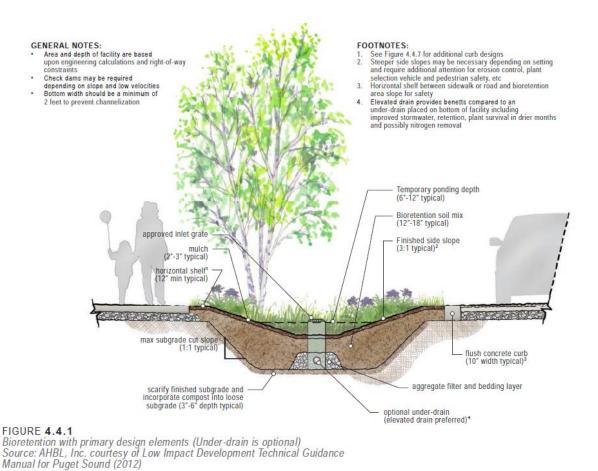


Figure 3-2 Typical bioretention cell design (AHBL & HDR, 2013)

3.2 Problem Description

The Department of Ecology 2019 Stormwater Management Manual for EWA design requirements for bioretention cells specify an 18-inch media depth for the removal of pollutants, specifically TSS, dissolved metals, and oils (Ecology, 2019). Bioretention research has found that the removal of TSS and dissolved metals typically occurs in the first 6 inches of the bioretention soil media mix (Hatt, 2008; Hunt & Lord, 2006; Davis, Shokouhian, Sharma, & Minami, 2001). These results suggest that a media depth of 12 inches would be sufficient when the target pollutants are TSS and dissolved metals. A thinner media depth would also help reduce costs of implementing bioretention cells for municipalities and developers.

Bioretention cells contain an engineered soil mix that utilizes compost to remove metals from stormwater. Research conducted on the 60:40 BSM in western Washington indicates that the media is leaching nutrients (Ecology, 2013). Research has also demonstrated a relationship between the quantity of organic matter (e.g., compost) and nutrient leaching. Specifically, the higher the compost content the higher the concentration of nutrients leaching from the media (Erickson, Gulliver, & Weiss, 2007); (Minnesota Pollution Control Agency, 2014). Therefore, reducing the depth of the BSM from the Ecology required 18-inch depth to the modified 12-inch depth is expected to reduce the quantity of nutrients leaching from the media.

3.3 Project Goals and Objectives

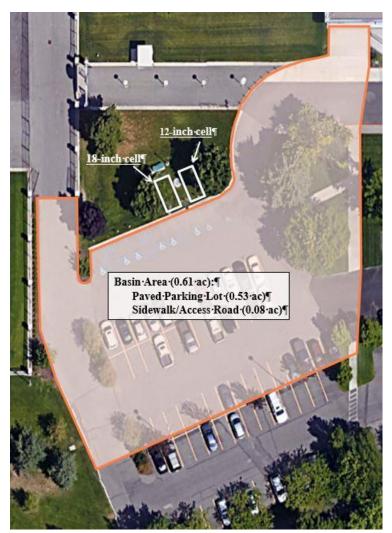
The goal of this study is to develop a modified bioretention BMP that uses the existing 60:40 bioretention mix at a depth of 12 inches (rather than the current required 18-inch depth) for providing treatment of TSS, dissolved copper and zinc, and oils. The data collected in this study will be used to justify approval for a new 12-inch minimum media depth where treatment of pollutants regulated under Ecology's treatment performance criteria (i.e., basic, dissolved metals, and oils) is required per the NPDES Municipal Stormwater Permit. The goals for this study were achieved by meeting the following objectives:

- 1. Determine the pollutant removal efficiency of the 60:40 BSM mix at a depth of 18-inches compared to 12-inches.
- 2. Determine whether the treatment performance goals were achieved for basic, dissolved metals, oils by comparing study results to the TAPE treatment goals.
- 3. Determine the change in the infiltration rate and saturated hydraulic conductivity of each cell over the duration of the study.
- 4. Summarize the study results into a final report and submit the report to Ecology for the approval of the modified BMP.

3.4 Project Overview

The focus of this report is the field testing. The test site was constructed in 2014 and automated monitoring equipment was installed at the site in the fall of 2017. Flow monitoring and sample collection for this study began in the fall of 2018 and continued through spring 2021. BSM samples were taken in 2014 during construction and during data collection for the study. The same installation of BSM media was in place for from the fall of 2014 through the duration of the study.

Flow-weighted composite samples were collected from rainfall events that were predicted to be qualifying per the TAPE guidelines (Ecology, 2011). Of the 29 storm events monitored, 9 events met the TAPE criteria for qualifying events and 8 were classified as potentially qualifying because they met all the qualifying conditions except for one or two criteria. Samples were tested for the required parameters and screening parameters as defined in TAPE for basic, dissolved metals, and oils treatment (Table 6.4). Media samples were collected in 2014 and 2019, to verify that the material properties of the BSM installed matched Ecology specifications and to assess the changes in the physiochemical properties over time. Data in Appendix A.2 verifies that the material properties matched the Ecology specifications at installation. Changes to the BSM properties are discussed in Section 6.1.3 as they related to the changes in pollutant removal efficiency. The infiltration performance of the bioretention cells was evaluated during the study using data collected from falling head tests and the effluent flow rate measured by autosamplers. The data was evaluated to determine whether pollutant reduction met Ecology's treatment performance criteria as defined in TAPE (Section 6.2).


3.5 Study Location

The project site is located on the Gonzaga University campus in Spokane, Washington, south of the Kermit M. Rudolf Fitness Center, east of Luger Soccer Field and north of the School of Law.

An aerial image of the test site is shown in Figure 3-3. The cells are located immediately adjacent to each other in a grassy area north of the parking lot next to Luger Field. Each cell contains the same type and configuration of BSM, except one cell contains a 12-inch thick BSM layer and the other contains an 18-inch BSM layer. The contributing area consists of 0.53 acres of a paved parking lot and 0.08 acres from sidewalks and the access road to the parking lot. The basin area is delineated in Figure 3-4.

Figure 3-3 Aerial view of test site location

Figure 3-4 Contributing Basin Area

4.0 Sampling Procedures

This section provides an overview of the data collected and sampling procedures followed during the study. Additional detail regarding sampling procedures can be found in Sections 7.0 and 8.0 of the study QAPP.

4.1 Types of Data Collected

Sampling began in the fall of 2018 and ended in spring 2021 because greater than 12 qualifying or potentially qualifying storm events (see Section 5.2.1) had been sampled, and data analysis indicated that sufficient data had been collected to establish trends at the site. Table 4.1 provides a summary of the types of data collected including the equipment used, collection frequency, and total number of samples. Table 4.2 provides a timeline of sample collection. Appendices A and B of this report contain data collected from each rainfall event during the study.

Table 4.1 Summary of the Types of Data Collected

Data Type	How Data Was Collected	Frequency	Total # of Samples
BSM physiochemical properties	Samples of BSM	Prior to installation of bioretention cell	2 ^b
Precipitation	Rain gauge connected to data logger at the test site	Measured continuously ^a	NA
Flow Depth, Temperature (influent, 12-inch effluent, 18-inch effluent)	Pressure transducer upstream of weir in pipes (influent, 12-inch effluent, 18-inch effluent). Converted depth to flow w/ weir equation	Measured continuously ^a	NA
Composite Water Quality Samples	Autosamplers collected composite samples & were triggered by the data logger during rainfall conditions	See Table 4.3	29°
pH Measurement	Measured composite sample pH	Min. 3 storm events; Each storm event monitored	7°
Sediment PSD	Collected from composite flow-weighted samples	Min. 3 storm events	4 ^c
Infiltration Rate	Modified falling head test; effluent flow rates	Immediately after media installation; continuously measured ¹	NA

^a Recorded every 15 minutes or 5 minutes if 0.04 in. or greater precipitation fell in the previous 6 hours.

^b Samples of BSM media were taken prior to installation of the BSM in 2014 and again in 2019. Results from media samples can be found in Appendix A.2.

^c Additional information is provided in Table 4.2.

TECHNICAL EVALUATION REPORT

BIORETENTION SOIL MEDIA THICKNESS STUDY

Table 4.2 Summary of Water Quality Samples Collected

Type	Parameter		Event Number																													
			1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
	Date of Event	Fall 2014	11/22/2018	12/16/2018	1/17/2019	Spring 2019	7/24/2019	9/28/2019	11/19/2019	12/7/2019	12/19/2019	1/28/2020	1/30/2020	2/23/2020	5/6/2020	5/20/2020	5/31/2020	9/25/2020	10/10/2020	10/11/2020	10/13/2020	11/5/2020	11/13/2020	11/16/2020	11/18/2020	12/19/2020	12/21/2020	12/22/2020	1/2/2021	1/4/2021	1/6/2021	1/12/2021
(Qualifying Event (Y/M/N) ¹	N	N	Y	N		M	M	N	N	Y	Y	N	M	Y	M	M	M	Y	N	N	Y	N	N	N	N	N	M	Y	M	M	Y
	Ortho-phosphate (OP)						X	X	X	X	X	X	X	X	X										X	X		X		X		X
	Total Phosphorus (TP)			X			X	X	X	X	X	X	X	X	X			X	X	X		X	X	X	X	X		X		X		X
	Particle Size Distribution (PSD)																															
ıter	Total Suspended Solids (TSS)		X	X	X		X	X	X	X	X	X	X	X	X		X	X	X	X		X	X	X	X	X	X	X	X	X	X	X
Stormwater	pН														X																	
ty Stor	Dissolved Copper (Cu)		X	X	X		X	X	X	X	X	X	X	X	X		X	X	X	X		X	X	X	X	X	X	X		X		
Water Quality	Dissolved Zinc (Zn)		X	X	X		X	X	X	X	X	X	X	X	X		X	X	X	X		X	X	X	X	X	X	X		X		
	Total Copper (Cu)		X	X	X		X	X	X	X	X	X	X	X	X		X	X	X	X		X	X	X	X	X	X	X		X	X	X
	Total Zinc (Zn)		X	X	X		X	X	X	X	X	X	X	X	X		X	X	X	X		X	X	X	X	X	X	X		X	X	X
	Hardness as CaCO3		X	X			X	X	X	X	X	X	X	X	X		X	X	X	X		X	X		X	X	X	X		X		X
	NWTPH-Dx (TPH)			X			X	X	X	X	X	X	X	X	X		X		X	X		X	X	X	X	X	X	X		X	X	X
	Sediment PSD														X	X					X								X			
	Cation Exchange Capacity (CEC)	X				X																										
	Organic Matter	X				X																										
BSM	Calcium	X				X																										
	Magnesium	X				X																										
	Zinc & Copper	X				X																										

4.2 Sample Collection Process

Data for the study was collected following the standard operating procedures (SOPs) defined in the study's QAPP. The procedures are summarized in this section along with information about the audit and monitoring equipment. More detailed information regarding each SOP can be found in Section 8.0 of the study QAPP.

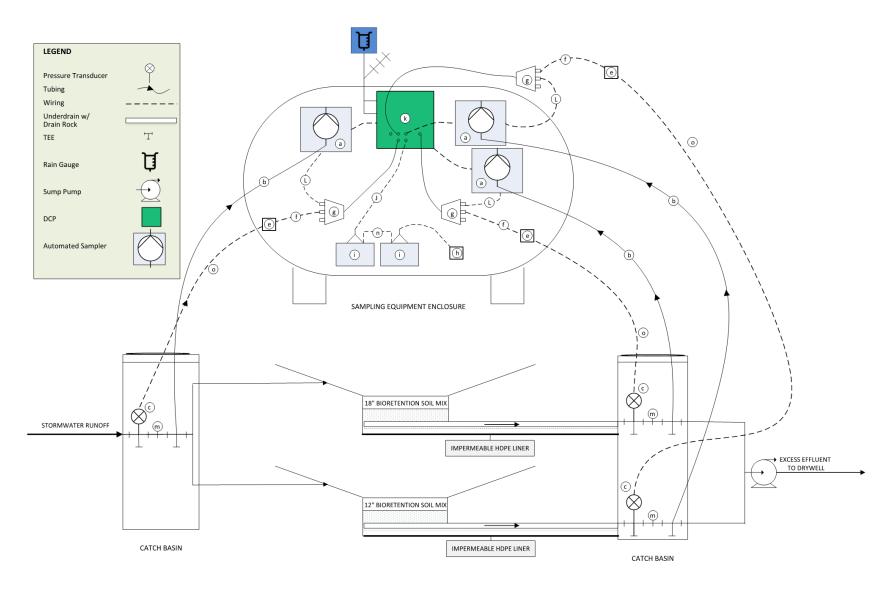
4.2.1 SOP Overview

- <u>Storm Selection and Tracking</u> Procedures outline how to decide whether to monitor and collect samples during a storm event. This SOP was conducted daily.
- <u>Storm Monitoring Equipment Maintenance</u> Procedures describe how to perform maintenance on the monitoring equipment and test site. This SOP was conducted monthly.
- <u>Preparing Stormwater Monitoring Equipment for Storm Sampling</u> Procedures detail how to prepare monitoring equipment and the test site for a storm to collect data that meet Quality Assurance and Quality Control (QA/QC) requirements. This SOP was conducted before each storm selected for monitoring.
- <u>Stormwater Sample Collection and Processing</u> Procedures detail how to collect and process samples for transportation to the analytical laboratory following a storm event. This SOP was conducted following each storm in which samples were collected.
- Monitoring Equipment Data Download Procedures detail how to download data following a storm event. This SOP was typically done at the same time as collection of samples following the event (covered under Stormwater Sample Collection and Processing SOP).
- <u>Falling Head Test</u> Procedures describe how to perform a falling head test at the test site to estimate infiltration rates through the BSM. This SOP was performed in 2014 and 2019. Infiltration rates were also estimated using pressure transducer readings recorded by the data logger (see Section 6.3).

4.2.2 Audit Overview

An audit was conducted by a participating entity as part of the data quality assessment to verify whether staff followed the SOPs during the study. Any deviations in the SOPs from those in the study QAPP are summarized in the audit findings (Appendix C.4) and detailed in the summary of deviations from the QAPP (Appendix C.5). Deviations primarily included SOPs that were not used because an alternative method was more appropriate.

4.2.3 Monitoring Equipment Overview


Figure 4-1 shows the process diagram of the test site on the Gonzaga Campus. Figure 4-2 includes photos of the test site monitoring equipment. The monitoring equipment at the site is located in the monitoring equipment vault, manhole between the two bioretention cells, and in two sumps between the inlet and the manhole. A rain gauge for the site was also located at the test site and adjacent to the monitoring equipment vault.

Runoff entered the site through a sumped catch basin inlet. A large wire grate was placed over the opening of the pipe leaving the inlet pipe to prevent the passing of large debris and wildlife from damaging the monitoring equipment. Stormwater flowed through the pipe to a second catch basin, where the influent pressure transducer was located. Flow left the second catch basin through a pipe and flowed over a v-notch control weir inside the pipe. Influent flow and temperature were measured by the pressure transducer and v-notch control weir. The appropriate weir equation was used to convert the depth recorded by the pressure transducer into flow. After flowing over the weir, stormwater entered a sump located between the two bioretention cells where influent water quality samples were collected by an automated sampler. From the sump, flow was distributed to each bioretention cell for treatment.

After infiltrating through the BSM, runoff was captured by an impermeable liner and collected in an underdrain. The underdrain for each cell conveyed flow to the effluent sampling manhole. Flow entered the effluent sampling manhole via pipe, in which monitoring and sampling equipment were located. Effluent flow and temperature for each cell were monitored through the same pressure transducer and control weir configuration described for the influent. Effluent water quality samples were also collected by automated samplers immediately downstream of the control weir. The effluent pipes discharged flow into the base of the manhole, which was pumped to a nearby drywell using two sump pumps in series. The data collected by the monitoring system was saved in the data logger located in the monitoring equipment vault. A process diagram of the monitoring equipment and connections is shown in Figure 7.3 and Table 7.1 of the QAPP.

Figure 4-2 Influent sampling sump (left), manhole effluent sampling (middle), and weir (right)

Figure 4-1 Process Diagram of Monitoring System

Table 4.3 Summary of Monitoring Equipment and Instrumentation

Symbol	Equipment Description	Equipment Function	Quantity
a	ISCO 6712 autosampler	Collects and stores influent and effluent samples	3
b	3/8 inch ID x 25 ft. long vinyl suction line with standard weighted polypropylene strainer. Includes tubing coupler.	Suction tubing conveys sample to the samplers	3
С	OTT PLS PRESSURE TRANSDUCER - aa PLS, PRESSURE LEVEL SDI12, 0-4M OTT PLS level sensor with 0-4 meter (13.1 ft) range and SDI-12 communication	Measures the depth of water in the pipe which is used along with the thelmar weir to calculate the influent and effluent flow rates	3
d	ISCO 674 Rain Gauge, Tipping bucket, 50 ft Armored Cable	Records rainfall data	1
	Junction Box - Humidity Absorber Connection Box FAD 5 Humidity absorber connection enclosure use w/ OTT PLS level sensor	Houses the dessicant cartridges	2
e	DESSICANT CARTRIDGE, REPLACEMENT OTT Replacement desiccant cartridge for use with OTT FAD 4/5humidity enclosures	Absorbs moisture that could damage the equipment	3
f	Cable, Terminal Strip to SDI Port, 1.5 ft	Extension cable which provides signal to Data Logger. Between junction box and data logger.	2
g	Cable, SDI Connectors to SDI Port, 2 ft	Connects PT to the humidity box and Samplers	2
h	Trickle Battery Charger (AC to DC Charger)	Continually charges batteries	1
i	Battery, GNB Sunlyte, 100AH, Starved Electrolyte	Battery powers samplers and data logger	2
j	Battery Cable, Dual 10A Fuse, F6 & H2, 8.5ft	Connects data logger and samplers to battery	1
k	Axiom data logger package (H2)	Records data over time via connected external instruments and sensors	1
1	SDI Interface,4.5ft Cable Logger to Isco 6712 Samp	Connects PT to humidity box and samplers	2
m	Volumetric Weir 6"	Used to measure influent and effluent flow rates	3
n	Cable, Two Batteries in Parallel	Connects two batteries together in parallel.	1
O	PLS PROBE CABLE, METERS - Integrated vented cable for use with OTT PLS level sensor; Each PLS to have 15 meter cable.	Patch cable that provides the signal from the presssure transducer to the datalogger. This cable terminates at the junction box (humidity absorber).	2

5.0 Data Quality Assessment

A data quality assessment was performed to determine whether data collected during the study met Data Quality Indicators (DQIs) and Measurement Performance Criteria (MPCs) that were defined in the study QAPP (Osborn Consulting, Inc., 2020). DQIs are qualitative and quantitative measures that characterize the aspects of quality data. MPCs are the acceptance criteria for DQIs which specify the standard for data to meet the data quality objectives for the project. The assessment of whether MPCs were met for each DQI is summarized in Appendix C.1. As part of the data quality assessment, a data verification and data usability assessment were performed. The data verification is summarized in Section 5.1 and supporting materials are included in Appendix C.2. The data usability assessment is summarized in Section 5.2 and supporting materials are included in Appendix C.1-C.6.

5.1 Data Verification

Data verification involves a review of data provided by the analytical laboratory. The review of data is performed for events where samples were collected and is summarized in the Quality Assurance (QA) Worksheets in Appendix C.2. The worksheets were completed for each storm event which was sampled and contain calculations for QA/QC tests (reference QAPP Section 6.0 for detailed description) to determine whether laboratory and field water quality data are acceptable. The information summarized in the QA worksheets includes:

- Parameter
- Method
- Chain of Custody Issues
- Holding Times
- Temperature of Samples Received at Lab
- Laboratory Method Blank Results
- Laboratory Control Sample Recovery Percent
- Laboratory Matrix Spike Recovery Percent
- Laboratory Duplicates Relative Percent Difference
- Field Duplicates Relative Percent Difference
- Laboratory QA/QC Flags and Associated Action (if needed)

The data verification evaluation process resulted in a total of seven samples being rejected, as shown in Table 5.1. The process included evaluating information in the QA worksheets. Specifically, water quality data was rejected if samples arrived beyond holding times, if multiple laboratory QA/QC tests did not meet laboratory limits, or if field duplicates exceeded the relative percent difference limit. Water quality data was potentially accepted if one laboratory QA/QC test did not meet laboratory limits but the sample met other QA/QC tests. Whether QA/QC tests were met for each sample event and parameter are included in Appendix C.2 Quality Assurance Worksheets. Water quality data were also accepted if temperatures were above 6 degrees Celsius

when they were received by the laboratory from the field crew, as there did not appear to be a relationship between analytical results and temperature (see Appendix C.6 for discussion).

Table 5.1. Data Rejected Following Data Verification

Date of Sample	Parameter Location of Sample		Reason for Rejection				
11/13/2020	TSS	12-inch Effluent	Field duplicate exceeded relative percent difference limit of 25%				
11/13/2020	Total Zinc	18-inch Effluent	Field duplicate exceeded relative percent difference limit of 20%				
11/13/2020	Total Phosphorus	Influent and 12- inch Effluent	Field duplicate exceeded relative percent difference limit of 20%				
11/18/2020	TSS	18-inch Effluent	Field duplicate exceeded relative percent difference limit of 25%				
11/18/2020	Total Phosphorus	Influent	Field duplicate exceeded relative percent difference limit of 20%				
12/21/2020	Dissolved Copper	Influent	Field duplicate exceeded relative percent difference limit of 20%				
12/21/2020	Dissolved Zinc	Influent and 12-inch Effluent	Field duplicate exceeded relative percent difference limit of 20%				

Additionally, there were a total of seven storm events during late 2018 and 2019 for which QA/QC data was not originally reported by the laboratory. The seven storm events are listed in Table 5.2. Laboratory QA/QC data for 15 dates in 2019 was obtained at the end of the project. The dates of the QA/QC data were compared against the dates for the seven storm events to determine if the miscellaneous laboratory QA/QC data could be used for the QA worksheets for the seven storm events. Laboratory QA/QC data with a matching or similar (less than 14 days apart) date was found for one of the seven storm events. The remaining miscellaneous QA/QC data did not exceed lab control limits. This data will be included in Appendix C.2 with the QA worksheets.

Table 5.2 Data Rejected Following Data Verification

Date of Sample	QA Laboratory Data Recovered? (Y/N)	Date(s) of Recovered QA Data
11/22/2018	N	1
12/16/2018	N	-
1/17/2019	N	-
7/24/2019	Y	7/25/2019, 7/29/2019, 7/30/2019, 8/2/2019, 8/5/2019
9/28/2019	Y	9/20/2019, 9/24/2019, 9/26/2019
11/19/2019	N	-
12/7/2019	N	-

5.2 Data Usability Assessment

The data usability assessment consists of a review of QA/QC materials for the study to determine whether each MPC for the study is met. The materials are reviewed in terms of precision, bias, representativeness, completeness, and comparability. The usability assessment also includes a discussion of limitations on use of measurement data, whether the quality assurance objectives were met, and the resulting impact on decision-making. The materials reviewed include:

- Results of field and lab data verification (Section 5.1 and Appendix C.2)
- Copies of field forms used to document SOPs being followed (Appendix C.3)
- Results of technical system audits (Appendix C.4)
- Changes and deviations from QAPP (Appendix C.5)
- Identification of significant quality assurance problems and recommended solutions (Appendix C.6)

As discussed in Section 5.1, following review of the field and lab data verification nine samples were rejected due to QA issues summarized in Table 5.1. The review of field forms and technical system audits suggested the SOPs were followed for the duration of the study; where modifications were made, they were noted in the audit form (Appendix C.4) and summary of deviations from the QAPP (Appendix C.5). Reasons for modifications included: adding procedures that provided a data quality benefit (i.e. tightening of weir wheels to limit any leaking of flow around the weir seal); revision of steps following installation of equipment or guidance provided by manufacturers, analytical laboratories, or others (i.e. addition of sample blank for dissolved metals); and removal of items that were not necessary to ensure data quality (i.e. disconnect power supply to battery in order to test voltage of battery). In Appendix C.6, quality assurance problems identified during the study along with corrective action taken and justification for not rejecting sample results are provided.

Following review of the data, an assessment was performed to determine whether each quality objective for the study was met. The materials discussed in the previous paragraph were used to support whether the MPCs were fulfilled for each DQI associated with precision, bias, representativeness, completeness, comparability, and sensitivity. The assessment showed that quality objectives were met for the study; a detailed assessment for each DQI is included in Appendix C.1.

From the review of the data and data quality objectives, the main limitation of the data is related to the intended use of the BSM. The study data are expected to be sufficient for the purposes of this effectiveness study. However, data analysis showed that the BSM studied does not appear to be meeting dissolved metals treatment for the 18-inch or 12-inch media depth, which may suggest the BSM is not suitable for general use. That said, some of the influent metals concentrations at the test site did not fall in the influent concentration range for which treatment goals are specified by TAPE. Research has reported that with lower influent concentrations, have lower reductions in pollutant concentrations (Navickis-Brasch, et al., 2021). The low influent concentrations therefore may be skewing the pollutant removal to lower percentages. These results are discussed further in Section 6.2.

5.2.1 TAPE Qualifying Event and Pollutant Concentration Criteria

The TAPE Technical Guidance Manual (Ecology, 2011) specifies storm event guidelines and sample collection requirements for automated, flow-proportional composite sampling. The storm event guidelines help determine whether a storm event is acceptable for sampling and the sample collection requirements help ensure composite samples are representative of the storm event mean concentration. Table 5.2 and Table 5.3 display the storm event guidelines and sample collection requirements.

Table 5.2 Ecology Storm Event Guidelines

Parameter	Definition	Guideline		
Minimum Storm Depth	Total rainfall amount during an event	0.15 inches ¹		
Storm Antecedent Dry Period	Defines the beginning of the storm event as designated by minimum time interval without significant rainfall	6 hours minimum with less than 0.04 inches of rain		
Post-Storm Dry Period	Defines the end of the storm event as designated by minimum time interval without significant rainfall	6 hours minimum with less than 0.04 inches of rain		
Minimum Storm Duration	Shortest acceptable rainfall duration	1 hour		
Average Storm Intensity	Total rainfall amount divided by total rainfall duration	Range of rainfall intensities		

¹ Rainfall events of 0.08 inches or greater were collected during the study to expand the storm conditions monitored and increase the likelihood of obtaining samples.

5.3 Ecology Sample Collection Requirements

5.5 Ecology Sample Con		
Parameter	Definition	Requirement
Minimum Aliquot Number	Number of equal-volume samples collected during a storm event that are combined to create a composite sample	10 aliquots ¹
Storm Event Coverage	The percentage of the total storm volume that the collected aliquots represent	Samples shall be collected for at least 75% of the storm event hydrograph (by volume).
Maximum sampling duration	Time in hours between the collection of the first and last aliquots	36 hours
Minimum number of sample pairs	Number of storm events with successfully collected flow-proportional composite samples that meet influent concentration ranges and the storm event guidelines	12 samples

¹ As few as 7 aliquots may be accepted by Ecology (Ecology, 2018).

The water quality data included in this report was obtained from 29 storm events (Table 4.2) of which nine events met all of the TAPE storm event guidelines and sample collection

requirements (qualifying criteria). The events which met all the qualifying criteria were referred to herein as "qualifying events". Another eight events met all the qualifying criteria except for one to two of the criteria. These storms were referred to as "potentially or maybe qualifying" events. Two common criteria that were not met were minimum precipitation depth and minimum storm event coverage. During the study, the target minimum precipitation depth guideline was lowered to 0.08-0.10 inches to expand the storm conditions monitored and increase the likelihood of obtaining samples. This approach was approved through verbal discussions with the Ecology TAPE contact.

Influent storm event coverage was occasionally not met when high intensity rainfall caused ponding in the influent pipe. For this condition, the monitoring system cannot distinguish between flow and ponding, and an artificially high influent volume was recorded by the data logger. It is anticipated that 75% event coverage of the influent volume was achieved for those events. Six of the eight potentially qualifying events reflected these conditions. One of those six events, plus an another potentially qualifying event which met 75% coverage of influent, did not meet effluent storm event coverage targets. This is likely due to the actual rainfall exceeding the forecasted rainfall, as a high number of aliquots were collected during those events. These events were classified as potentially qualifying because the peak of the effluent hydrograph was reflected in the storm event coverage obtained. It was therefore expected that the storm coverage below 75% would not significantly affect water quality data and would produce slightly conservative water quality data results.

Of the 29 storm events monitored, 12 were determined to be "non-qualifying" events. These events did not meet three or more of the qualifying criteria in TAPE. The most common criteria not met were number of aliquots, minimum precipitation depth, storm event coverage, and storm event duration. A summary of all the events monitored and the qualifying criteria met for those storm events can be found in Appendix B as well as Appendix D.2.

The TAPE Guidance Manual defines the influent concentration ranges for each pollutant as shown in Table 5.4. The upper influent limit defines the maximum value that can be used to calculate the removal efficiency. If values measured are larger than the upper limit, the upper limit must be used in the analysis. TAPE specifies that all data above the limit are either rejected or included, however, values cannot be "cherry picked". The lower influent limit defines the minimum value of influent samples which may be included in the data set. Dissolved copper, dissolved zinc, and total phosphorus concentrations below the lower influent limit may be included, provided reasoning is given for a new, lower threshold for the study (Ecology, 2011). Moreover, the threshold must be applied across the entire dataset (no "cherry-picking"). TAPE typically requires that influent TSS and TPH concentrations below the lower limit are not included in the dataset.

	0	
Pollutant	Upper Influent Limit	Lower Influent Limit
TSS	200 mg/L	20 mg/L
Dissolved Copper	0.02 mg/L	0.005 mg/L
Dissolved Zinc	0.3 mg/L	0.02 mg/L
TP	0.5 mg/L	0.02 mg/L
TPH	None	10 mg/L

Table 5.4 Pollutant Influent Range Limits

For this study, all TSS, dissolved metals, and phosphorus values below the lower influent limit were included in the analysis. The site was selected to be representative of a typical location where bioretention would be installed. As such, concentrations below the lower range were all included in the data analysis to show realistic pollutant removal rates for the BMP. TPH values below the lower limit were not included in the analysis as the majority of TPH values were non-detects. The parameters that were below the lower range are noted below along with the frequency of which this occurred:

- TSS concentrations were below the lower influent limit 6 of 16 times (38%).
- Dissolved zinc influent concentrations were below the lower influent limit 6 of 14 times (43%).
- Dissolved copper influent concentrations were below the lower influent limit 11 of 14 times (79%).
- TPH influent concentrations were below the lower influent limit 14 of 14 times (100%).
- TP influent concentrations were below the lower influent limit 3 of 13 times (0%)

Because of the frequency at which the influent concentrations of dissolved metals were below the lower limit, influent concentrations of dissolved metals at other sites within in the City of Spokane or urban areas of Spokane County were reviewed and compare to the Gonzaga University study site to assess if the influent values were similar to other sites and as such could be considered typical. The other sites included:

- The sand filter located in Spokane County near the intersection of Hawthorne Road and U.S. 2 as a part of the Sand Filter Sidewalk Vault BMP EWA Stormwater Effectiveness Study (Sand Filter) which included runoff from 0.41 acres of arterial roadway, sidewalk, and some lawn surrounded by residential and commercial land use.
- The pervious pavement (concrete and HMA) within Sharp Avenue from Pearl Street to Hamilton Street as a part of the Sharp Avenue Stormwater Improvements (Sharp) which includes runoff from roadway surrounded by residential and commercial land use.
- The monitoring station for the Cochran/Downriver Stormwater Management Facilities (Cochran) which includes runoff from 5300 acres of mostly residential and some commercial land use.

The Gonzaga University, Sand Filter, and Sharp sites receive runoff predominantly from pollutant generating impervious surface. The Sand Filter and Sharp sites receive runoff from roads with ADT over 8,000, while the Gonzaga University site is made up of a parking lot with greater than 100 daily trip end counts. The Cochran site, which samples stormwater from one of the largest basins in the City of Spokane, is primarily residential with some commercial areas, with approximately. All four of the sites would be considered "moderate use" sites as defined by the SWMMEW, due to the ADT (>7,500) and expected trip end count (>100 trip ends) within the basin. Moderate use sites for new or redevelopment require dissolved metals treatment (Ecology, 2019), and bioretention cells are approved for general use to provide this level of treatment. As described in the following paragraph, the four sites receive influent dissolved metals concentrations that are not consistently within the TAPE influent concentration range for dissolved metals. This suggests that the lower concentrations received at the four sites are representative of what is expected to enter an installation of bioretention in EWA.

At the Cochran and Sharp sites, 40% - 44% of samples had dissolved zinc influent concentrations below the lower limit, which is consistent with the Gonzaga University site (43%). The Sand Filter site had only 12% of samples with dissolved zinc influent concentrations less than the lower limit – a lower percentage than the other three sites. Copper influent concentrations at the Cochran, Sharp, and Sand Filter sites were less than the lower influent limit for 11% - 90% of samples, with the highest percentage at the Sharp site. The Gonzaga University site, with 79% of copper influent samples below the lower limit, falls in between this range, with a percentage of samples most similar to the Sharp site. By comparing influent concentrations for dissolved metals at each of the mentioned sites, the percent of samples with concentrations below the lower influent limits at the Gonzaga University site does not appear to be abnormal. While concentrations at the Gonzaga University site do appear to be lower on average of the four sites, this is expected to be due to changes in trip end counts during the year. Specifically, the Gonzaga University site has higher trip end counts (>100) during the fall and spring semesters and may have fewer than 100 trip end counts from June through August and mid-December through mid-January. The other three sites are expected to have more consistent trip end counts and ADT during the calendar year. Figure 5.1 and 5.2 show a comparison of the influent concentrations for dissolved zinc and copper.

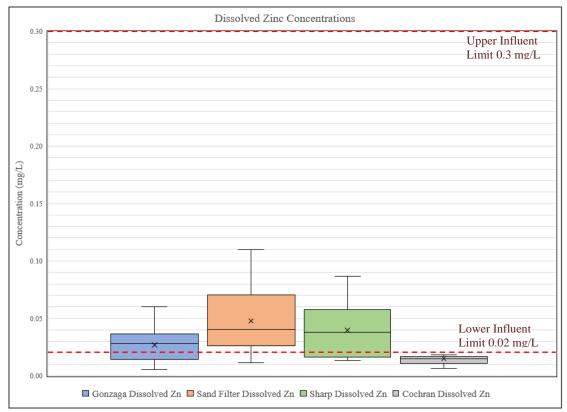


Figure 5-1 Comparison of dissolved zinc influent concentrations

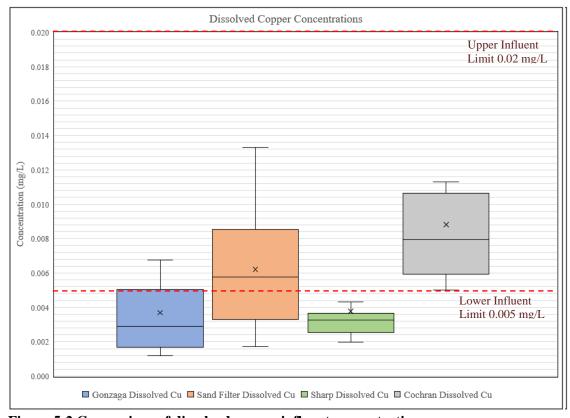


Figure 5-2 Comparison of dissolved copper influent concentrations

6.0 Results and Discussion

The goals of this study were achieved by completing the objectives outlined in Section 3.3. Each objective is noted in the subsequent section along with a summary of how the objective was achieved, the results, and discussion about the results. Table 9.1 in the QAPP for the study defines the Standard Testing Methods for parameters tested and a detailed summary of the analysis can be found in Section 14.0 of the QAPP for the study.

6.1 Water Quality Data Analysis

Objective 1: Determine the pollutant removal efficiency of the BSM mix at a depth of 18-inches compared to 12-inches.

Succinct Objective Summary: No statistically significant difference was noted between the treatment performance of the 18-inch BSM depth compared to the 12-inch depth for TSS, dissolved copper, or dissolved zinc. A statistically significant difference was measured for leaching of TP; the 18-inch BSM depth leached more TP (-381%) on average than the 12-inch depth (-198%). TSS was removed at a rate of 74.5% for the 12-inch cell and 71.1% for the 18-inch cell. Dissolved zinc was removed at a rate of 39.5% for the 12-inch cell and 34.9% for the 18-inch cell. Like TP, dissolved copper was observed to be leaching from the 12-inch (-50.3%) and 18-inch (-93.4%) cells. The physiochemical properties of the BSM were measured when the cells were constructed and approximately five years after installation. A comparison of the data indicates that copper was not being retained in the BSM, while zinc was retained. The measurements of copper and zinc retained in the BSM support the findings that dissolved copper is leaching from the BSM while dissolved zinc is removed by the BSM.

The following section describes the analysis conducted which included developing the storm reports, comparing the influent and effluent pollutant concentrations, and calculating the pollutant removal efficiency. Raw data and calculations for this section can be found in Appendix A, Appendix B, and Appendix D.

6.1.1 Storm Reports

For each storm event where samples were collected, a storm report was created to determine whether the storm met qualifying storm criteria (described in Section 5.0, Tables 5.2 and 5.3), defined flow characteristics through the BSM for a variety of influent conditions, and estimate pollutant removal. Storm reports were developed using data downloaded from the data logger at the test site, which included precipitation, influent and effluent flow rate as well as temperature, and sample quantity for each time step (every 15 minutes or every 5 minutes if greater than or equal to 0.04 inches of precipitation had fallen in the previous 6 hours). An analysis of the data was performed for each storm which is summarized in Table 6.1. Copies of the storm reports for each storm event in which samples were collected can be found in Appendix B. Results for TSS, dissolved copper, dissolved zinc, TPH, and the screening parameters for the study are summarized in each storm report. The TSS, TPH, dissolved copper, and dissolved zinc water quality data included in the storm reports was used to perform the analyses described in this section of the report. Specifically, the analytical results for the parameters and associated pollutant removal efficiencies were used to conduct the statistical comparison of influent and

effluent concentrations (Section 6.1.1), calculate removal efficiencies (Section 6.1.2), and compare results to TAPE treatment performance goals (Section 6.1.3).

Table 6.1 Storm Report Data Summary

Data	Definition
2	2 0.1.11.001
Storm date	The date when the storm began; used to identify the individual storm event.
Total storm precipitation depth	The cumulative precipitation following the initial antecedent dry period (6 hours with 0.04 inches or more of precipitation).
Storm duration	The length of time between storm start (6 hours minimum with greater than or equal to 0.04 inches of precipitation) and end (6 hours with less than 0.04 inches of precipitation).
Storm average precipitation intensity	Equal to the total rainfall amount divided by the total rainfall duration.
Storm peak precipitation intensity	Obtained from the time interval with the maximum precipitation depth per time.
Total flow volume: influent, 12-inch effluent, & 18-inch effluent	The total volume of influent, 12-inch effluent, and 18-inch effluent from storm start to end.
Peak flow rates: influent, 12-inch effluent, & 18- inch effluent	The peak influent, 12-inch effluent, and 18-inch effluent flow rate for a time interval during the storm event.
Average flow rates: influent, 12-inch effluent, & 18-inch effluent	The average influent, 12-inch effluent, and 18-inch effluent flow rate during the storm event.
Total number of aliquots: influent, 12-inch effluent, & 18-incheffluent	The total number of aliquots (individual samples which create a composite sample) collected during the storm event.
Sample duration: influent, 12-inch effluent, & 18- inch effluent	Equal to the time in hours between the collection of the first and last aliquots for the influent and effluent autosamplers.
Storm volume sampled: influent, 12-inch effluent, & 18-inch effluent	Equal to the product of total number of aliquots and the threshold volume, divided by the total storm volume. The threshold is an estimated volume of stormwater that must pass through the influent or effluent before an aliquot is collected.
Water quality parameters monitored: influent, 12- inch effluent, & 18-inch effluent	Summarizes analytical results for parameters which were sampled during the storm event
Pollutant removal efficiency	Equal to the difference between the influent and effluent parameter concentrations, divided by the influent parameter concentration.
Analytical laboratory detection limits and flags	The limits at which parameters can be detected by the analytical method and any quality control or quality assurance flags that the laboratory includes in the analytical report.

6.1.2 Statistical Analysis

A statistical analysis was performed using water quality data obtained during the study to assess whether there was a statistically significant difference in the analytical results of 12-inch effluent and 18-inch effluent pollutant concentrations for TSS, dissolved copper, dissolved zinc and TP. Other screening parameters were not included in the statistical analysis as only assessments of TSS, dissolved copper, dissolved zinc, and TP effluent concentrations were needed to meet the study objectives. TPH was not included in the statistical analysis due to the number of non-detect results, as described in Section 5.2.

The statistical analysis consisted of first determining whether the data was normally distributed. The data was then compared to determine whether 12-inch effluent and 18-inch effluent pollutant concentrations for a certain parameter were significantly different. The following paragraphs include a more detailed description of the analysis as well as the results of the analysis. Output from the statistical analysis can be found in Appendix D.1.

Effluent concentrations for TSS, dissolved copper, dissolved zinc, and TP were evaluated using the Ryan-Joiner test to determine whether each dataset was normally distributed. Normality was assumed if the test produced a p-value greater than 0.05. From the Ryan-Joiner test it was found that dissolved copper 12-inch effluent and 18-inch effluent concentrations were normally distributed, as were TSS 12-inch concentrations, dissolved zinc 18-inch concentrations, and TP 12-inch concentrations. The remaining datasets were non-normally distributed. The normality of each dataset determined which statistical analysis method to use to determine whether 12-inch effluent concentrations were significantly different from 18-inch effluent concentrations.

The two-sample t-test was used for normal data while the Mann-Whitney test was used for non-normal data. These tests were used to determine whether influent and effluent datasets were statistically significantly different. Both tests use a 95% confidence interval to decide whether the null hypothesis is void, or that there is a statistically significant difference between the two datasets (12-inch effluent and 18-inch effluent concentrations). The specific null hypothesis (H_0) and alternative hypothesis (H_0) evaluated were:

- H_o: Effluent pollutant concentrations from the 12-inch cell are equal to the effluent concentrations from the 18-inch cell
- H_a: Effluent concentrations from the 12-inch cell are less or greater than effluent concentrations from the 18-inch cell

The two-sample t-test was used to test the difference between dissolved copper effluent concentrations. The Mann-Whitney test was used for the TSS, dissolved zinc, and TP effluent concentrations. Although the 18-inch effluent dissolved zinc and 12-inch effluent TP effluent concentration datasets were normally distributed, the 12-inch dissolved zinc and 18-inch TP effluent concentration datasets were not; since one data set is not normally distributed, the Mann-Whitney test was used for the analysis. Results from the statistical analysis indicate a statistically significant difference existed between effluent concentrations for TP, which indicates that the 18-inch cell leaches higher concentrations of nutrients than the 12-inch cell. However, the effluent concentrations are statistically insignificant for dissolved copper, dissolved zinc and TSS. The results of the statistical analysis are summarized in Table 6.2.

Pollutant	Normally Distributed?		Statistical Method	Statistically Significant Difference?	P Value (>0.05 No Difference)	
	12-inch	18-inch			,	
TSS	No	No	Mann-Whitney Test	No	0.663	
Dissolved Copper	Yes	Yes	Two Sample T-Test	No	0.985	
Dissolved Zinc	No	Yes	Mann-Whitney Test	No	0.645	
TP	Yes	No	Mann-Whitney Test	Yes	0.007	

Table 6.2 Summary of Influent and Effluent Concentrations Statistical Comparison

6.1.3 Pollutant Removal Efficiency

The bioretention cell pollutant removal efficiency was calculated for TSS, dissolved copper, dissolved zinc, and TP for each storm event in which the parameter was tested using Equation 1. The concentrations of parameters tested represent a flow-weighted average concentration from the composite samples collected during the storm event (see Table 4.1). If any non-detect results were reported from analytical testing of the effluent concentration, the reporting limit for the respective pollutant was used in the calculation. The pollutant removal efficiencies calculated are summarized in the storm report for each storm sampled (Appendix B) as well as in Appendix D.2 for comparison to TAPE treatment performance goals. Table 6.3 provides the average pollutant removal efficiencies for each storm event. Additional discussion of the results for TSS, dissolved copper, dissolved zinc and TP is included Section 6.2.

Average Removal Efficiency =
$$100 \times \frac{c_{in} - c_{eff}}{c_{in}}$$
 Equation 1

Where:

 C_{in} = flow-weighted average influent concentration (mg/L) C_{eff} = flow-weighted average effluent concentration (mg/L)

Using Equation 1, approximately equivalent removal of TSS and dissolved zinc was observed for the 12-inch and 18-inch bioretention cells, despite the difference in depth of BSM. An increase in dissolved copper and TP effluent concentrations were observed for the 12-inch and 18-inch bioretention cells. The increase in TP and dissolved copper in the effluents supports existing research that suggests the BSM is leaching nutrients and forms of dissolved copper with a low toxicity which do not affect salmon survival (Ecology, 2013; Ecology, 2016). Additionally, copper concentrations measured in the BSM approximately 5 years after installation in the cells (see Appendix A.2) indicate that the BSM is not retaining copper. The BSM is retaining zinc, which is consistent with the water quality results of the study. The percent removal efficiencies observed during this study suggest that an 18-inch depth of BSM leaches higher amounts of nutrients as well as dissolved copper compared to a 12-inch depth of BSM.

The removal efficiencies for screening parameters (TPH, Orthophosphate, Hardness, pH, and Particle Size Distribution (PSD)) were also analyzed using Equation 1. TAPE requires analytical testing of these parameters (minimum of three samples) to further assess the BMP treatment performance. These parameters were included to determine whether restrictions may be required for locating the BMP (e.g., if phosphorus is being exported, the BMP could not discharge to a nutrient sensitive water body) and to understand the stormwater chemistry (e.g., parameter behavior changes with pH and hardness can influence the toxicity of dissolved metals). PSD is included to determine whether the influent to the treatment system is representative of Pacific Northwest stormwater and to determine the particle size that is reduced in the effluent (Ecology, 2011). PSD samples were taken throughout the study; however, the lab initially selected to analyze PSD for the study was not able to perform the test needed and informed the research team in October 2019 after many samples had been submitted throughout the previous year. A new lab was located in early 2020 after contacting most of the water quality labs in the state. Four samples were collected between 2020 and 2021 and analyzed for PSD. Two of the four samples were qualifying or potentially qualifying sample events. Samples were collected from an additional qualifying event in January 2021 and were lost in the mail and are not included in the analysis. Table 6.4 includes a summary of average screening parameter removal efficiencies and average influent and effluent concentrations. The concentrations for each storm can be found in Appendices A and B.

Increases in concentration of orthophosphate were observed in the 12-inch effluent and 18-inch effluent, -659.8% and -1115.3% respectively. These results support the relationship shown in research that the media is leaching nutrients. There was a slight decrease in pH, where the influent pH was slightly greater than 7.0 and the effluents pH values were between 6.5 and 6.6 on average. The increase in the 12-inch effluent and 18-inch effluent hardness concentrations (-377.6% and 450.4%) suggests the media leaches calcium and/or magnesium. TPH pollutant removal was not calculated as all of the laboratory results except one were non-detect. For PSD, reductions were observed for all particle sizes (>250 μ m, 250-62.5 μ m). This suggests that the bioretention media is effective at trapping larger particle sizes (>62.5 μ m) as well as fine particles sizes (<62.5 μ m).

TECHNICAL EVALUATION REPORT BIORETENTION SOIL MEDIA THICKNESS STUDY

Table 6.3. Pollutant Removal Summary of 12-inch Effluent by Storm Event

Storm Event	TSS Reduction		Dissolved Copper Reduction		Dissolved Zinc Reduction		TP Reduction	
	12-Inch Cell	18-Inch Cell	12-Inch Cell	18-Inch Cell	12-Inch Cell	18-Inch Cell	12-Inch Cell	18-Inch Cell
12/16/2018	44.4%	22.2%	48.4%	54.3%	54.7%	61.1%	-196.6%	-228.8%
7/24/2019	84.6%	56.4%	10.1%	23.8%	75.9%	66.8%	-165.3%	-283.2%
9/28/2019	N/A	26.5%	N/A	-252.6%	N/A	69.8%	N/A	-700.2%
12/19/2019	64.3%	57.1%	53.5%	40.9%	67.4%	69.8%	-115.3%	-161.1%
1/28/2020	68.2%	86.4%	-79.6%	-125.2%	8.3%	0.0%	-391.4%	-800.0%
2/23/2020	97.0%	98.3%	-12.8%	16.8%	-0.5%	29.9%	-86.3%	-149.0%
5/6/2020	88.0%	94.0%	5.6%	NR	45.4%	31.8%	-41.1%	-106.4%
5/20/2020				N	/A		_	
5/31/2020	90.0%	96.7%	-189.1%	-263.0%	-76.5%	49.1%	N/A	N/A
9/25/2020	N/A	N/A	40.1%	73.5%	92.6%	92.7%	9.2%	-57.4%
10/10/2020	63.3%	66.7%	-32.6%	-14.7%	53.3%	30.1%	-64.9%	-148.3%
11/5/2020	77.8%	83.3%	-34.8%	-16.4%	47.1%	45.7%	61.3%	-220.0%
11/18/2020	57.1%	NR	-2.1%	1.2%	67.9%	64.8%	N/A	N/A
12/22/2020	63.2%	50.0%	-241.7%	-416.1%	18.7%	-7.9%	-576.1%	-749.5%
1/2/2021	70.8%	76.9%	N/A	N/A	N/A	N/A	N/A	N/A
1/4/2021	89.2%	93.2%	-218.5%	-337.1%	58.5%	-114.8%	-905.6%	-1441.7%
1/12/2021	84.4%	87.1%	N/A	N/A	N/A	N/A	91.2%	87.8%
Average:	74.5%	71.1%	-50.3%	-93.4%	39.5%	34.9%	-198.4%	-381.4%

N/A: Parameter was not tested for the storm event.

NR: Data not reported as part of pollutant removal summary due to QA or laboratory issue. Note: No required parameter samples were collected for the 5/20/2020 event.

Screening Parameters	Average 12-inch Effluent Removal Efficiency	Average 18-inch Effluent Removal Efficiency	Average Influent Concentration (mg/L)	Average 12-inch Effluent Concentration (mg/L)	Average 18-inch Effluent Concentration (mg/)
PSD, $>250 \mu m^1$	79.3%	78.7%	8.34	1.73	1.78
PSD, 250 - 62.5 μm ¹	90.6%	90.1%	29.88	2.80	2.96
PSD, <62.5 μm ¹	80.5%	86.9%	40.95	8.01	5.36
Orthophosphate	-659.8%	-1115.3%	0.05	0.33	0.53
Hardness	-377.6%	-450.4	35.15	129.11	146.93
pH^2	6.4%	6.7%	7.07	6.58	6.56

Table 6.4 Summary of Screening Parameter Pollutant Removal Results

6.2 Comparison of Results to TAPE Treatment Performance Goals

Objective 2: Determine whether treatment performance goals were achieved for basic (TSS) and dissolved metals (copper and zinc) by comparing study results to TAPE treatment goals.

Succinct Objective Summary: Whether TAPE treatment performance goals were met by the 12-inch cell and 18-inch cell was assessed using the bootstrap statistical method. The 12-inch cell and 18-inch cell met TAPE treatment performance goals for TSS but did not meet treatment performance goals for dissolved copper and zinc. The treatment performance goal for oils was not assessed due to the number of non-detect results received during the study.

Per TAPE, the pollutant removal efficiencies for dissolved copper and zinc were compared to the Ecology treatment performance goals for Dissolved Metals. The treatment performance goals for Dissolved Metals are a 30% reduction for dissolved copper and a 60% reduction for dissolved zinc. For TSS, effluent concentrations were compared to Ecology treatment performance goals for Basic Treatment, as 15 of the 17 TSS influent samples were below the 100 mg/L concentration range in Table 6.5. The treatment goal for samples below this influent concentration is a TSS effluent concentration less than 20 mg/L. Whether the treatment goals are met is evaluated using the bootstrap method to determine the one-tailed upper 95% confidence interval around the mean pollutant removal efficiency (for dissolved copper and dissolved zinc). Results of the bootstrap method compared to TAPE treatment performance goals are displayed in Table 6.5. The treatment performance goal for oils was not assessed due to the number of non-detect results received during the study.

Represents four sample events, including two non-qualifying events.

²One non-qualifying event is included in the pH removal efficiency calculation.

Table 6.5 Ecology Treatment Performance Goals

Performance Goal	Pollutant	Influent Concentration Range	Treatment Performance Criteria	12-inch Cell Water Quality Results	18-inch Cell Water Quality Results	Treatment Performance Goal Achieved
Basic Treatment	Total Suspended Solids (TSS)	20-100 mg/L	Effluent <20 mg/L	11.01 mg/L	18.82 mg/L	Yes
Dissolved	Dissolved Copper (Cu)	5.0-20.0 mg/L	30% Reduction	-100.3%	-167.5%	No
Metals Treatment Dissolved Zinc (Zn)		20-300 mg/L	60% Reduction	24.1%1	10.6%1	No
Oil Treatment	NWTPH- Dx (TPH), visible sheen	Total petroleum hydrocarbons (TPH) > 10 mg/L	1) No ongoing or recurring visible sheen in effluent 2) Daily average effluent conc. < 10 mg/L 3) Max. effluent conc. of 15mg/L for a discrete sample	N/A ²	N/A ²	N/A

¹ When the bootstrap analysis was adjusted to exclude statistical outliers from the dataset, the removal efficiencies were 40.0% and 33.6% for the 12-inch and 18-inch cells respectively.

² All concentrations except one were not detectable. The value that was detected was an influent concentration of 0.52 mg/L, which is less than minimum influent value, 10 mg/L. As such, oils were not analyzed for the Bootstrap Method.

From the bootstrap analysis, both bioretention cells appear to be removing TSS to required concentrations. However, removal of dissolved copper and zinc for the 12- and 18-inch ponds did not meet the TAPE treatment performance goals. Results of the bootstrap analysis further suggest dissolved copper may be leaching from the bioretention media, as previously discussed in Section 6.1.3. While the leaching was only observed for sample events with influent concentrations below the lower limit, removal of copper was observed for other events with influent concentrations below the lower limit. Moreover, the range of removal efficiencies for sample events with an influent concentration above the lower limit was 5.64% to 100%. The low end of the range suggests that if there were a higher number of sample events with an influent concentration above the lower influent limit, results indicating leaching of dissolved copper may have been observed for those storm events. Further research is needed to better understand why the increase in dissolved copper in the effluent is occurring.

Results of the bootstrap analysis for dissolved zinc indicated that at the lower 95% confidence interval, removal was occurring for both media depths, albeit at a lower removal efficiency than the TAPE treatment performance goal. The dataset reflected in the result in Table 6.5 included two data points which indicated leaching of zinc was occurring for the 12-inch cell during the event on 5/31/2020 and the 18-inch cells during the event on 1/4/2021. These datapoints are not associated with laboratory QA/QC issues or other known issues which would have occurred during the storm event or sampling, aside from influent concentrations being significantly lower than the lower influent limit for dissolved zinc. If the two data points are not included in the bootstrap analysis, the removal efficiencies for the 12-inch and 18-inch cells become 40.0% and 33.6%. Statistical outliers were not observed in the dissolved copper dataset.

Additional graphs of the parameters were created to evaluate the treatment performance including box plots which show the spread and distribution of the data for both the influent, 12-inch effluent and 18-inch effluent (Figures 6-1 through 6-4). The effluent concentration divided by the influent concentration was also graphed to evaluate how the treatment performance changed over time (Figures 6-5 through 6-8). No consistent patterns in treatment performance were observed over time for the parameters observed.

Results from this study were compared to other studies conducted in western Washington (WWA). While the total phosphorus and copper leaching have been documented in WWA studies, the copper leaching continued throughout the entire study (compared to just the months after installation in WWA). In addition, the dissolved zinc concentrations did not achieve the TAPE performance goal which it has been documented to exceed in WWA studies (Ecology, 2016). Since this is the first known bioretention field study in EWA using the 60:40 media, it is not possible to determine if the results from this study are typical for EWA or if they are an anomaly. However, considering the climate conditions differ between the two sides of the state and that cold climate conditions are know to influence the treatment and infiltration performance of BMPs, more field studies are needed to assess if the difference in climate conditions is influencing the results.

The Koppen-Geiger climate classification scheme defines cold climate conditions as temperatures less than or equal to -3° Celsius. Cold climate conditions may also feature characteristics including frozen soils, deep frost lines, repetitive freeze-thaw cycles, short growing seasons, a significant volume of snowmelt, and reduced dissolved oxygen under ice

cover (Kottek, Grieser, Beck, Rudolf, & Rubel). Cold climate conditions are expected to affect treatment performance as plant life is dormant during the winter months and may be less effective at providing treatment mechanisms (Ecology, 2019). TSS influent concentrations are expected to increase during winter months due to the use of sand for road maintenance, but because TSS removal is based on mechanical filtration rather than temperature, removal rates are not expected to be affected by cold climate conditions. However, to what extent cold climate conditions affect dissolved metals is not well understood, particularly when deicer is involved.

One study, which evaluated the impact of a deicer replicate on dissolved metal removal using bioretention cells, found that the salt and aggregate mixture did not affect the soil's ability to remove contaminants or increase heavy metal mobility (Denich, Bradford, & Drake, 2013). However, other studies have indicated that an increase in salt has the potential to affect metal removal in bioretention. A study that focused on sodium loading from application of deicer found that a loss of zinc occurred from the media, which suggests that the media has the potential to release previously trapped pollutants when salt enters the cell (Kakuturu & Clark, 2012). Another study found that salt from winter maintenance can impact soil bacteria which can impact metal mobility (Ledin, 2000). More field research studies, specifically in EWA, are needed to understand how bioretention performs in cold climate conditions.

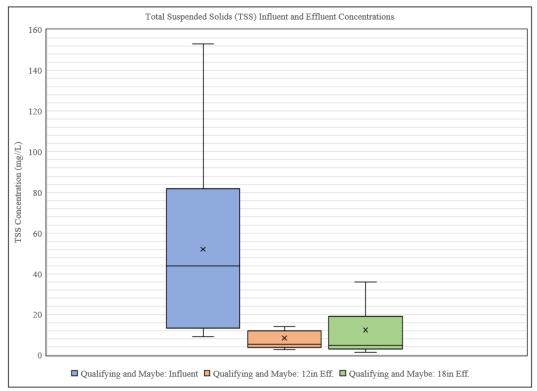


Figure 6-1 TSS box plot for all qualifying and potentially qualifying sample events

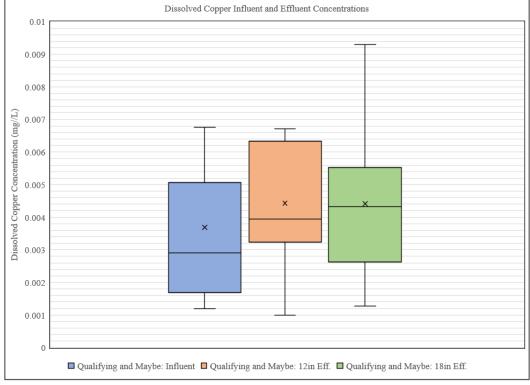


Figure 6-2 Dissolved copper box plot for all qualifying and potentially qualifying sample events

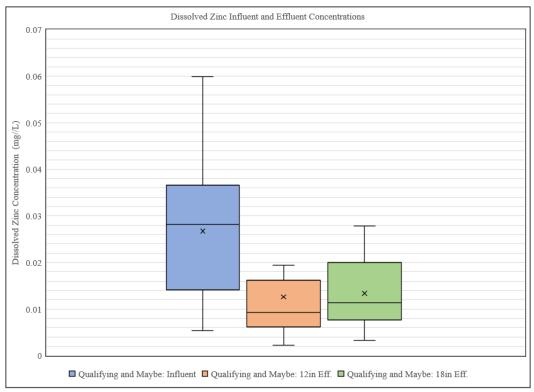


Figure 6-3 Dissolved zinc box plot for all qualifying and potentially qualifying sample events

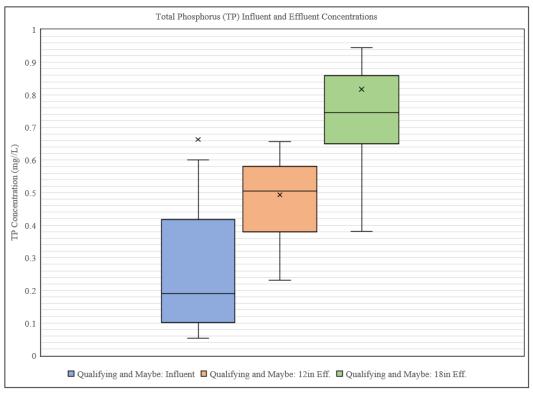


Figure 6-4 Total phosphorus box plot for all qualifying and potentially qualifying sample events

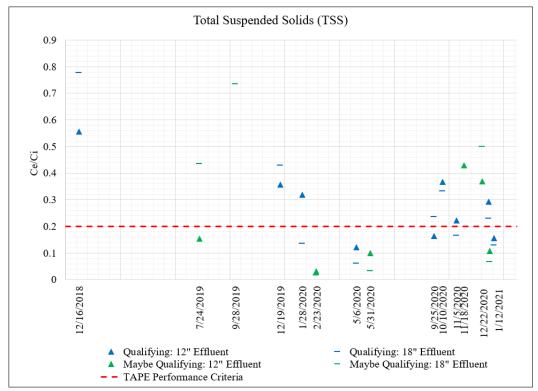


Figure 6-5 TSS effluent/influent concentrations over testing period

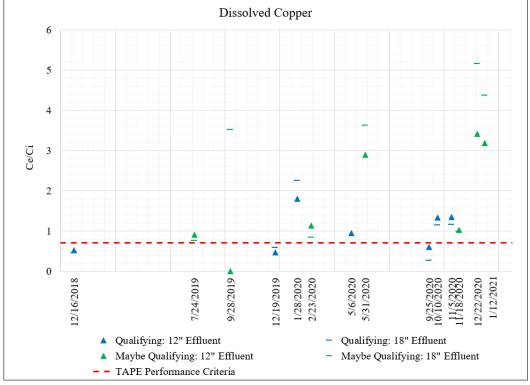


Figure 6-6 Dissolved copper effluent/influent concentrations over testing period

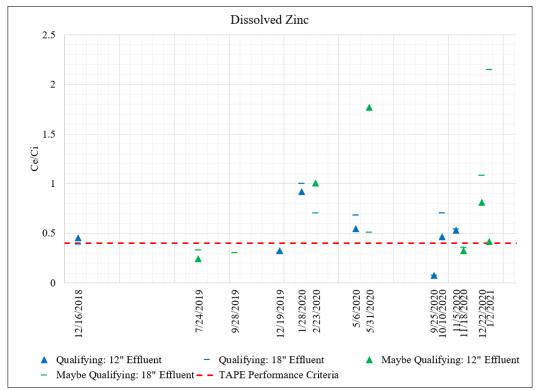


Figure 6-7 Dissolved zinc effluent/influent concentrations over testing period

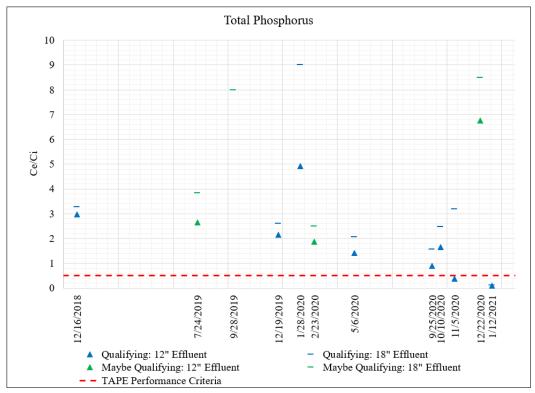


Figure 6-8 Total phosphorus effluent/influent concentrations over testing period

6.3 Infiltration Performance

Objective 3: Determine the change in the infiltration rate and saturated hydraulic conductivity of each cell over the duration of the study.

Succinct Objective Summary: Changes in the infiltration rate and saturated hydraulic conductivity of each cell was measured by examining effluent flow rates and performing modified falling head tests, respectively. Saturated hydraulic conductivity decreased for both cells (60% for the 12-inch cell and 78% for the 18-inch cell) from 2014 to 2019. Results from the infiltration testing indicate that the rate appeared to slightly increase from 2018 to 2020. These results may be due to the freeze thaw cycle which has been reported to increase infiltration rates over time. However, infiltration rate data was only collected following the installation of the monitoring equipment in 2017, missing the initial years after the BSM was installed and when infiltration rates are reportedly highest. It is possible that if a similar number of storm events were collected prior to the installation of the equipment as were collected after installation, the trend in infiltration rate would show a decline over the lifespan of the bioretention cells.

Infiltration and saturated hydraulic conductivity (Ksat) performance of the two bioretention cells was assessed by examining the effluent flow rates and running falling head tests, respectively, over the duration of this study as described in Section 14 of the study QAPP. The effluent flow rates examined were calculated from data logger information recorded during qualifying or potentially qualifying storm events. The falling head test method involved measuring the change in ponded depth above the top of the cell, compared to the time interval that the change occurs. The following paragraphs describe the methods used in detail as well as the results of the analysis.

Falling head tests were conducted in fall of 2014, shortly after the media was installed, and again in the fall of 2019 by senior design students at Gonzaga University. Falling head tests were conducted by directing flow from a fire hydrant to the two cells to pond for an amount of time to allow the media to become saturated. Once the media was saturated, water was added as needed to reach 6 inches of ponded depth, and rate of fall was measured for each cell in intervals until the rate of fall stabilized (less than a 5% difference between three-time intervals). Saturated hydraulic conductivity was measured using the following equation:

$$K_{sat} = \frac{A_1}{A_2} \times \frac{L}{\Delta Time} ln \frac{H_1}{H_2}$$

Where:

 H_1 = initial ponded water depth above the top of the cell (inches)

 H_2 = final ponded water depth above the top of the cell for time interval (inches)

 Δ Time = time interval for water to fall from H₂ to H₁ (seconds)

L = depth of BSM (inches)

 A_1 = cell surface area at H1 (sqft)

 A_2 = cell surface area at H2 (sqft)

The saturated hydraulic conductivity calculated for the falling head tests are reported in Table 6-6 and shown in Figure 6-9. As shown in Figure 6-9, the Ksat declined in both cells from the approximate time of installation (in 2014) to fall 2019, during the study. This decline is expected

as sediment in runoff enters the bioretention cells and increases the amount of finer material near the surface of the BSM that clog the pore spaces of the media reducing the permeability of the media.

Table 66 Su	ımmarv of Satura	ited Hydraulic C	Conductivity at Site

Year	2014	2019	Percent Difference
12-inch Cell	14.1	5.7	60%
18-inch Cell	28.5	6.3	78%

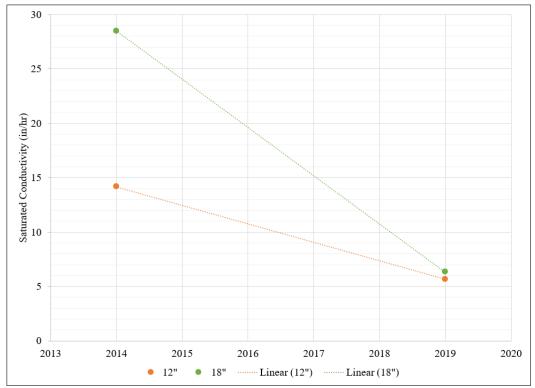


Figure 6-9 Saturated Hydraulic Conductivity at Site

Effluent flow rates were used to calculate infiltration following larger precipitation depth events for qualifying or potentially qualifying storm events. Specifically, storms above 0.15 inches of precipitation were selected for the calculation because they are more likely to have saturated soils. For each storm, the effluent flow rate was calculated for each 5-minute time interval and compared to the adjacent time intervals. Effluent flow rates were filtered until only flow rates with less than a 5% difference between three-time intervals remained. Infiltration was then calculated using the following formula:

$$Infiltration = \frac{Q_{out}}{A_{average}}$$

Where:

Q_{out} = average effluent flow rate recorded by the data logger over the duration of the test: from initial ponded depth to when water has completely infiltrated into the BSM or 0-inches of ponded water (cft/hr)

A_{average}= bioretention cell average surface area: average of surface area at initial ponded depth and surface area at 0-inches of ponded water (sqft)

The infiltration calculated for the storm events are reported in Table 6-7 and Figure 6-10. As shown in Figure 6-10, there appeared to be a slight increase in infiltration rate over the duration of the study. It was hypothesized that the increase may be due to freeze thaw cycles impacting the infiltration rate. However, research studies have found mixed results on the effect of freeze thaw cycles on infiltration, with some studies indicating freeze thaw cycles increase infiltration (Ding, Rezanezhad, Gharedaghloo, Van Cappellen, & Passeport, 2018) while other studies indicate freeze thaw cycles decrease infiltration (Baratta, 2013; Zaqout & Andradóttir, 2021). If the increase measured at the site is not real, it is potentially due to the timing of the data collected. The bioretention cells were installed in 2014 and automated equipment used to measure the infiltration rate was not installed until 2017 as such no infiltration testing (using the effluent flow rate) was conducted until four years after the BSM was installed at the site potentially missing the higher infiltration rates that are reported by other researchers in the initial years after BSM is installed. It is possible that if a similar number of storm events were collected prior to the installation of the equipment as were collected after the equipment installation, the trend in infiltration rate would show a decline over the lifespan of the bioretention cells.

Table 6-7 Summary of Infiltration at Site

Date	12-inch Cell	18-inch Cell
12/16/2018	1.13	0.99
1/17/2019	1.67	1.35
9/28/2019	1.67	2.21
12/19/2019	3.08	_1
1/28/2020	5.85	1.30
5/20/2020	3.18	2.94
10/10/2020	5.33	3.44
11/5/2020	3.18	2.78
1/12/2021	3.61	2.35

¹ After filtering the data, there were no time intervals with flow rates with less than a 5% difference between three adjacent time intervals.

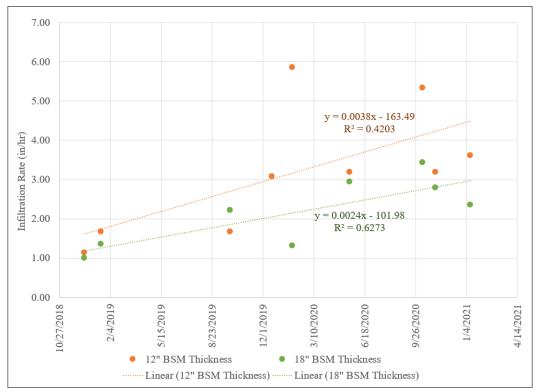


Figure 6-10 Infiltration at Site During Study

7.0 Future Action Recommendations

Based upon the results, the following topics should be studied further to better understand the performance of the bioretention media in EWA:

- Per Section 5.2.1 the influent concentration of some samples for some parameters were below the lower concentration limit as described in the TAPE Guidance Manual. A similar pattern was observed when reviewing concentrations at other sites within the City of Spokane and Spokane County. Additional outfall data should be collected from EWA sites to assess if there is a similar pattern and if so, identify influent concentration ranges for each pollutant that are more representative of the pollutants expected at moderate use site in this area.
- Per Section 6.2, differences in reported treatment performance of the media between WWA and EWA were observed. Research regarding cold climate conditions is recommended to determine how winter conditions and maintenance practices influence infiltration and treatment performance.
- Research into reducing leaching of nutrients by BSM would be beneficial to prevent an increase in pollutant concentrations to receiving waters. Specifically, TP can be found at high concentration levels in the Spokane River as such having a BSM that does not leach nutrients would be beneficial to improving the river water quality.
- The treatment and infiltration performance of non-vegetated bioretention should be evaluated to determine if vegetation can be removed from the BMP and still achieve the TAPE treatment goals. EWA is a semi-arid climate with hot and dry summers which requires irrigation to keep the vegetation alive between storm events. The cost to construct and operate an irrigation system adds to the overall life cycle cost of stormwater BMPs and consumes water that could have a higher beneficial use.
- While not previously mentioned in this report, rainfall patterns in EWA, coupled with the TAPE requirements for qualifying events, reduce the number of potentially qualifying storm events. Specifically, the series of storm events contained in the long duration hyetograph for EWA (Ecology, 2019; WSDOT, 2019) reduced the number of potential qualifying storm events as the portion of rainfall from the antecedent precipitation is not always enough for a qualifying storm event. Additionally, the duration between the antecedent precipitation and remaining storm event is not always long enough to count as a dry period between events, resulting in difficultly predicting whether one or two storms will need to be sampled in a given day or making the entire rainfall event non-qualifying. Ecology should re-evaluate these conditions and consider if the time between events could be extended to accommodate these EWA rainfall patterns which would increase the number of rainfall events that are considered qualifying based on TAPE.
- Because of the challenges with finding laboratories to analyze PSD samples (see Section 6.1.3), it is recommended that research be conducted to assess if there are other standard testing methods that could be used to analyze PSD in stormwater samples so more labs are able to run the analysis.

8.0 Conclusions

The purpose of this study was to develop a modified bioretention BMP which uses a 12-inch depth of BSM instead of the Ecology-required 18-inch depth. Effectiveness was based upon a comparison of treatment performance between an 18-inch bioretention cell and 12-inch bioretention cell. The purpose of this study was achieved by meeting the objectives outlined in the QAPP, the results of which are summarized in the following paragraphs.

Objective 1: Determine the pollutant removal efficiency of the BSM mix at a depth of 18-inches compared to 12-inches.

The TSS pollutant removal efficiency by the 12-inch and 18-inch cells were similar with average reductions of 74.5% and 71.1%, respectively. Average removal efficiency of dissolved zinc was also comparable between the two cells, with the 12-inch cell achieving 39.5% (49.1% if statistical outlier excluded) and the 18-inch cell achieving 34.9% (46.44% if statistical outlier excluded). Dissolved copper appeared to leach from the media for both the 12-inch and 18-inch cell primarily when there were low influent concentrations (below the TAPE lower limit), however leaching was also observed for sample events with influent concentrations within the TAPE influent limits for dissolved copper. The removal efficiency of dissolved copper through the 12-inch and 18-inch cells was -50.3%, and -93.4%, respectively. Moreover, measurements of the BSM approximately five years after installation in both cells indicated that copper was not being retained in the BSM, which supports the removal efficiencies observed during the study (zinc was retained in the BSM, supporting removal efficiencies reported in this study). The leaching of dissolved copper measured during the study is consistent with findings from previous studies that indicate dissolved copper can leach from the BSM however Ecology has reported that toxicity testing of the effluent after infiltrating through the BSM is not negatively affecting salmon survival. Nutrient leaching from the BSM has also been reported in the previous research, which was observed during this study. On average, there was an approximate 200% increase in TP in the 12-inch cell effluent, and a nearly 400% increase in TP in the 18-inch cell effluent. The BSM removal efficiency of oils was not assessed because as only one storm events resulted in a detectable amount of NWTPH-Dx.

A statistical analysis was also conducted to compare the effluent concentrations from the 12-inch and 18-inch cells. TSS, dissolved copper, dissolved zinc, and TP concentrations were compared to determine whether there was a statistically significant difference between the 12-inch and 18-inch effluents. A statistically significant difference was only found for TP concentrations, with higher concentrations in the 18-inch effluent. There was no statistically significant difference between the TSS, dissolved copper, and dissolved zinc effluent concentrations. These results suggest that the treatment performance between the two different BSM depths was insignificant for TSS and dissolved metals.

Objective 2: Determine whether the treatment performance goals were achieved for basic (TSS) and dissolved metals (copper and zinc) by comparing study results to TAPE treatment goals.

Treatment performance of the bioretention cells was assessed using the bootstrap method, as required by TAPE, and comparing the results of the method to the TAPE treatment goals. Both the 12-inch and 18-inch cells met TAPE treatment performance goals for basic (TSS) treatment.

Neither cell met dissolved metals treatment goals, and dissolved copper leached from the BSM during the study. It is possible that the low influent concentrations (below the TAPE lower limit for influent concentrations) may have impacted the removal efficiency results. However, the cells were installed at a moderate use site which triggers metals treatment per the SWMMEW, and concentrations are expected to reflect what is typical for that installation. It is important to note that the 60:40 BSM has been field tested in WWA extensively, however this study was the first known field study in EWA to analyze treatment performance of the 60:40 BSM using TAPE guidelines. While some results from this study are consistent with results from WWA studies, some results are not. More field testing is needed to understand whether the results presented in this study are because of cold climate conditions, or if the results are simply unique to the study location and test site. Oil treatment was not assessed as only one of the storm events resulted in a detectable amount of NWTPH-Dx.

Objective 3: Determine change in infiltration rate and saturated hydraulic conductivity of each cell over the duration of the study.

Changes in the infiltration rate and saturated hydraulic conductivity of each cell was measured by examining effluent flow rates and performing modified falling head tests, respectively. Saturated hydraulic conductivity decreased for both cells (60% for the 12-inch cell and 78% for the 18-inch cell) from 2014 to 2019. Results from the infiltration testing indicate that the rate appeared to slightly increase from 2018 to 2020. These results may be due to the freeze thaw cycle which has been reported to increase infiltration rates over time. However, infiltration rate data was only collected following the installation of the monitoring equipment in 2017, missing the initial years after the BSM was installed and when infiltration rates are reportedly highest. It is possible that if a similar number of storm events were collected prior to the installation of the equipment as were collected after installation, the trend in infiltration rate would show a decline over the lifespan of the bioretention cells.

Objective 4: Summarize the study results into a final report and submit the report to Ecology for approval of the modified BMP.

This report serves as the final report for the Bioretention Soil Media Thickness Study, which will be submitted to Ecology for approval of the modified BMP.

Future action recommendations were included that outlined additional research recommended based on the findings from this study. These included further analysis of influent concentrations in EWA, research of the effects of cold climate conditions on bioretention treatment and infiltration performance, development of bioretention technologies to reduce leaching or support non-vegetated cells, development of revised qualifying storm event guidelines that are better suited for EWA conditions, and research of other acceptable PSD laboratory analysis methods. In addition, while some results from this study were consistent with research conducted in WWA, some results were not. As this study was the first bioretention media in EWA to evaluate the treatment performance of a structural BMP using TAPE guidelines, more field testing is needed to understand whether the differences in the results are because of cold climate conditions, or if the results are simply unique to the study location and test site.

9.0 References

- Baratta, V. M. (2013). *The effects of freeze-thaw cycles on the infiltration rates of three bioretention cell soil mixtures*. Graduate College of the University of Iowa. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.672.3789&rep=rep1&type=pdf
- Davis, A., Shokouhian, M., Sharma, H., & Minami, C. (2001). Laboratory study of biological retention for urban stormwater management. *Water Environment Research*, 5-14.
- Denich, C., Bradford, A., & Drake, J. (2013). Bioretention: Assessing effects of winter salt and aggregate application on plant health, media clogging and effluent quality. *Water Qual. Res. J. Canada.*, 48, 387.
- Ding, B., Rezanezhad, F., Gharedaghloo, B., Van Cappellen, P., & Passeport, E. (2018). Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal. *Science of the Total Environment*. Retrieved from https://uwspace.uwaterloo.ca/bitstream/handle/10012/14127/1-s2.0-S0048969718333370-main.pdf?sequence=3&isAllowed=y
- Ecology. (2011). *Technical Guidance Manual for Evaluating Emerging Stormwater Treatment Technologies*. Olympia: Washington State Department of Ecology.
- Ecology. (2013). Focus on Bioretention Monitoring. Olympia: Washington State Department of Ecology.
- Ecology. (2014). *Eastern Washington Phase II Municipal Stormwater Permit*. Retrieved from Washington State Department of Ecology: https://ecology.wa.gov/Regulations-Permits/Permits-certifications/Stormwater-general-permits/Municipal-stormwater
- Ecology. (2016). *Status Update on Bioretention Soil Media*. Retrieved from Washington State Department of Ecology: https://fortress.wa.gov/ecy/publications/documents/1310017.pdf
- Ecology. (2018). *Technical Guidance Manual for Evaluating Stormwater Treatment Technologies Technology Assessment Protocol Ecology (TAPE)*. Olympia: Washington State Department of Ecology.
- Ecology. (2019). Stormwater Management Manual for Eastern Washington. Olympia: Washington State Department of Ecology. Retrieved from https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Stormwater-manuals
- Ecology. (2019). Stormwater Management Manual for Eastern Washington DRAFT; Table 5.4.8 Sizing Methods and Assumptions for Bioretention. Retrieved from Washington State Department of Ecology Stormwater Manuals: https://fortress.wa.gov/ecy/ezshare/wq/permits/EWAStormwaterManual.pdf
- Erickson, A. J., Gulliver, J. S., & Weiss, P. T. (2007). Enhanced sand Filtration for Storm Water Phosphorus Removal. *Journal of Environmental Engineering*, 133(5), 485-497.
- Hatt, B. (2008). Hydraulic and Pollutant Removal Performance of Fine Media Stormwater Filtration Systems. *Environmental Science and Technology*, 2535-2541.

- Hunt, W., & Lord, W. (2006). *Bioretention performance, edsign, construction, and maintenance*. NC Cooperative Extension Service.
- Kakuturu, S., & Clark, S. (2012). Deicing salts' effects on enginered bioretention soils. *Proceedings of the Water Environment Federation*.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (n.d.). World map of the Koppen-Geiger climate classification updated. *Meterologische Zeitschrift*, *15*(3), 1633-1644.
- Ledin, M. (2000). Accumulation of metals by microorganisms processes and importance for soil systems. *Earth-Science Reviews*, *51*(1-4), 1-31.
- Minnesota Pollution Control Agency. (2014). *Design Criteria for Bioretention*. Retrieved from Minnesota Stormwater Manual, Layered Systems: http://stormwater.pca.state.mn.us/index.php/Design_criteria_for_bioretention
- Navickis-Brasch, A., Peraki, M., Packman, J., Fendt, P., Nilsen, C., Hoffman-Ballard, T., & Maurer, M. (2021). *Structural Stormwater Controls Science Reviewand Synthesis Project*. Olympia, WA: Washington State Department of Ecology.
- Osborn Consulting, Inc. (2020). *Quality Assurance Project Plan Bioretention Soil Media Thickness Study*. Spokane: Spokane County.
- WSDOT. (2016). *Highway Runoff Manual*. Olympia: Washington State Department of Transportation. Retrieved from https://wsdot.wa.gov/publications/manuals/fulltext/M31-16/M31-16.04Complete.pdf
- WSDOT. (2019). HIghway Runoff Manual. Olympia, WA.
- Zaqout, T., & Andradóttir, H. (2021). Infiltration capacity in grass swales during frequent freeze-thaw cycles and intermittent snowmelt in a cold maritime climate. *15th International Conference on Urban Drainage*, (pp. 1-3). Melbourne. Retrieved from https://www.researchgate.net/profile/Tarek_Zaqout/publication/355451840_Infiltration_capacity_in_grass_swales_during_frequent_freeze-

thaw_cycles_and_intermittent_snowmelt_in_a_cold_maritime_climate/links/6171629ac10b3876 64ca642d/Infiltration-capacity-in-g

10.0 Appendices

10.0 Appendices

Appendix A. Laboratory Analytical Reports

Appendix A.1 Water Quality Reports

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HDR, INC - SPOKANE

Address: 1401 E TRENT AVE, STE 101

SPOKANE, WA 99202

Attn: AIMEE NAVICKIS-BRASCH

Water

Batch #: 181126028

Project Name: STORMWATER

TREATMENT MONITORING

Analytical Results Report

 Sample Number
 181126028-001
 Sampling Date
 11/22/2018
 Date/Time Received
 11/26/2018
 1:00 PM

 Client Sample ID Matrix
 IN11222018
 Sampling Time 7:00 PM
 Extraction Date

 Water
 Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00650	mg/L	0.001	11/29/2018 4:03:00 PM	BAG	EPA 200.8	
Dissolved Copper	0.00321	mg/L	0.001	11/29/2018 3:50:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0385	mg/L	0.001	11/29/2018 3:50:00 PM	BAG	EPA 200.8	
Hardness	13	mg CaCO3/L	1	11/28/2018 12:00:00 PM	I NDE	EPA 130.2	
TSS	74.7	mg/L	1.33	11/29/2018 3:00:00 PM	BAS	SM 2540D	
Zinc	0.0649	mg/L	0.001	11/29/2018 4:03:00 PM	BAG	EPA 200.8	

 Sample Number
 181126028-002
 Sampling Date
 11/22/2018
 Date/Time Received
 11/26/2018
 1:00 PM

 Client Sample ID
 1211222018
 Sampling Time
 7:00 PM
 Extraction Date

Sample Location

Matrix Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00531	mg/L	0.001	11/29/2018 4:07:00 PM	BAG	EPA 200.8	
Dissolved Copper	0.00434	mg/L	0.001	11/29/2018 3:53:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0406	mg/L	0.001	11/29/2018 3:53:00 PM	BAG	EPA 200.8	
Hardness	148	mg CaCO3/L	1	11/28/2018 12:00:00 PM	NDE	EPA 130.2	
TSS	31	mg/L	1	11/29/2018 3:00:00 PM	BAS	SM 2540D	
Zinc	0.0201	mg/L	0.001	11/29/2018 4:07:00 PM	BAG	EPA 200.8	

 Sample Number
 181126028-003
 Sampling Date
 11/22/2018
 Date/Time Received
 11/26/2018
 1:00 PM

 Client Sample ID
 1811222018
 Sampling Time
 7:00 PM
 Extraction Date

 Matrix
 Water
 Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00400	mg/L	0.001	11/29/2018 4:10:00 PM	BAG	EPA 200.8	
Dissolved Copper	0.00416	mg/L	0.001	11/29/2018 3:57:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0279	mg/L	0.001	11/29/2018 3:57:00 PM	BAG	EPA 200.8	
Hardness	183	mg CaCO3/L	1	11/28/2018 12:00:00 PM	NDE	EPA 130.2	
TSS	36	mg/L	1	11/29/2018 3:00:00 PM	BAS	SM 2540D	
Zinc	0.0213	mg/L	0.001	11/29/2018 4:10:00 PM	BAG	EPA 200.8	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Friday, December 07, 2018 Page 1 of 2

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HDR, INC - SPOKANE

Address: 1401 E TRENT AVE, STE 101

SPOKANE, WA 99202

Attn: AIMEE NAVICKIS-BRASCH Batch #: 181126028

STORMWATER Project Name:

> TREATMENT **MONITORING**

Analytical Results Report

Sample Number **Client Sample ID** 181126028-004

Sampling Date

11/22/2018

Date/Time Received 11/26/2018 1:00 PM

Extraction Date

DISSOLVED METALS BLANK Matrix

Sampling Time

Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dissolved Copper	ND	mg/L	0.001	11/29/2018 4:00:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0531	mg/L	0.001	11/29/2018 4:00:00 PM	BAG	EPA 200.8	

Authorized Signature

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL **Practical Quantitation Limit**

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Friday, December 07, 2018 Page 2 of 2

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: HDR, INC - SPOKANE Order ID: 181126028

1401 E TRENT AVE, STE 101 Order Date: 11/26/2018

SPOKANE WA 99202

Contact Name: AIMEE NAVICKIS-BRASCH Project Name: STORMWATER

Comment: TREATMENT MONITORING

Sample #: 181126028-001 **Customer Sample #:** IN11222018

Recv'd: Matrix: Water Collector: AIMEE NAVICKIS-BRASC Date Collected: 11/22/2018

Quantity: 5 Date Received: 11/26/2018 1:00:00 PM Time Collected: 7:00 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/6/2018	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	12/6/2018	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)

Sample #: 181126028-002 **Customer Sample #:** 1211222018

Recv'd: Matrix: Water Collector: AIMEE NAVICKIS-BRASC Date Collected: 11/22/2018

Quantity: 5 Date Received: 11/26/2018 1:00:00 PM Time Collected: 7:00 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/6/2018	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	12/6/2018	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)

Customer Name: HDR, INC - SPOKANE **Order ID:** 181126028

1401 E TRENT AVE, STE 101

SPOKANE WA 99202

Contact Name: AIMEE NAVICKIS-BRASCH Project Name: STORMWATER

TREATMENT MONITORING

11/26/2018

Order Date:

Sample #: 181126028-003 Customer Sample #: 1811222018

Recv'd: ✓ Matrix: Water Collector: AIMEE NAVICKIS-BRASC Date Collected: 11/22/2018

Quantity: 5 Date Received: 11/26/2018 1:00:00 PM Time Collected: 7:00 PM

Comment:

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/6/2018	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	12/6/2018	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)

Sample #: 181126028-004 Customer Sample #: DISSOLVED METALS BLANK

Recv'd: ✓ Matrix: Water Collector: AIMEE NAVICKIS-BRASC Date Collected: 11/22/2018

Quantity: 1 Date Received: 11/26/2018 1:00:00 PM Time Collected:

Comment:

Test	Lab	Method	Due Date	Priority
DISSOLVED COPPER SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/6/2018	Normal (~10 Days)

SAMPLE CONDITION RECORD

Samples received in a cooler?	Yes
Camples received in a cooler:	163
Samples received intact?	Yes
What is the temperature of the sample(s)? (°C)	6.4
Samples received with a COC?	Yes
Samples received within holding time?	Yes
Are all sample bottles properly preserved?	Yes
Labels and chain agree?	Yes
Total number of containers?	16

Anatek Labs, __Inc.

Chain of Custody Record

31126 028 HDRS Last 12/6/2018

1st SAMP 11/22/201 1st RCVD 11/26/2018

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 5 TORMWATER TREATMENT 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433 NONITORING

Comp	any Name:		ı	HDR, Ir	nc		Proje	ct Mar	nager:		-	Aime	e Na	vick	s-Bı	rasch	1		Please refer to our normal turn around times at:
Addre	ss: 14	01 E	. Trent	Ave, S	Suite	101	Proje	ct Nar	ne &	#: S	torm	ıwat	er Tı	reatn	nent	Mon	itori	ng	http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane		State:	WA	Zip:	99202	Emai	il Addr	ess:	ami	ee-n	avic	kis-l	oraso	ch@	hdrir	c.cc	om	✓ Normal *All rush order — Phone Next Day* requests must be — Mail
Phone	: :							hase C		0.000									Next Day* requests must beMail2nd Day* prior approvedFaxOther*
Fax:							Sam	pler Na	ime &	32.5		7.00 11.00 (2003)			MA 10 (000 1100)	-Bra	sch		
				Descri		1				List	Ana	lyse	s Re	ques	sted				Note Special Instructions/Comments
	storr	nwate	r influent	t and efflo	uent		Containers	Sample Volume	PSD, Influent	Total Suspended Soilds (TSS)	Dissolved Copper (Cu)	Dissolved Zinc (Zn)	Total Copper (Cu)	Total Zinc (Zn)	Hardness as CaCO3	Ortho-Phoshate (OP)	Total Phoshorus (TP)		C_{1}
Lab ID	Sample Identific	ation	Sampli	ing Date/	/Time	Matrix	# of	Sam	R.	Total	Disso	Dis	To	_	五	Ort	Tota		OW/OS
	IN11222018			018 @ 7		Water	5			×	×	×	×	×	×				•
	1211222018		11/22/20	018 @ 7:	:00pm	Water	5			×	X	×	×	x	x				
	1811222018		11/22/20	018 @ 7:	:00pm	Water	5			×	×	X	×	×	X				
11							_								_	_			
	Diss meta	-Lb.	anK							_	X	Х	_	_	_				
							_		_				_	_	_	-	_	-	Inspection Checklist
								-					\vdash	_	-			-	
							-	-	-	-		_	\vdash	-	_	-			Received Intact? N Labels & Chains Agree? N
		-					-		-					-	-	-			Containers Sealed?
							 		_				_		_	 			VOC Head Space?
1																			
		Printe	ed Name	е		Signature		8.11		1111	Com	pany			Date		Time		h/c/i
Reling	uished by	Lel	and C) Worls	5	Merzo	- 10	ر دو	· R		Ì	4D1	R		11)	276	1:0	20 C/4	Temperature (°C): 6.4 dux 04
	ved by		-	larting		1	1	n			An	ate	the	6C	_	20/1	130	10	Preservative: HW03(NA) 420
	uished by	,)		_	0													off P18285-3N
	ved by																		Date & Time: 11-26-49 1545
Reling	uished by																		Inspected By: Weg
Recei	ved by																		

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HDR, INC - SPOKANE

Address: 1401 E TRENT AVE, STE 101

SPOKANE, WA 99202

Attn: AIMEE NAVICKIS-BRASCH

Batch #: 181217016

Project Name: SAND FILTER

Analytical Results Report

Sample Number181217016-001Sampling Date12/17/2018Date/Time Received12/17/20110:00 AMClient Sample IDIN12172018Sampling Time9:30 AMExtraction Date

Matrix Water Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00321	mg/L	0.001	1/4/2019 1:49:00 PM	BAG	EPA 200.8	
Dissolved Copper	0.00289	mg/L	0.001	1/4/2019 1:46:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0285	mg/L	0.001	1/4/2019 1:46:00 PM	BAG	EPA 200.8	
Hardness	43	mg CaCO3/L	1	2/21/2018 10:30:00 AM	NDE	EPA 130.2	
TSS	9	mg/L	1	12/18/2018 1:30:00 PM	1 BAS	SM 2540D	
Total P	0.118	mg/L	0.01	1/7/2019 3:34:00 PM	TLM	SM4500PF	
Diesel	ND	mg/L	0.1	2/19/2018 11:33:00 PM	LMC	NWTPHDX	Q5 Q10
Lube Oil	ND	mg/L	0.5	2/19/2018 11:33:00 PM	LMC	NWTPHDX	Q5 Q10
Zinc	0.0261	mg/L	0.001	1/4/2019 1:49:00 PM	BAG	EPA 200.8	

Surrogate Data

Sample Number	181217016-001			
Surrogate S	Standard	Method	Percent Recovery	Control Limits
hexacosane		NWTPHDX	89.2	50-150

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Thursday, January 10, 2019 Page 1 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HDR, INC - SPOKANE

Address: 1401 E TRENT AVE, STE 101

SPOKANE, WA 99202

Attn: AIMEE NAVICKIS-BRASCH

Batch #: 181217016

Project Name: SAND FILTER

Analytical Results Report

 Sample Number
 181217016-002
 Sampling Date
 12/17/2018
 Date/Time Received
 12/17/20110:00 AM

 Client Sample ID
 12EF12172018
 Sampling Time
 9:30 AM
 Extraction Date

Matrix Water Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00155	mg/L	0.001	1/4/2019 1:55:00 PM	BAG	EPA 200.8	
Dissolved Copper	0.00149	mg/L	0.001	1/4/2019 1:52:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0129	mg/L	0.001	1/4/2019 1:52:00 PM	BAG	EPA 200.8	
Hardness	222	mg CaCO3/L	1	2/21/2018 10:30:00 A	NDE	EPA 130.2	
TSS	5	mg/L	1	12/18/2018 1:30:00 PM	/ BAS	SM 2540D	
Total P	0.350	mg/L	0.1	1/7/2019 4:16:00 PM	TLM	SM4500PF	
Diesel	ND	mg/L	0.1	2/20/2018 12:28:00 A	N LMC	NWTPHDX	Q5 Q10
Lube Oil	ND	mg/L	0.5	2/20/2018 12:28:00 A	N LMC	NWTPHDX	Q5 Q10
Zinc	0.0111	mg/L	0.001	1/4/2019 1:55:00 PM	BAG	EPA 200.8	

Surrogate Data

Sample Number	181217016-002			
Surrogate S	tandard	Method	Percent Recovery	Control Limits
hexacosane		NWTPHDX	93.0	50-150

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Thursday, January 10, 2019 Page 2 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HDR, INC - SPOKANE

Address: 1401 E TRENT AVE, STE 101

SPOKANE, WA 99202

Attn: AIMEE NAVICKIS-BRASCH Batch #: 181217016

Project Name: SAND FILTER

Analytical Results Report

Sample Number 181217016-003 **Sampling Date** 12/17/2018 Date/Time Received 12/17/20110:00 AM **Extraction Date**

Client Sample ID 18EF12172018 Sampling Time 9:30 AM

Matrix Water **Sample Location**

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00147	mg/L	0.001	1/4/2019 2:38:00 PM	BAG	EPA 200.8	
Dissolved Copper	0.00132	mg/L	0.001	1/4/2019 2:34:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0111	mg/L	0.001	1/4/2019 2:34:00 PM	BAG	EPA 200.8	
Hardness	243	mg CaCO3/L	1	2/21/2018 10:30:00 A	NDE	EPA 130.2	
TSS	7	mg/L	1	12/18/2018 1:30:00 P	M BAS	SM 2540D	
Total P	0.388	mg/L	0.1	1/7/2019 4:18:00 PM	TLM	SM4500PF	
Diesel	ND	mg/L	0.1	12/20/2018 1:24:00 A	M LMC	NWTPHDX	Q5 Q10
Lube Oil	ND	mg/L	0.5	12/20/2018 1:24:00 A	M LMC	NWTPHDX	Q5 Q10
Zinc	0.00590	mg/L	0.001	1/4/2019 2:38:00 PM	BAG	EPA 200.8	

Surrogate Data

181217016-003 Sample Number

> Method **Control Limits Surrogate Standard Percent Recovery** hexacosane **NWTPHDX** 69.0 50-150

Authorized Signature

Kathleen a. Sottler

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Thursday, January 10, 2019 Page 3 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: HDR, INC - SPOKANE Order ID: 181217016

1401 E TRENT AVE, STE 101 Order Date: 12/17/2018

SPOKANE WA 99202

Contact Name: AIMEE NAVICKIS-BRASCH Project Name: SAND FILTER

Comment:

Sample #: 181217016-001 **Customer Sample #:** IN12172018

Recv'd: Water Collector: Date Collected: 12/17/2018

Quantity: 1 Date Received: 12/17/2018 10:00:00 AM Time Collected: 9:30 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/31/2018	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	12/31/2018	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	12/31/2018	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	12/31/2018	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)

Sample #: 181217016-002 **Customer Sample #:** 12EF12172018

Recv'd: Water Collector: Date Collected: 12/17/2018

Quantity: 1 Date Received: 12/17/2018 10:00:00 AM Time Collected: 9:30 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/31/2018	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	12/31/2018	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	12/31/2018	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	12/31/2018	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)

Customer Name: HDR, INC - SPOKANE **Order ID:** 181217016

Order Date:

12/17/2018

1401 E TRENT AVE, STE 101

SPOKANE WA 99202

Contact Name: AIMEE NAVICKIS-BRASCH Project Name: SAND FILTER

Comment:

Sample #: 181217016-003 **Customer Sample #:** 18EF12172018

Recv'd:

✓ Matrix: Water Collector: Date Collected: 12/17/2018

Quantity: 1 Date Received: 12/17/2018 10:00:00 AM Time Collected: 9:30 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/31/2018	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	12/31/2018	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	12/31/2018	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	12/31/2018	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	12/31/2018	Normal (~10 Days)

SAMPLE CONDITION RECORD

Samples received in a cooler?	No
Samples received intact?	Yes
What is the temperature of the sample(s)? (°C)	3.2
Samples received with a COC?	Yes
Samples received within holding time?	Yes
Are all sample bottles properly preserved?	No
Labels and chain agree?	Yes
Total number of containers?	3

Anatek Labs,

Chain of Custody Record

181217 016 HDRS Last 12/31/2018

1 st SAMP 12/17/201 1st RCVD 12/17/2018

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 S AND FILTER
504 F Sprague Ste D. Spokane WA 99202 (509) 838-3999 FAX 838-4433

		→ 504 E Sp	rague Ste D,					(00)	000		- / -						
Compa	any Name: HDR				ct Man			Α	ime	e Na	vicki	s-Bı	rasch	1	Please refer to our normal turn around times at:		
Addres	s: 14	01 E. Trent Ave		Proje	ct Nam	ne & #	# :			Sa	nd F	ilter			http://www.anateklabs.com/services/guidelines/reporting.asp		
City:	Spokane	State: WA Zip:	99202	Email Address : aimee.navickis-brasch@hdrinc.com								c.com	Normal *All rush orderPhone Next Day* requests must beMail				
Phone:				Purchase Order #:									2nd Day*				
Fax:				Sam	oler N a	me &	phone	ə :		(5	09)99	95-0	557				
	Provide Sa	ample Description	1				List	Ana	lyse	s Re	ques	sted			Note Special Instructions/Comments		
		water influent and efflue		# of Containers	Sample Volume	5 SIM	Cut Zn.	totala 1. Sined	Hardness M 23 406	Total Phos	NWTPN	DETENDA DETENDA			Please send the invoice for lab testing to Jake Saxon at Spokane County: JSAXON@spokanecounty.org		
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of (Sam	755	TSS	900Mu2867 200	BEJFOP2	atrificialis 200682R	bi nasc af IOB/ISS	M13951 14500	AFPH D	logy x	SWBS		
	IN12172018	12/17/2018-8:00 am	water	8		×	×	×	×	×	×						
	12EF12172018	12/17/2018 8:00 am	water	5	<u> </u>	×	×	×	×	×	×	_		-			
	18EF12172018	12/17/2018. 8:00 am	water	ì	-	×	×	×	×	×	×	_	-	<u> </u>			
				+	-	-	-	-	\vdash	+-	-	-	-				
				+	+-	-	+-	\vdash	-	+	-	-		\vdash			
				+	\vdash				-	\vdash	_		\vdash	t			
			 	+	\vdash	\vdash	<u> </u>	t^-	\vdash	T	t				Inspection Checklist		
															Received Intact? Labels & Chains Agree? Containers Sealed? VOC Head Space? VOC Head Space?		
	Prin	nted Name	Signature					Con	npany	1		Date	9	Time			
Relin	nquished by	IMER N. Brash	lullion	esd	\			P	108			12	17	10:00	Temperature (°C): 3.2° D16.04		
	eived by	KSWH	Bu	A	_			as	Te	lu		12	117/1	1000	Preservative: lab pres H2504 R359-3 42 E		
	nguished by	,	1									/			Hr.1 R318-2 <2 pH P18285-3C		
	eived by														Date & Time: 12-17-18 1/30		
															Inspected By: N/O/		
	nquished by		1														
Rec	eived by			-		-	-	_	-								

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HDR, INC - SPOKANE

Address: 1401 E TRENT AVE, STE 101

SPOKANE, WA 99202

Attn: AIMEE NAVICKIS-BRASCH Batch #: 190121014

Project Name: STORMWATER

TREATMENT

MONITORING

Analytical Results Report

Sample Number 190121014-001 Sampling Date 1/18/2019 Date/Time Received 1/21/2019 3:00 PM 6:00 PM **Digested Date** Client Sample ID IN01182019 Sampling Time Sample Location

Water Matrix

Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00451	mg/L	0.001	1/24/2019 1:12:00 PM	BAG	EPA 200.8	
Dissolved Copper	0.00406	mg/L	0.001	1/24/2019 1:09:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0291	mg/L	0.001	1/24/2019 1:09:00 PM	BAG	EPA 200.8	
TSS	8	mg/L	2	1/22/2019 2:45:00 PM	BAS	SM 2540D	
Zinc	0.0338	mg/L	0.001	1/24/2019 1:12:00 PM	BAG	EPA 200.8	

Sampling Date 1/18/2019 Date/Time Received 1/21/2019 3:00 PM Sample Number 190121014-002 18EFF01182019 **Digested Date Client Sample ID** Sampling Time 6:00 PM

Sample Location

Matrix Comments

> **Parameter** Result **Units PQL** Method Qualifier **Analysis Date** Analyst Copper 0.00148 mg/L 0.001 1/24/2019 1:19:00 PM BAG EPA 200.8 0.00146 mg/L 0.001 1/24/2019 1:16:00 PM **BAG** EPA 200.8 **Dissolved Copper** Dissolved Zinc 0.0146 mg/L 0.001 1/24/2019 1:16:00 PM **BAG** EPA 200.8 SM 2540D TSS 5 1 1/22/2019 2:45:00 PM BAS mg/L Zinc 0.0125 mg/L 0.001 1/24/2019 1:19:00 PM **BAG** EPA 200.8

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Thursday, January 31, 2019 Page 1 of 2

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: HDR, INC - SPOKANE

Address: 1401 E TRENT AVE, STE 101

SPOKANE, WA 99202

Attn: AIMEE NAVICKIS-BRASCH Batch #: 190121014

STORMWATER Project Name:

TREATMENT MONITORING

Analytical Results Report

Sample Number	190121014-003	Sampling Date	1/18/2019	Date/Time Received	1/21/2019	3:00 PM
Client Sample ID	12EFF01182019	Sampling Time	6:00 PM	Digested Date		

Sample Location

Matrix Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00139	mg/L	0.001	1/24/2019 1:25:00 PM	BAG	EPA 200.8	
Dissolved Copper	0.00142	mg/L	0.001	1/24/2019 1:22:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0134	mg/L	0.001	1/24/2019 1:22:00 PM	BAG	EPA 200.8	
TSS	<1	mg/L	1	1/22/2019 2:45:00 PM	BAS	SM 2540D	
Zinc	0.00832	mg/L	0.001	1/24/2019 1:25:00 PM	BAG	EPA 200.8	

Authorized Signature

MCL **EPA's Maximum Contaminant Level**

ND Not Detected

Practical Quantitation Limit PQL

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Thursday, January 31, 2019 Page 2 of 2

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: HDR, INC - SPOKANE Order ID:

1401 E TRENT AVE, STE 101 Order Date: 1/21/2019

190121014

SPOKANE WA 99202

Contact Name: AIMEE NAVICKIS-BRASCH Project Name: STORMWATER

Comment: TREATMENT MONITORING

Sample #: 190121014-001 **Customer Sample #:** IN01182019

Recv'd: Matrix: Water Collector: ISABELLA BURZYNSKI Date Collected: 1/18/2019

Quantity: 4 Date Received: 1/21/2019 3:00:00 PM Time Collected: 6:00 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	1/31/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)

Sample #: 190121014-002 Customer Sample #: 18EFF01182019

Recv'd: ✓ Matrix: Water Collector: ISABELLA BURZYNSKI Date Collected: 1/18/2019

Quantity: 4 Date Received: 1/21/2019 3:00:00 PM Time Collected: 6:00 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	1/31/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	1/31/2019	Normal (~10 Davs)

Customer Name: HDR, INC - SPOKANE Order ID: 190121014

1401 E TRENT AVE, STE 101 Order Date: 1/21/2019

SPOKANE WA 99202

Contact Name: AIMEE NAVICKIS-BRASCH Project Name: STORMWATER TREATMENT

TREATMENT MONITORING

Sample #: 190121014-003 **Customer Sample #:** 12EFF01182019

Recv'd: ✓ Matrix: Water Collector: ISABELLA BURZYNSKI Date Collected: 1/18/2019

Quantity: 4 Date Received: 1/21/2019 3:00:00 PM Time Collected: 6:00 PM

Comment:

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	1/31/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	1/31/2019	Normal (~10 Days)

SAMPLE CONDITION RECORD

Samples received in a cooler?	Yes
Samples received intact?	Yes
What is the temperature of the sample(s)? (°C)	6.4
Samples received with a COC?	Yes
Samples received within holding time?	Yes
Are all sample bottles properly preserved?	Yes
Labels and chain agree?	Yes
Total number of containers?	12

0 0

Chain of Custody Record

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433 90121 014 HDRS Last 1/31/2019

1st SAMP 1/18/2019 1st RCVD 1/21/2019

STORMWATER TREATMENT MONITORING

0

0

Nome: As a series of the serie	Project Manager:	Turn Around Time & Reporting
ompany Name: HDR Inc.	Aimee Navicks - Brasch	Please refer to our normal turn around times at:
ty: Spokare WA 99202	Project Name & #: Stormwater Treatment Monitoring	http://www.anateklabs.com/services/guidelines/reporting.asp
State: Zip:		Normal *All rush order requests Phone
ty: Spokare wa 99202	Purchase Order #:	Next Day*Mail
none:		2nd Day*Fax Other* >Email
ax.	Sampler Name & phone: Isabella Burzynsk:	
	List Analyses Requested	Note Special Instructions/Comments
Provide Sample Description	Preservative:	
	8 8 8 8 6 6 6	SWBS
	# of Containers Sample Volume Soiths (TS)	0000
Lab ID Sample Identification Sampling Date/Time Matri	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
17 40 11 5 201 1		
18 EFF0118 2019 01/18/2019 @Gam Wate	54 X X X X X	
12 EFFO1 182019 04/18/2019 @Cop. Wat		
12EFFOTTO SON SOTTE SON COURT		
		Inspection Checklist
		Received Intact?
		Labels & Chains Agree? N
		Containers Sealed?
		VOC Head Space? YN
		nd iconulice
Printed Name Signature	Company Date Time	1111
Relinquished by Nicole Orlen The	8 HDR 1/21 3 PM	Temperature (°C): 4. T. dlg-04
	e hork anatek 1/21/19 1500	Preservative: 14N03
Received by Anne Look Uni	e init	Temperature (°C): 6.4 deg-04 Preservative: 14N03 p. 14 P18285-3C
Relinquished by		1000 1000
Received by		Date & Time: 1-21 11 1000
		Inspected By: Wux
Relinquished by		
Received by		

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: OSBORN CONSULTING

Address: P.O. BOX 48026

SPOKANE, WA 99208

Attn: AIMEE NOVICKIS-BRASCH

Batch #: 190725050

Project Name: GU BIOPOND

Analytical Results Report

 Sample Number
 190725050-001
 Sampling Date
 7/24/2019
 Date/Time Received
 7/24/201910:38 AM

 Client Sample ID
 IN07232019
 Sampling Time
 8:00 AM
 Extraction Date

Matrix Water Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00885	mg/L	0.001	8/1/2019 12:07:00 PM	1 BAG	EPA 200.8	
Dissolved Copper	0.00676	mg/L	0.001	8/1/2019 12:04:00 PM	I BAG	EPA 200.8	
Dissolved Iron	0.128	mg/L	0.01	8/1/2019 12:04:00 PM	I BAG	EPA 200.8	
Dissolved Zinc	0.0307	mg/L	0.001	8/1/2019 12:04:00 PM	I BAG	EPA 200.8	
Hardness	52.0	mg CaCO3/L	1	8/2/2019 9:45:00 AM	NDE	EPA 130.2	
Iron	0.633	mg/L	0.01	8/1/2019 12:07:00 PM	I BAG	EPA 200.8	
PO4/P	0.0352	mg/L	0.01	7/25/2019 5:25:00 PM	1 TLM	SM4500PF	
TSS	78	mg/L	2	7/30/2019 12:35:00 PM	/ BAS	SM 2540D	
Total P	0.334	mg/L	0.1	7/31/2019 11:36:00 AM	Л TLM	SM4500PF	
Diesel	ND	mg/L	0.1	8/6/2019 9:42:00 AM	LMC	NWTPHDX	
Lube Oil	ND	mg/L	0.5	8/6/2019 9:42:00 AM	LMC	NWTPHDX	
Zinc	0.0565	mg/L	0.001	8/1/2019 12:07:00 PM	I BAG	EPA 200.8	

Surrogate Data

Sample Number	190725050-001				
Surrogate St	andard	Method	Percent Recovery	Control Limits	
hexacosane		NWTPHDX	91.0	50-150	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Wednesday, August 14, 2019 Page 1 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: OSBORN CONSULTING

Address: P.O. BOX 48026

SPOKANE, WA 99208

Attn: AIMEE NOVICKIS-BRASCH

Batch #: 190725050

Project Name: GU BIOPOND

Analytical Results Report

 Sample Number
 190725050-002
 Sampling Date
 7/24/2019
 Date/Time Received
 7/24/201910:38 AM

 Client Sample ID
 12EF07232019
 Sampling Time
 8:00 AM
 Extraction Date

Matrix Water Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00640	mg/L	0.001	8/1/2019 12:13:00 PM	M BAG	EPA 200.8	
Dissolved Copper	0.00608	mg/L	0.001	8/1/2019 12:10:00 PM	1 BAG	EPA 200.8	
Dissolved Iron	0.0480	mg/L	0.01	8/1/2019 12:10:00 PM	1 BAG	EPA 200.8	
Dissolved Zinc	0.00740	mg/L	0.001	8/1/2019 12:10:00 PM	1 BAG	EPA 200.8	
Hardness	218	mg CaCO3/L	2	8/2/2019 9:45:00 AM	NDE	EPA 130.2	
Iron	0.169	mg/L	0.01	8/1/2019 12:13:00 PM	1 BAG	EPA 200.8	
PO4/P	0.719	mg/L	0.01	7/25/2019 5:26:00 PM	I TLM	SM4500PF	
TSS	12	mg/L	2	7/30/2019 12:35:00 PM	M BAS	SM 2540D	
Total P	0.886	mg/L	0.1	7/31/2019 11:38:00 AM	M TLM	SM4500PF	
Diesel	ND	mg/L	0.1	8/6/2019 10:38:00 AM	I LMC	NWTPHDX	
Lube Oil	ND	mg/L	0.5	8/6/2019 10:38:00 AM	I LMC	NWTPHDX	
Zinc	0.0139	mg/L	0.001	8/1/2019 12:13:00 PM	1 BAG	EPA 200.8	

Surrogate Data

Sample Number	190725050-002			
Surrogate S	Standard	Method	Percent Recovery	Control Limits
hexacosane		NWTPHDX	87.8	50-150

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Wednesday, August 14, 2019 Page 2 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

OSBORN CONSULTING Client:

Address: P.O. BOX 48026

SPOKANE, WA 99208

Attn: AIMEE NOVICKIS-BRASCH Batch #: 190725050

Project Name: GU BIOPOND

Analytical Results Report

Sample Number **Client Sample ID**

190725050-003 18EF07232019

Sampling Date Sampling Time

7/24/2019 8:00 AM

Date/Time Received

7/24/201910:38 AM

Extraction Date

Matrix

Water

Sample Location

Comments

Result	Unite	POI	Analysis Date	Analyst	Method	Qualifier
Nesuit	Office	IQL	Allalysis Date	Allalyst	Wethou	Qualifie
0.00533	mg/L	0.001	8/1/2019 12:18:00 PM	BAG	EPA 200.8	
0.00515	mg/L	0.001	8/1/2019 12:16:00 PM	I BAG	EPA 200.8	
0.0628	mg/L	0.01	8/1/2019 12:16:00 PM	BAG	EPA 200.8	
0.0102	mg/L	0.001	8/1/2019 12:16:00 PM	BAG	EPA 200.8	
244	mg CaCO3/L	2	8/2/2019 9:45:00 AM	NDE	EPA 130.2	
0.300	mg/L	0.01	8/1/2019 12:18:00 PM	BAG	EPA 200.8	
1.10	mg/L	0.01	7/25/2019 5:29:00 PM	I TLM	SM4500PF	
34	mg/L	2	7/30/2019 12:35:00 PM	/ BAS	SM 2540D	
1.28	mg/L	0.1	7/31/2019 11:41:00 AM	/ TLM	SM4500PF	
ND	mg/L	0.1	8/6/2019 11:33:00 AM	I LMC	NWTPHDX	
ND	mg/L	0.5	8/6/2019 11:33:00 AM	I LMC	NWTPHDX	
0.00852	mg/L	0.001	8/1/2019 12:18:00 PM	BAG	EPA 200.8	
	0.00515 0.0628 0.0102 244 0.300 1.10 34 1.28 ND	0.00533 mg/L 0.00515 mg/L 0.0628 mg/L 0.0102 mg/L 244 mg CaCO3/L 0.300 mg/L 1.10 mg/L 34 mg/L 1.28 mg/L ND mg/L ND mg/L	0.00533 mg/L 0.001 0.00515 mg/L 0.001 0.0628 mg/L 0.01 0.0102 mg/L 0.001 244 mg CaCO3/L 2 0.300 mg/L 0.01 1.10 mg/L 0.01 34 mg/L 2 1.28 mg/L 0.1 ND mg/L 0.5	0.00533 mg/L 0.001 8/1/2019 12:18:00 PM 0.00515 mg/L 0.001 8/1/2019 12:16:00 PM 0.0628 mg/L 0.01 8/1/2019 12:16:00 PM 0.0102 mg/L 0.001 8/1/2019 12:16:00 PM 244 mg CaCO3/L 2 8/2/2019 9:45:00 AM 0.300 mg/L 0.01 8/1/2019 12:18:00 PM 1.10 mg/L 0.01 7/25/2019 5:29:00 PM 34 mg/L 2 7/30/2019 12:35:00 PM 1.28 mg/L 0.1 7/31/2019 11:41:00 AM ND mg/L 0.1 8/6/2019 11:33:00 AM ND mg/L 0.5 8/6/2019 11:33:00 AM	0.00533 mg/L 0.001 8/1/2019 12:18:00 PM BAG 0.00515 mg/L 0.001 8/1/2019 12:16:00 PM BAG 0.0628 mg/L 0.01 8/1/2019 12:16:00 PM BAG 0.0102 mg/L 0.001 8/1/2019 12:16:00 PM BAG 244 mg CaCO3/L 2 8/2/2019 9:45:00 AM NDE 0.300 mg/L 0.01 8/1/2019 12:18:00 PM BAG 1.10 mg/L 0.01 7/25/2019 5:29:00 PM TLM 34 mg/L 2 7/30/2019 12:35:00 PM BAS 1.28 mg/L 0.1 7/31/2019 11:41:00 AM TLM ND mg/L 0.1 8/6/2019 11:33:00 AM LMC ND mg/L 0.5 8/6/2019 11:33:00 AM LMC	0.00533 mg/L 0.001 8/1/2019 12:18:00 PM BAG EPA 200.8 0.00515 mg/L 0.001 8/1/2019 12:16:00 PM BAG EPA 200.8 0.0628 mg/L 0.01 8/1/2019 12:16:00 PM BAG EPA 200.8 0.0102 mg/L 0.001 8/1/2019 12:16:00 PM BAG EPA 200.8 244 mg CaCO3/L 2 8/2/2019 9:45:00 AM NDE EPA 130.2 0.300 mg/L 0.01 8/1/2019 12:18:00 PM BAG EPA 200.8 1.10 mg/L 0.01 7/25/2019 5:29:00 PM TLM SM4500PF 34 mg/L 2 7/30/2019 12:35:00 PM BAS SM 2540D 1.28 mg/L 0.1 7/31/2019 11:41:00 AM TLM SM4500PF ND mg/L 0.1 8/6/2019 11:33:00 AM LMC NWTPHDX ND mg/L 0.5 8/6/2019 11:33:00 AM LMC NWTPHDX

Surrogate Data

Sample Number

190725050-003

Surrogate Standard hexacosane

Method NWTPHDX **Percent Recovery** 89.2

Control Limits 50-150

Authorized Signature

Kathleen a lattle

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Wednesday, August 14, 2019 Page 3 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: OSBORN CONSULTING Order ID: 190725050

P.O. BOX 48026 Order Date: 7/25/2019

SPOKANE WA 99208

Contact Name: AIMEE NOVICKIS-BRASCH Project Name: GU BIOPOND

Comment:

Sample #: 190725050-001 **Customer Sample #:** IN07232019

Recv'd: Matrix: Water Collector: Date Collected: 7/24/2019

Quantity: 7 Date Received: 7/24/2019 10:38:00 AM Time Collected: 8:00 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED ZINC	S	EPA 200.8	8/5/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	8/5/2019	Normal (~10 Days)
IRON SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	8/5/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	8/5/2019	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	8/5/2019	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	8/5/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)

Sample #: 190725050-002 **Customer Sample #:** 12EF07232019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 7/24/2019

Quantity: 5 Date Received: 7/24/2019 10:38:00 AM Time Collected: 8:00 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED ZINC	S	EPA 200.8	8/5/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	8/5/2019	Normal (~10 Davs)

Customer Name: OSBORN CONSULTING Order ID: 190725050

P.O. BOX 48026 Order Date: 7/25/2019

SPOKANE WA 99208

Contact Name: AIMEE NOVICKIS-BRASCH Project Name: GU BIOPOND

Comment:

IRON SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	8/5/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	8/5/2019	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	8/5/2019	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	8/5/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)

Sample #: 190725050-003 **Customer Sample #:** 18EF07232019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 7/24/2019

Quantity: 6 Date Received: 7/24/2019 10:38:00 AM Time Collected: 8:00 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED ZINC	S	EPA 200.8	8/5/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	8/5/2019	Normal (~10 Days)
IRON SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	8/5/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	8/5/2019	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	8/5/2019	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	8/5/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)

Customer Name: OSBORN CONSULTING Order ID: 190725050

P.O. BOX 48026 Order Date: 7/25/2019

SPOKANE WA 99208

Contact Name: AIMEE NOVICKIS-BRASCH Project Name: GU BIOPOND

Comment:

SAMPLE CONDITION RECORD

Samples received in a cooler?	Yes
Samples received intact?	Yes
What is the temperature of the sample(s)? (°C)	14.4
Samples received with a COC?	Yes
Samples received within holding time?	Yes
Are all sample bottles properly preserved?	Yes
Labels and chain agree?	Yes
Total number of containers?	18

Chain of Custody Record 1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246

504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433

'90725 050 OCON Last Due 8/5/2019

1st SAMP 7/24/2019 1st RCVD

7/24/2019

GU BIOPOND

Osborn Consulting							Project Manager: Aimee Navickis-Brasch										Please refer to our normal turn around times at:			
Address: 429 W. 1st Ave						Project Name & #: GU BioPond										http://www.anateklabs.com/services/guidelines/reporting.asp				
City:	Spokane		State: WA	Zip:	99201	Emai	l Addr	ess :	ai	mee	n@c	sbo	rnco	nsu	lting.	com	Normal *All rush orderPhone Next Day* requests must beMail			
Phone);	(509) 867-36	54		Purch	nase C	rder #	# :								2nd Day* prior approvedFax			
Fax:						Sam	oler Na	me &						95-0	557					
	Provid	de Sa	ample Desc	ription	1				List	Ana	lyse	s Re	que	sted			Note Special Instructions/Comments			
	synthetic	storm	water influent a	nd efflue	ent	Containers	Sample Volumes	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	PSD ASTM D3977-97		Please send the invoice for lab testing to Ethan Murnin at Spokane County: emurnin@spokanecounty.org			
Lab ID	Sample Identific	ation	Sampling Dat		Matrix	# of	Sam	TSS	Cu Zn 200	Cu Zn EPA 2	Har 23	Total	W N	_	PS O		SWBS			
	IN07232019		07/24/2019 8	:00 am	water	57		×	X	X	×	X	X	×	×					
	12EF07232019		07/24/2019 8	:00 am	water	556		X	X	X	X	X	X	X						
	18EF07232019		07/24/2019 8	:00 am	water	659		X	X	X	X	X	X	×						
						ــــ						_		_	_					
						<u> </u>		<u> </u>						_						
								├	-					-	-					
						\vdash		├	-	_	_		_	+-			Inspection Checklist			
	 					┈		├	├	-	_	_	_	-	-					
						┿	-	\vdash	\vdash	_	_	-	-	+-	+-		Received Intact? Labels & Chains Agree? N			
						+		\vdash	+			-	_	\vdash	-		Labels & Chains Agree? Y N Containers Sealed? Y N			
						\vdash	 	\vdash	 	-	-	\vdash	-	_	\vdash		VOC Head Space?			
			17/10/10/10/10/10/10/10/10/10/10/10/10/10/			+		\vdash	\vdash				_	+						
		Printe	ed Name		Signature					Com	pany			Date	9	Time	- Cooler IIeel Hand			
Reling	uished by	To	ula Alf	GGINA	Touch Hell	-R	all	00	1	00	T			7/	24/9	10:38a	Temperature (°C): <u> 4</u> , 4			
	ved by	Kath		X KIE		dler				Ana		lal)5	7-24	21	1038	Preservative: MHN03 P18009-7B<2			
Relinq	uished by				10												H2SO4 R379-2-22 NH M8285-36			
Receiv	ved by																Date & Time: 7-25-19 1700			
Relinq	uished by																Inspected By: W/2/			
Receiv	ved by																0			

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: OSBORN CONSULTING

Address: P.O. BOX 48026

SPOKANE, WA 99208

Attn: AIMEE NOVICKIS-BRASCH

Batch #: 190725047

Project Name: GU BIOPOND

Analytical Results Report

Sample Number190725047-001Sampling Date7/24/2019Date/Time Received7/24/20193:25 PMClient Sample IDRNIN07242019Sampling TimeExtraction Date

Sample Location

Matrix Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	ND	mg/L	0.001	8/1/2019 12:01:00 PM	BAG	EPA 200.8	
Dissolved Copper	ND	mg/L	0.001	8/1/2019 11:58:00 AM	BAG	EPA 200.8	
Dissolved Iron	ND	mg/L	0.01	8/1/2019 11:58:00 AM	BAG	EPA 200.8	
Dissolved Zinc	0.00470	mg/L	0.001	8/1/2019 11:58:00 AM	BAG	EPA 200.8	
Hardness	<5	mg CaCO3/L	1	8/2/2019 9:45:00 AM	NDE	EPA 130.2	
Iron	0.0172	mg/L	0.01	8/1/2019 12:01:00 PM	BAG	EPA 200.8	
TSS	2	mg/L	1	7/30/2019 12:35:00 PM	1 BAS	SM 2540D	
Zinc	0.00141	mg/L	0.001	8/1/2019 12:01:00 PM	BAG	EPA 200.8	

Surrogate Data

Authorized Signature

Kathleen A. Sattler, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Wednesday, August 14, 2019 Page 1 of 1

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: OSBORN CONSULTING Order ID: 190725047

P.O. BOX 48026 Order Date: 7/25/2019

SPOKANE WA 99208

Contact Name: AIMEE NOVICKIS-BRASCH Project Name: GU BIOPOND

Comment:

Sample #: 190725047-001 **Customer Sample #:** RNIN07242019

Recv'd: Matrix: Water Collector: Date Collected: 7/24/2019

Quantity: 3 Date Received: 7/24/2019 3:25:00 PM Time Collected:

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
DISSOLVED ZINC	S	EPA 200.8	8/5/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	8/5/2019	Normal (~10 Days)
IRON SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	8/5/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	8/5/2019	Normal (~10 Days)

SAMPLE CONDITION RECORD

Samples received in a cooler?	Yes
Samples received intact?	Yes
What is the temperature of the sample(s)? (°C)	19.1
Samples received with a COC?	Yes
Samples received within holding time?	Yes
Are all sample bottles properly preserved?	Yes
Labels and chain agree?	Yes
Total number of containers?	3

Chain of Custody Record

90725 047 OCON Last Due 1st SAMP 7/24/2019 1st RCVD

8/5/2019

7/24/2019

Compa	any Name:	Osborn Consultin	na		ect Man					-	_		asch	1	rum Around Time & Reporting
Addres	ss:	429 W. 1st Ave		Proje	ect Nam	ne & #	#:			GU	Biol	Pond	1		Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	State: WA Zip:	99201	Emai	il Addre	ess :	ai	mee	n@c	sbo	rnco	nsul	ting.	com	Normal *All rush orderPhone
Phone	ā j	(509) 867-3654		Purch	hase O	rder #	:								2nd Day* prior approvedFax
Fax:				Samp	pler Na	ime &	phone	à:		(50	09)99	95-05	557		Other* <u>*_</u> Email
	Provide S	Sample Description	a				List	Ana	lyse	s Re	ques	sted			Note Special Instructions/Comments
	synthetic storm	nwater influent and efflue	∍nt	Containers	Sample Volume	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Phosphate A 4500-PG	ASTM D3977-97		Please send the invoice for lab testing to Ethan Murnin at Spokane County: emurnin@spokanecounty.org
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of (Sam	TSS	Cu Zn 200	Cu Zn EPA 2	Har 23-	Total	TWN Z	Ortho	AST		r
	RNIN07242019	07/24/2019	water	3		X	X	X	x						Dissolved metals were NOT
															fittered in the field
															SWBS
															Inspection Checklist
															Received Intact? Y N
															Labels & Chains Agree? N
															Containers Sealed?
															VOC Head Space?
															had Coalectic
	Print	ted Name	Signature					Com	pany			Date		Time	, in the second
Relinc	guished by	dow Holfman - Balland	Toughas A	Jollin	- R	Soll	NA	OC	I			7/2	4/9		Temperature (°C): 191° dug o y
	1/2	Swiff	1	A		- American		a	na	tu		7/	71	1525	Temperature (°C): 191° dig o y Preservative: MHNQ3 P18009-78 <2
Relino	quished by											1			pH P18285-3Q
Recei	ved by														Date & Time: 7-25-19 1700
Relinc	quished by														Inspected By: M/g
Recei	ived by														

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY Address: 1026 W BROADWAY

SPOKANE, WA 99260-0430

Attn: **ETHAN MURNIN** Batch #: 190930019

Project Name: SAND FILTER

Gonzaga

Analytical Results Report

Sample Number 190930019-001 Sampling Date 9/28/2019 Date/Time Received 9/30/2019 11:10 AM Client Sample ID IN-09282019 Sampling Time 6:00 PM **Extraction Date** Matrix Water Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00330	mg/L	0.001	10/2/2019 5:29:00 PM	TRC	EPA 200.8	
Dissolved Copper	0.00133	mg/L	0.001	10/2/2019 5:40:00 PM	TRC	EPA 200.8	
Dissolved Iron	0.0126	mg/L	0.01	10/2/2019 5:40:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.0599	mg/L	0.001	10/2/2019 5:40:00 PM	TRC	EPA 200.8	
Hardness	18.0	mg CaCO3/L	1	10/3/2019 10:00:00 AM	NDE	EPA 130.2	
Iron	0.435	mg/L	0.01	10/2/2019 5:29:00 PM	TRC	EPA 200.8	
PO4/P	0.0501	mg/L	0.01	9/30/2019 4:33:00 PM	TLM	SM4500PF	
TSS	68	mg/L	2	10/4/2019 11:00:00 AM	BAS	SM 2540D	
Total P	0.0991	mg/L	0.01	10/8/2019 5:16:00 PM	TLM	SM4500PF	
Diesel	ND	mg/L	0.1	10/9/2019 3:08:00 AM	LMC	NWTPHDX	
Lube Oil	ND	mg/L	0.4	10/9/2019 3:08:00 AM	LMC	NWTPHDX	
Zinc	0.0403	mg/L	0.001	10/2/2019 5:29:00 PM	TRC	EPA 200.8	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Tuesday, October 15, 2019 Page 1 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY Address: 1026 W BROADWAY

SPOKANE, WA 99260-0430

Attn: **ETHAN MURNIN** Batch #: 190930019

Project Name: SAND FILTER

Gonzaga

Analytical Results Report

Sample Number **Client Sample ID**

190930019-002 EF18-09282019 **Sampling Date** 9/28/2019 Sampling Time 6:00 PM

Date/Time Received 9/30/2019 11:10 AM

Matrix Water

Comments

Sample Location

Extraction Date

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00510	mg/L	0.001	10/2/2019 5:37:00 PM	TRC	EPA 200.8	
Dissolved Copper	0.00469	mg/L	0.001	10/2/2019 5:43:00 PM	TRC	EPA 200.8	
Dissolved Iron	0.0513	mg/L	0.01	10/2/2019 5:43:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.0940	mg/L	0.001	10/2/2019 5:43:00 PM	TRC	EPA 200.8	
Hardness	145	mg CaCO3/L	1	10/3/2019 10:00:00 AM	NDE	EPA 130.2	
Iron	0.785	mg/L	0.01	10/2/2019 5:37:00 PM	TRC	EPA 200.8	
PO4/P	0.700	mg/L	0.01	9/30/2019 4:34:00 PM	TLM	SM4500PF	
TSS	50	mg/L	2	10/4/2019 11:00:00 AM	BAS	SM 2540D	
Total P	0.793	mg/L	0.1	10/8/2019 5:16:00 PM	TLM	SM4500PF	
Diesel	ND	mg/L	0.1	10/9/2019 4:02:00 AM	LMC	NWTPHDX	

Sample Number **Client Sample ID** Matrix

Lube Oil

Zinc

190930019-003 **INDIWATER** Water

ND

0.0181

Sampling Date Sampling Time Sample Location

mg/L

mg/L

9/28/2019 6:00 PM

0.4

0.001

10/9/2019 4:02:00 AM

10/2/2019 5:37:00 PM

Date/Time Received

LMC

TRC

9/30/2019 11:10 AM

NWTPHDX

EPA 200.8

Extraction Date

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dissolved Copper	ND	mg/L	0.001	10/2/2019 5:46:00 PM	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.01	10/2/2019 5:46:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.0419	mg/L	0.001	10/2/2019 5:46:00 PM	TRC	EPA 200.8	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Tuesday, October 15, 2019 Page 2 of 3

Taylor Hoffman-Ballard

From: Kathy Sattler <kathy@anateklabs.com>
Sent: Wednesday, October 16, 2019 8:18 AM

To: 'emurnin@spokanecounty.org'; Aimee S. Navickis-Brasch, PhD, PE; Taylor Hoffman-

Ballard, PE

Subject: Sand Filter

Attachments: 190930019_SPKC.pdf; 190930019_SPKC_EDD.xls

Follow Up Flag: Follow up Flag Status: Follow Up

Hello,

I have attached the sand filter report. Budinger is unable to run PSD's on water.

Thank you.

Kathy Sattler Lab Manager/Microbiologist Anatek Labs, Inc. 504 E. Sprague Ave. Suite D Spokane, WA 99202

V: 509-838-3999 F: 509-838-4433 C: 509-879-4797 www.anateklabs.com

Notice of Confidentiality

This message contains confidential information intended exclusively for the intended recipient. This message should not be forwarded to any other party. Use or disclosure of information transmitted in error is prohibited. Please delete the message along with any attachments and alert the sender by return e-mail if this message was received in error.

Let us know how we are doing – click here to complete a customer survey

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY Address:

1026 W BROADWAY

SPOKANE, WA 99260-0430

Attn: ETHAN MURNIN Batch #: 191120022

Project Name: SAND FILTER

Analytical Results Report

Sample Number Client Sample ID

191120022-001 IN-11192019

Sampling Date Sampling Time 11/19/2019 10:10 PM

Date/Time Received 11/20/2019 10:05 AM

Extraction Date

Matrix Comments Water

Sample Location

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
PO4/P	0.0901	mg/L	0.01	11/27/2019 10:51:00 AM	1 TLM	SM4500PF	
TSS	22	mg/L	2	11/26/2019 1:15:00 PM	BAS	SM 2540D	

Sample Number **Client Sample ID** 191120022-002 EF12-11192019 Sampling Date 11/19/2019 **Sample Location**

Date/Time Received 11/20/2019 10:05 AM

Sampling Time 10:10 PM **Extraction Date**

Matrix Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00338	mg/L	0.001	11/27/2019 3:41:00 PM	BAG	EPA 200.8	
Dissolved Copper	0.00324	mg/L	0.001	11/27/2019 3:38:00 PM	BAG	EPA 200.8	
Dissolved Iron	0.0589	mg/L	0.01	11/27/2019 3:38:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0134	mg/L	0.001	11/27/2019 3:38:00 PM	BAG	EPA 200.8	
Hardness	104	mg CaCO3/L	2	11/26/2019 2:30:00 PM	NDE	EPA 130.2	
Iron	0.192	mg/L	0.01	11/27/2019 3:41:00 PM	BAG	EPA 200.8	
NO3/N+NO2/N	15.6	mg/L	2	12/4/2019 4:54:00 PM	TLM	SM 4500 NO3F	
PO4/P	0.349	mg/L	0.01	11/21/2019 2:37:00 PM	TLM	SM4500PF	
TSS	1	mg/L	1	11/26/2019 1:15:00 PM	BAS	SM 2540D	
TKN	0.803	mg/L	0.5	12/5/2019 4:14:00 PM	TLM	SM4500NORGC	
Total Nitrogen	16.4	mg/L		12/9/2019 10:30:00 AM	KAS	Calculation	
Total P	0.416	mg/L	0.05	12/4/2019 2:47:00 PM	TLM	SM4500PF	
Zinc	0.0125	mg/L	0.001	11/27/2019 3:41:00 PM	BAG	EPA 200.8	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Tuesday, December 10, 2019 Page 1 of 2

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY Batch #: 191120022

Address: 1026 W BROADWAY **Project Name:** SAND FILTER

SPOKANE, WA 99260-0430 Attn: **ETHAN MURNIN**

Analytical Results Report

Sample Number **Client Sample ID**

191120022-004 EF12DI-11192019 **Sampling Date** 11/19/2019 Sampling Time 10:10 PM

Date/Time Received 11/20/2019 10:05 AM **Extraction Date**

Matrix

Water

Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dissolved Copper	0.00200	mg/L	0.001	11/27/2019 3:44:00 PM	BAG	EPA 200.8	
Dissolved Iron	ND	mg/L	0.01	11/27/2019 3:44:00 PM	BAG	EPA 200.8	
Dissolved Zinc	0.0131	mg/L	0.001	11/27/2019 3:44:00 PM	BAG	EPA 200.8	

Authorized Signature

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Tuesday, December 10, 2019

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: SPOKANE COUNTY Order ID: 191120022

1026 W BROADWAY **Order Date:** 11/20/2019

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment:

Sample #: 191120022-001 Customer Sample #: IN-11192019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 11/19/2019

Quantity: 1 Date Received: 11/20/2019 10:05:00 AM Time Collected: 10:10 PM

Comment:

 Test
 Lab
 Method
 Due Date
 Priority

 PHOSPHATE/P FIA
 S
 SM4500PF
 12/4/2019
 Normal (~10 Days)

 SOLIDS - TSS
 S
 SM 2540D
 12/4/2019
 Normal (~10 Days)

Sample #: 191120022-002 **Customer Sample #:** EF12-11192019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 11/19/2019

Quantity: 1 Date Received: 11/20/2019 10:05:00 AM Time Collected: 10:10 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/4/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/4/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	12/4/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/4/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/4/2019	Normal (~10 Days)
IRON SPO	S	EPA 200.8	12/4/2019	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	12/4/2019	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	12/4/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	12/4/2019	Normal (~10 Days)
TKN-SPO	S	SM4500NORGC	12/4/2019	Normal (~10 Days)
TOTAL NITROGEN	S	Calculation	12/4/2019	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	12/4/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	12/4/2019	Normal (~10 Days)

Sample #: 191120022-004 **Customer Sample #:** EF12DI-11192019

Recv'd: Matrix: Water Collector: Date Collected: 11/19/2019

Quantity: 1 Date Received: 11/20/2019 10:05:00 AM Time Collected: 10:10 PM

Comment:

Test	Lab	Method	Due Date	Priority
DISSOLVED COPPER SPO	S	EPA 200.8	12/4/2019	Normal (~10 Davs)

Customer Name: SPOKANE COUNTY Order ID: 191120022

1026 W BROADWAY **Order Date**: 11/20/2019

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment:

 DISSOLVED IRON SPO
 S
 EPA 200.8
 12/4/2019
 Normal (~10 Days)

 DISSOLVED ZINC SPO
 S
 EPA 200.8
 12/4/2019
 Normal (~10 Days)

SAMPLE CONDITION RECORD

Samples received in a cooler?	Yes
Samples received intact?	Yes
What is the temperature of the sample(s)? (°C)	2.4
Samples received with a COC?	Yes
Samples received within holding time?	Yes
Are all sample bottles properly preserved?	Yes
Labels and chain agree?	Yes
Total number of containers?	7

Chain of Custody Record 1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246

91120 022 SPKC Last 12/4/2019

11/20/2019

1 st SAMP 11/19/201 1st RCVD

504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433 S AND FILTER

Compa	ny Name:	ınty		ect Mar					Etha	n Mu	ırnin	1			riease refer to our normal turn around times at;	
Addres	s: 1026 V	N. Broadway A	venue	Proje	ect Nan	ne & a	# :			Sa	nd F	ilter				http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	State: WA Z	p: 99260	Ema	il Addre	ess :	Е	MUF	RNIN	@sp	okaı	neco	unty	.org		Normal *All rush orderPhone Next Day* requests must beMail
Phone:		(509) 477-7420		Purc	hase C	rder #	‡ :									
Fax:				Sampler Name & phone: (509)995-0557								Other* <u>*_</u> Email				
	Provide S	ample Descript	ion				List	Ana	lyse	s Re	ques	sted				Note Special Instructions/Comments
	stormwate	er influent and efflue	nt	Containers	Sample Volumes	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	Total Nitrogen SM4500 - Calculated	TKN SM4500	NO3-NO2 SM4500	Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identification	Sampling Date/Ti	me Matrix	# of	San	TS	Cu Zr	Cu Zr EPA	H S	Tota	N Z	Ortho	To SM45	È	NO3	
01	IN-11192019	11/19/19 22:		4		×	ex_	×	×	×	X,	×	×	×	X	
	EF18-11192019	11/19/19 22:	0 water	4		×	×	×	×	×	×	×	×	×	×	
02	EF12-11192019 11/19/19 22:10 water			1		X.	×	X'	X'	x	X	X	×	×	X =	No Dx received
03	3 INDI-11192019 \		U water	1			_	×								Not received
	-EF18DI-11192019	11/19/19 22:1		_	-	_		×								
04	EF12DI-11192019	11/19/19 22:	10 water	╄		-	-	X			_	_	-	_		
				+	-	┼			-	_	-	-	-			Inspection Checklist
		-		+	-	+-	-		-	-	_	\vdash	-			Received Intact? N
				+-	+	+-			\vdash	-	_	\vdash	\vdash			Labels & Chains Agree? Y N
		-		+	+	_	-		\vdash		_	<u> </u>			\vdash	Containers Sealed? Y N
				+	+	+										VOC Head Space? / / Y N
				T												hall Carlentico
	Prin	ited Name	Signature	//	,			Com	pany			Date	9	Time)	pacy course place
Relin	quished by	CKER MUNS	IN SERVE	1			-	Spol	kave	Ca	TTOW	11/	19	22	30	VOC Head Space? N N hal Coulousee Temperature (°C): 24° dig-o 7
		25 cott	Su	e G				a	nel	u		ill	20/19	10	05	Preservative:
Relin	quished by	*										(,	1			
	ived by															Date & Time:
Relin	Relinquished by															Inspected By:
Rece	ceived by															

Chain of Custody Record

Anatek Log-In #

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246

							FAA 002-9240	
04 E	Sprague	Ste D,	Spokane	WA	99202	(509) 838-399	9 FAX 838-4433	

Compa	Spokane County				ct Man	-				Etha	n Mu	ırnin				Turn Around Time & Reporting Please refer to our normal turn around times at:
Addres	is: 1026 \	W. Broadway Aven	ue	Proje	ct Nam	ne & #	# :			Sa	nd F	ilter				http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	State: WA Zip:	99260	Email Address : EMURNIN@spokanecounty.org									Normal *All rush orderPhone Next Day* requests must beMail			
Phone	:	509-477-7420		Purchase Order #:										2nd Day* prior approvedFax		
Fax:					Sampler Name & phone: (509)995-0557										Other* X_Email	
	Provide Sa	ample Description					List	Ana	lyse	s Re	ques	ted				Note Special Instructions/Comments
stormwater influent and effluent				# of Containers	Sample Volumes	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	ss, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	Total Nitrogen SM4500 - Calculated	TKN SM4500	NO3-NO2 SM4500	Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of (Sam	TSS	Cu Zn 200	Cu Zn EPA 2	Hardne	Total	WN N	Ortho	Tota SM450	ΤX	NO3-N	
	IN-11122019	11/19/20 @ 22:10	water	1		X										
	EF18-11122019		water	0												
	EF12-11122019	11/19/20 @ 22:10	water	2		X		X								
	INDI-11122019		water	0											_	
	EF18DI-11122019		water	0											_	
	EF12DI-11122019	11/19/20 @ 22:10	water	1	-		_	X	-	-					+-	COC smailed 11/25/19
				+					-						\vdash	Inspection Checklist
				t^{-}												Received Intact? Y N
				T												Labels & Chains Agree? Y N
				T												Containers Sealed? Y N
	1															VOC Head Space? Y N
	Print	ted Name	Signature					Com	pany			Date		Time	e e	
Polin	quished by	leu Mairie	Oignature					Com	puriy			Date				Temperature (°C):
	eived by															Preservative:
	quished by															
	eived by				***************************************	dendarina quita			Kara di Kacama		- WF-TI-					Date & Time:
Relin	quished by											_				Inspected By:
Rece	eived by															

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY Address:

1026 W BROADWAY SPOKANE, WA 99260-0430

Attn: **ETHAN MURNIN** Batch #: 190930019

Project Name: SAND FILTER

Gonzaga

Analytical Results Report

Sample Number **Client Sample ID**

190930019-004 **EF18-DIWATER** **Sampling Date** 9/28/2019 Sampling Time 6:00 PM

Date/Time Received 9/30/2019 11:10 AM

Extraction Date

Matrix

Water

Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dissolved Copper	ND	mg/L	0.001	10/2/2019 5:48:00 PM	TRC	EPA 200.8	
Dissolved Iron	0.0160	mg/L	0.01	10/2/2019 5:48:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.146	mg/L	0.001	10/2/2019 5:48:00 PM	TRC	EPA 200.8	

Authorized Signature

MCL EPA's Maximum Contaminant Level

ND Not Detected

Practical Quantitation Limit PQL

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Tuesday, October 15, 2019 Page 3 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: SPOKANE COUNTY Order ID: 190930019

1026 W BROADWAY **Order Date:** 9/30/2019

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment: PSD SUB TO BUDI Gonzaga

Sample #: 190930019-001 **Customer Sample #:** IN-09282019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 9/28/2019

Quantity: 4 Date Received: 9/30/2019 11:10:00 AM Time Collected: 6:00 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	10/10/2019	Normal (~10 Days)
IRON SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	10/10/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	10/10/2019	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	10/10/2019	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	10/10/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)

Sample #: 190930019-002 **Customer Sample #:** EF18-09282019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 9/28/2019

Quantity: 4 Date Received: 9/30/2019 11:10:00 AM Time Collected: 6:00 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	10/10/2019	Normal (~10 Davs)

Customer Name: SPOKANE COUNTY Order ID: 190930019

1026 W BROADWAY **Order Date:** 9/30/2019

Gonzaga

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment: PSD SUB TO BUDI

IRON SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	10/10/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	10/10/2019	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	10/10/2019	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	10/10/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)

Sample #: 190930019-003 Customer Sample #: INDIWATER

Recv'd:

✓ Matrix: Water Collector: Date Collected: 9/28/2019

Quantity: 1 Date Received: 9/30/2019 11:10:00 AM Time Collected: 6:00 PM

Comment:

Test	Lab	Method	Due Date	Priority
DISSOLVED COPPER SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)

Sample #: 190930019-004 Customer Sample #: EF18-DIWATER

Recv'd:✓Matrix:WaterCollector:Date Collected:9/28/2019Quantity:1Date Received:9/30/2019 11:10:00 AMTime Collected:6:00 PM

Comment:

Test	Lab	Method	Due Date	Priority
DISSOLVED COPPER SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	10/10/2019	Normal (~10 Days)

Customer Name: SPOKANE COUNTY Order ID: 190930019

1026 W BROADWAY **Order Date**: 9/30/2019

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment: PSD SUB TO BUDI

SAMPLE CONDITION RECORD

Samples received in a cooler?		Yes
Samples received intact?		Yes
What is the temperature of the sam	nple(s)? (°C)	1.5
Samples received with a COC?		Yes
Samples received within holding tin	ne?	Yes
Are all sample bottles properly pres	served?	Yes
Labels and chain agree?		Yes
Total number of containers?		12

Chain of Custody Record

90930 019 SPKC Last 10/10/2019 1st SAMP 9/28/2019 1st RCVD 9/30/2019 SAND FILTER

	1282 Alturas Drive, M	Moscow ID 83843	(208) 883-2839	FAX 882-9246 (0
2	504 E Sprague Ste D, S	Spokane WA 9920	2 (509) 838-3999	FAX 838-4433	

mpany Name: Spokane County					ct Mar	nager:			ı	Etha	n Mu	Please refer to our normal turn around times at:			
ddress	1026 W	. Broadway Aven	ue	Project Name & #: Sand Filter Gonzaga									http://www.anateklabs.com/services/guidelines/reporting.asp		
ity:	Spokane	State: WA Zip:	99260		il Addre			MUF	RNIN	@sp	oka	neco	unty	org.	Normal *All rush orderPhoneNext Day* requests must beMail
hone:	(!	509) 477-7420		Purchase Order #:										2nd Day* prior approvedFax	
ax:				Sampler Name & phone: (509)995-0557										Other* <u>×_</u> Email	
Provide Sample Description							List	Ana	lyse	s Re	que	sted			Note Special Instructions/Comments
	stormwater	influent and effluent		Containers	Sample Volume	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	PSD ASTM D3977-97		Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of	Sam	TSS	Cu Zn 200	Cu Zn EPA 2	Har 23	Total	TWN Z	_	ğ. D		
	IN-09282019	09/28/19 6:00pm	water	4		×	×	×	×	×	×	×	×		metals tiltered
	EF18-09282019	09/28/19 6:00pm	water	4		×	×	×	×	×	×	×	×		ger diss:
	INDIWater	09/28/19 6:00pm	water	1				×							0
	EF18-DIWater	09/28/19 6:00pm	water	1				×							SWBS
															BUDI-PSD
															Inspection Checklist
											_				Received Intact?
															Labels & Chains Agree? (Y) N
															Containers Sealed? Y N
									<u> </u>						VOC Head Space?
				丄					<u></u>						hall poleulies.
	Print	ted Name	Signature	1				Com	pany			Date		Time	150 00000
Relin	quished by	KER MUNSON	tolly	6	12	_	300	GIO	NEAD	Sy14.	U.	9/3		11:10	Temperature (°C): 15 dig 69
	eived by	SwH	150	ett				a	nal	lik		9/3	0/19	1110	Preservative: HCI R385-3-2 9H P18285-30
Relin	equished by		1					_				-			H2504 R386-322 HN03 P18009-7B 22
Rec	eived by							_		-		_			Date & Time: 9-30-19 1430
Reli	nquished by							_				_		-	Inspected By: Wy
Rec	eived by		V												

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY

Address: 1026 W BROADWAY

Batch #: 1
Project Name:

191209036

1026 W BROADWAY SPOKANE, WA 99260-0430 Gonzaga

Attn: ETHAN MURNIN

Analytical Results Report

Sample Number 191209036-001 **Sampling Date** 12/7/2019 **Date/Time Received** 12/9/2019 8:09 AM

Client Sample ID IN-12072019 Sampling Time 1:40 PM Extraction Date

Matrix Water Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00353	mg/L	0.001	12/16/2019 12:57:00 PM	TRC	EPA 200.8	
Dissolved Copper	0.00306	mg/L	0.001	12/16/2019 12:29:00 PM	TRC	EPA 200.8	
Dissolved Iron	0.176	mg/L	0.01	12/16/2019 12:29:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.0240	mg/L	0.001	12/16/2019 12:29:00 PM	TRC	EPA 200.8	
Hardness	14.5	mg CaCO3/L	1	12/10/2019 11:30:00 AM	NDE	EPA 130.2	
Iron	0.315	mg/L	0.01	12/16/2019 12:57:00 PM	TRC	EPA 200.8	
NO3/N+NO2/N	0.188	mg/L	0.1	12/17/2019 9:46:00 AM	TLM	SM 4500 NO3F	
PO4/P	0.122	mg/L	0.01	12/9/2019 2:06:00 PM	KAS	SM4500PF	
TSS	16	mg/L	1	12/12/2019 10:15:00 AM	BAS	SM 2540D	
TKN	<0.5	mg/L	0.5	12/12/2019 1:34:00 PM	KAS	SM4500NORGC	
Total Nitrogen	ND	mg/L		12/17/2019 1:51:00 PM	TLM	Calculation	
Diesel	ND	mg/L	0.1	12/17/2019 2:58:00 AM	LMC	NWTPHDX	
Lube Oil	ND	mg/L	0.4	12/17/2019 2:58:00 AM	LMC	NWTPHDX	
Zinc	0.0246	mg/L	0.001	12/16/2019 12:57:00 PM	TRC	EPA 200.8	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: **SPOKANE COUNTY** Address:

1026 W BROADWAY

SPOKANE, WA 99260-0430

Attn: ETHAN MURNIN Batch #: 191209036

Project Name: SAND FILTER

Analytical Results Report

Sample Number 191209036-002 **Sampling Date** 12/7/2019 Date/Time Received 12/9/2019 8:09 AM

EF18-12072019 **Extraction Date Client Sample ID** Sampling Time 1:40 PM

Matrix Sample Location Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00386	mg/L	0.001	12/16/2019 1:00:00 PM	TRC	EPA 200.8	
Dissolved Copper	0.00361	mg/L	0.001	12/16/2019 12:32:00 PM	TRC	EPA 200.8	
Dissolved Iron	0.00977	mg/L	0.01	12/16/2019 12:32:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.0133	mg/L	0.001	12/16/2019 12:32:00 PM	TRC	EPA 200.8	
Hardness	148	mg CaCO3/L	2	12/10/2019 11:30:00 AM	NDE	EPA 130.2	
Iron	0.301	mg/L	0.01	12/16/2019 1:00:00 PM	TRC	EPA 200.8	
NO3/N+NO2/N	0.602	mg/L	0.1	12/17/2019 9:48:00 AM	TLM	SM 4500 NO3F	
PO4/P	0.454	mg/L	0.01	12/9/2019 2:07:00 PM	KAS	SM4500PF	
TSS	8	mg/L	1	12/12/2019 10:15:00 AM	BAS	SM 2540D	
TKN	<0.5	mg/L	0.5	12/12/2019 1:36:00 PM	KAS	SM4500NORGC	
Total Nitrogen	0.602	mg/L		12/17/2019 1:52:00 PM	TLM	Calculation	
Total P	0.576	mg/L	0.01	12/12/2019 3:08:00 PM	KAS	SM4500PF	
Diesel	ND	mg/L	0.1	12/17/2019 3:52:00 AM	LMC	NWTPHDX	
Lube Oil	ND	mg/L	0.4	12/17/2019 3:52:00 AM	LMC	NWTPHDX	
Zinc	0.00504	mg/L	0.001	12/16/2019 1:00:00 PM	TRC	EPA 200.8	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY Address: 1026 W BROADWAY

SPOKANE, WA 99260-0430

Attn: ETHAN MURNIN Batch #: 191209036

Project Name: SAND FILTER

Analytical Results Report

Sample Number Client Sample ID

191209036-003 EF12-12072019

Water

Sampling Date Sampling Time

12/7/2019 1:40 PM

Date/Time Received 12/9/2019 8:09 AM **Extraction Date**

Sample Location

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00315	mg/L	0.001	12/16/2019 2:07:00 PM	TRC	EPA 200.8	
Dissolved Copper	0.00255	mg/L	0.001	12/16/2019 12:35:00 PM	TRC	EPA 200.8	
Dissolved Iron	0.0489	mg/L	0.01	12/16/2019 12:35:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.0115	mg/L	0.001	12/16/2019 12:35:00 PM	TRC	EPA 200.8	
Hardness	101	mg CaCO3/L	2	12/10/2019 11:30:00 AM	NDE	EPA 130.2	
Iron	0.146	mg/L	0.01	12/16/2019 2:07:00 PM	TRC	EPA 200.8	
NO3/N+NO2/N	0.305	mg/L	0.1	12/17/2019 9:49:00 AM	TLM	SM 4500 NO3F	
PO4/P	0.354	mg/L	0.01	12/9/2019 2:08:00 PM	KAS	SM4500PF	
TSS	3	mg/L	1	12/12/2019 10:15:00 AM	BAS	SM 2540D	
TKN	<0.5	mg/L	0.5	12/12/2019 1:37:00 PM	KAS	SM4500NORGC	
Total Nitrogen	ND	mg/L		12/17/2019 1:53:00 PM	TLM	Calculation	
Total P	0.505	mg/L	0.01	12/12/2019 3:09:00 PM	KAS	SM4500PF	
Diesel	ND	mg/L	0.1	12/17/2019 4:47:00 AM	LMC	NWTPHDX	
Lube Oil	ND	mg/L	0.4	12/17/2019 4:47:00 AM	LMC	NWTPHDX	
Zinc	0.00298	mg/L	0.001	12/16/2019 2:07:00 PM	TRC	EPA 200.8	

Sample Number Client Sample ID

191209036-004 INDI-12072019

Water

Sampling Date Sampling Time **Sample Location**

12/7/2019 1:40 PM

Date/Time Received 12/9/2019

8:09 AM

Extraction Date

Matrix Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dissolved Copper	ND	mg/L	0.001	12/16/2019 12:48:00 PM	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.01	12/16/2019 12:48:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.00778	mg/L	0.001	12/16/2019 12:48:00 PM	TRC	EPA 200.8	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY Address:

1026 W BROADWAY

SPOKANE, WA 99260-0430

Attn: **ETHAN MURNIN** Batch #: 191209036

Project Name: SAND FILTER

Analytical Results Report

Sample Number **Client Sample ID**

191209036-005 EF18DI-12072019 **Sampling Date** 12/7/2019 **Sampling Time** 1:40 PM

Date/Time Received 12/9/2019 8:09 AM

Extraction Date

Matrix

Water

Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dissolved Copper	ND	mg/L	0.001	12/16/2019 12:51:00 PM	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.01	12/16/2019 12:51:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.00780	mg/L	0.001	12/16/2019 12:51:00 PM	TRC	EPA 200.8	

Sample Number Client Sample ID

191209036-006 EF12DI-12072019

Water

Sampling Date 12/7/2019 **Sampling Time** 1:40 PM

Date/Time Received 12/9/2019 8:09 AM **Extraction Date**

Sample Location

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dissolved Copper	ND	mg/L	0.001	12/16/2019 12:54:00 PM	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.01	12/16/2019 12:54:00 PM	TRC	EPA 200.8	
Dissolved Zinc	0.0114	mg/L	0.001	12/16/2019 12:54:00 PM	TRC	EPA 200.8	

Authorized Signature

Kathleen a.

MCL FPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: SPOKANE COUNTY Order ID: 191209036

1026 W BROADWAY **Order Date:** 12/9/2019

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment:

Sample #: 191209036-001 **Customer Sample #:** IN-12072019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/7/2019

Quantity: 6 Date Received: 12/9/2019 8:09:00 AM Time Collected: 1:40 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/19/2019	Normal (~10 Days)
IRON SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	12/19/2019	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	12/19/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	12/19/2019	Normal (~10 Days)
TKN-SPO	S	SM4500NORGC	12/19/2019	Normal (~10 Days)
TOTAL NITROGEN	S	Calculation	12/19/2019	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	12/19/2019	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	12/19/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)

Sample #: 191209036-002 Customer Sample #: EF18-12072019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/7/2019

Quantity: 6 Date Received: 12/9/2019 8:09:00 AM Time Collected: 1:40 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/19/2019	Normal (~10 Days)
IRON SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	12/19/2019	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	12/19/2019	Normal (~10 Davs)

Customer Name: SPOKANE COUNTY Order ID: 191209036

12/9/2019

Order Date:

1026 W BROADWAY

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment:

SOLIDS - TSS	S	SM 2540D	12/19/2019	Normal (~10 Days)
TKN-SPO	S	SM4500NORGC	12/19/2019	Normal (~10 Days)
TOTAL NITROGEN	S	Calculation	12/19/2019	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	12/19/2019	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	12/19/2019	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)

Sample #: 191209036-003 **Customer Sample #:** EF12-12072019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/7/2019

Quantity: 6 Date Received: 12/9/2019 8:09:00 AM Time Collected: 1:40 PM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	12/19/2019	Normal (~10 Days)
IRON SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	12/19/2019	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	12/19/2019	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	12/19/2019	Normal (~10 Days)
TKN-SPO	s	SM4500NORGC	12/19/2019	Normal (~10 Days)
TOTAL NITROGEN	s	Calculation	12/19/2019	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	12/19/2019	Normal (~10 Days)
TPHDX-NW	s	NWTPHDX	12/19/2019	Normal (~10 Days)
ZINC SPO	s	EPA 200.8	12/19/2019	Normal (~10 Days)

Sample #: 191209036-004 **Customer Sample #:** INDI-12072019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/7/2019

Quantity: 1 Date Received: 12/9/2019 8:09:00 AM Time Collected: 1:40 PM

Comment:

Test	Lab	Method	Due Date	Priority
DISSOLVED COPPER SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)

Customer Name: SPOKANE COUNTY Order ID: 191209036

1026 W BROADWAY **Order Date**: 12/9/2019

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment:

Sample #: 191209036-005 **Customer Sample #:** EF18DI-12072019

Recv'd:

✓ Matrix: Water Collector: Date Collected: 12/7/2019

Quantity: 1 Date Received: 12/9/2019 8:09:00 AM Time Collected: 1:40 PM

Comment:

Test	Lab	Method	Due Date	Priority
DISSOLVED COPPER SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/19/2019	Normal (~10 Davs)

Sample #: 191209036-006 **Customer Sample #:** EF12DI-12072019

Recv'd:

✓ Matrix: Water Collector: Date Collected: 12/7/2019

Quantity: 1 Date Received: 12/9/2019 8:09:00 AM Time Collected: 1:40 PM

Comment:

Test	Lab	Method	Due Date	Priority
DISSOLVED COPPER SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	12/19/2019	Normal (~10 Days)

SAMPLE CONDITION RECORD

Samples received in a cooler?	Yes
Samples received intact?	Yes
What is the temperature of the sample(s)? (°C)	2.8
Samples received with a COC?	Yes
Samples received within holding time?	Yes
Are all sample bottles properly preserved?	Yes
Labels and chain agree?	No
Total number of containers?	21

Chain of Custody Record

91209 036 SPKC Last 12/19/2019
1st SAMP 12/7/2019 1st RCVD 12/9/2019
\$ AND FILTER

1282 Alturas	Drive, Moscow	ID 83843	(208) 883-2839	FAX 882-9246	0
504 E Sprague	Ste D, Spokane	WA 9920	2 (509) 838-399	9 FAX 838-443	3 C

Compa	any Name: Spokane County			у	Proje	ct Mar	nager:				Etha	n Mu	ırnin				Turn Around Time & Reporting Please refer to our normal turn around times at:	
Addres	ss: 1	026 W	/. Broa	adway Ave	nue	Proje	ct Nar	ne & a	#:			Sar	nd Fi	lter				http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	St	tate:	WA Zip:	99260	Emai	I Addr	ess :		EM	URN	IIN@	spok	cane	coun	ty.or	9	Normal *All rush orderPhone Next Day* requests must beMail
Phone:		50	09-477	7-7420		Purc	nase C	order #	‡ :									2nd Day*
Fax:						Sam	oler Na	me &	phone	e:		(50	09)99	95-05	557			Other* 8_Email
	Provid	de San	nple D	escription	1				List	Ana	lyse	s Re	ques	sted		/		Note Special Instructions/Comments
	stormw	ater influ	uent and	d effluent		Containers	Sample Volumes	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340E (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	Total Nitrogen SM4500 -	TKN SM4500	NO3-NO2 SM4500	Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identific	ation S	Sampling	g Date/Time	Matrix	# of (Sam	TSS	Cu Zn 200	Cu Zn EPA 2	Hardne	Total F	WN	Ortho	Total	¥	NO3	SWBS
	IN-12072019	1	2-7-1	9 1340	water	4		8	8	8	8	8	8	8	8	8	8	
1.11	EF18-1207201	9		l	water	4		8	8	8	8	8	8	8	8	8	8	
	EF12-12072019)			water	1		8	8	8	8	8	8	8	8	8	8	
	INDI-12072019				water	1				8								
	EF18DI-120720	19			water	_				8								
	EF12DI-120720	19	نـ		water					8								
			/VI h	hottles		_												Increasion Charleigt
			per.	1000				-	-					_		_		Inspection Checklist
1000		_				┈	_	-								_	-	Received Intact? Labels & Chains Agree? Y N N
		-				\vdash	-	-	-					_	-	-		Labels & Chains Agree? Y N Containers Sealed? Y N
						╁	-	-	-					-	-			VOC Head Space?
			1177 1177 1177 1 77			\vdash	_	-	-					_				
		Printed	Name		Signature		2 1 1 1 1		10.00	Com	pany			Date		Time		Cooler IIce Hand
Reling	uished by	Anna E				Snace								12/09	9/19	8:	05	Temperature (°C): 2.8 016-04
Receiv	red by	Rathy Sottles Kathy Sottles Anotele labs 12-9-19 0809		9	Preservative: HCI R385-3 < 2 HN03 f18009-7													
Relinq	uished by	1			1 0													H ₂ So ₄ R ₃₈₆₋₃ = 2 pH P18285-3V Date & Time: 12-9-19 0805 1400
Receiv	ved by																	Date & Time: 12-9-19 0805 1400
Relinq	uished by																	Inspected By: KAS Wig
Receiv	ed by																	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY Address: 1026 W BROADWAY

SPOKANE, WA 99260-0430

Attn: ETHAN MURNIN Batch #: 191220035

Project Name:

SAND FILTER

Analytical Results Report

Sample Number **Client Sample ID**

191220035-001 IN-11122019

Sampling Date 12/20/2019 Sampling Time 9:00 AM

Date/Time Received **Extraction Date**

12/20/20112:26 PM

Matrix

Water

Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date A	nalyst	Method	Qualifie
Copper	0.00365	mg/L	0.001	12/26/2019 12:00:00 P	M TRC	EPA 200.8	
Dissolved Copper	0.00215	mg/L	0.001	12/26/2019 11:43:00 A	M TRC	EPA 200.8	
Dissolved Iron	0.0268	mg/L	0.01	12/27/2019 1:34:00 PM	/ TRC	EPA 200.8	
Dissolved Zinc	0.0279	mg/L	0.001	12/26/2019 11:43:00 A	M TRC	EPA 200.8	
Hardness	153	mg CaCO3/L	2	12/20/2019 3:30:00 PM	/ NDE	EPA 130.2	
Iron	0.164	mg/L	0.01	12/27/2019 1:47:00 PM	/ TRC	EPA 200.8	
NO3/N+NO2/N	<0.1	mg/L	0.1	12/31/2019 12:01:00 P	M TLM	SM 4500 NO3F	
PO4/P	0.113	mg/L	0.01	12/20/2019 4:15:00 PM	Л TLM	SM4500PF	
TSS	14	mg/L	2	12/26/2019 7:45:00 AM	/ BAS	SM 2540D	
TKN	1.18	mg/L	0.5	1/8/2020 3:09:00 PM	TLM	SM4500NORGC	
Total Nitrogen	1.18	mg/L		1/8/2020 4:01:00 PM	TLM	Calculation	
Total P	0.190	mg/L	0.01	1/3/2020 2:06:00 PM	TLM	SM4500PF	
Diesel	ND	mg/L	0.1	1/3/2020 11:06:00 PM	I LMC	NWTPHDX	
Lube Oil	ND	mg/L	0.4	1/3/2020 11:06:00 PM	I LMC	NWTPHDX	
Zinc	0.0236	mg/L	0.001	12/26/2019 12:00:00 P	M TRC	EPA 200.8	

Surrogate Data

Sample Number

191220035-001

Surrogate Standard hexacosane

Method **NWTPHDX** **Percent Recovery** 95.8

Control Limits 50-150

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Friday, January 10, 2020 Page 1 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: **SPOKANE COUNTY** Address: 1026 W BROADWAY

Water

SPOKANE, WA 99260-0430

Attn: ETHAN MURNIN Batch #: 191220035

Project Name: SAND FILTER

Analytical Results Report

Sample Number 191220035-002 **Sampling Date** 12/20/2019 **Client Sample ID** EF18-11122019

Sampling Time 9:00 AM

Date/Time Received **Extraction Date**

12/20/20112:26 PM

Sample Location

Comments

Matrix

Parameter	Result	Units	PQL	Analysis Date A	Analyst	Method	Qualifier
Copper	0.00164	mg/L	0.001	12/26/2019 12:03:00 P	M TRC	EPA 200.8	
Dissolved Copper	0.00127	mg/L	0.001	12/26/2019 11:46:00 A	M TRC	EPA 200.8	
Dissolved Iron	0.0257	mg/L	0.01	12/27/2019 1:41:00 PM	И TRC	EPA 200.8	
Dissolved Zinc	0.00842	mg/L	0.001	12/26/2019 11:46:00 A	M TRC	EPA 200.8	
Hardness	315	mg CaCO3/L	2	12/20/2019 3:30:00 PM	M NDE	EPA 130.2	
Iron	0.158	mg/L	0.01	12/27/2019 1:50:00 PM	и TRC	EPA 200.8	
NO3/N+NO2/N	0.201	mg/L	0.1	12/31/2019 12:02:00 P	M TLM	SM 4500 NO3F	
PO4/P	0.283	mg/L	0.01	12/20/2019 4:16:00 PM	и TLM	SM4500PF	
TSS	6	mg/L	1	12/26/2019 7:45:00 AM	M BAS	SM 2540D	
TKN	<0.5	mg/L	0.5	1/8/2020 3:10:00 PM	TLM	SM4500NORGC	
Total Nitrogen	ND	mg/L		1/8/2020 4:01:00 PM	TLM	Calculation	
Total P	0.496	mg/L	0.1	1/3/2020 2:26:00 PM	TLM	SM4500PF	
Diesel	ND	mg/L	0.1	1/3/2020 12:02:00 AM	1 LMC	NWTPHDX	
Lube Oil	ND	mg/L	0.4	1/3/2020 12:02:00 AM	1 LMC	NWTPHDX	
Zinc	0.00384	mg/L	0.001	12/26/2019 12:03:00 P	M TRC	EPA 200.8	

Surrogate Data

Sample Num	lber 191220035-002				
Suri	rogate Standard	Method	Percent Recovery	Control Limits	
hexa	acosane	NWTPHDX	86.6	50-150	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Friday, January 10, 2020 Page 2 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY
Address: 1026 W BROADWAY

SPOKANE, WA 99260-0430

Attn: ETHAN MURNIN

Batch #: 191220035

Project Name:

SAND FILTER

Analytical Results Report

Sample Number
Client Sample ID

191220035-003 EF12-11122019

Water

Sampling Date 13
Sampling Time 9

Sample Location

12/20/2019 9:00 AM

Date/Time Received

12/20/20112:26 PM

Extraction Date

Matrix Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Copper	0.00110	mg/L	0.001	12/26/2019 12:05:00	PM TRC	EPA 200.8	
Dissolved Copper	ND	mg/L	0.001	12/26/2019 11:49:00	AM TRC	EPA 200.8	
Dissolved Iron	0.0124	mg/L	0.01	12/27/2019 1:44:00 F	PM TRC	EPA 200.8	
Dissolved Zinc	0.00910	mg/L	0.001	12/26/2019 11:49:00	AM TRC	EPA 200.8	
Hardness	292	mg CaCO3/L	2	12/20/2019 3:30:00 F	PM NDE	EPA 130.2	
Iron	0.0291	mg/L	0.01	12/27/2019 1:54:00 F	PM TRC	EPA 200.8	
NO3/N+NO2/N	0.110	mg/L	0.1	12/31/2019 12:03:00	PM TLM	SM 4500 NO3F	
PO4/P	0.215	mg/L	0.01	12/20/2019 4:18:00 F	PM TLM	SM4500PF	
TSS	5	mg/L	1	12/26/2019 7:45:00 /	AM BAS	SM 2540D	
TKN	<0.5	mg/L	0.5	1/8/2020 3:11:00 P	M TLM	SM4500NORGC	
Total Nitrogen	ND	mg/L		1/8/2020 4:02:00 P	M TLM	Calculation	
Total P	0.409	mg/L	0.1	1/3/2020 2:28:00 P	M TLM	SM4500PF	
Diesel	ND	mg/L	0.1	1/3/2020 12:57:00 A	M LMC	NWTPHDX	
Lube Oil	ND	mg/L	0.4	1/3/2020 12:57:00 A	M LMC	NWTPHDX	

Surrogate Data

Sample Number

Zinc

191220035-003

Surrogate Standard hexacosane

Method NWTPHDX

mg/L

Percent Recovery 91.4

0.001 12/26/2019 12:05:00 PM TRC

Control Limits 50-150

EPA 200.8

Authorized Signature

Kathleen A. Sattler, Lab Manager

Kathlen a. Sattle

0.00130

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Friday, January 10, 2020 Page 3 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

191220035

SAND FILTER

Client: SPOKANE COUNTY Batch #:

Address: 1026 W BROADWAY Project Name:

SPOKANE, WA 99260-0430

Attn: ETHAN MURNIN

Analytical Results Report Quality Control Data

Parameter	LCS Result	Units	LCS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
TKN	1.86	mg/L	2	93.0	90-110	1/8/2020	1/8/2020
Diesel	0.840	mg/L	1	84.0	50-150	1/3/2020	1/3/2020
NO3/N+NO2/N	0.202	mg/L	0.2	101.0	80-120	12/31/2019	12/31/2019
Iron	0.114	mg/L	0.1	114.0	85-115	12/24/2019	12/27/2019
Dissolved Iron	0.114	mg/L	0.1	114.0	85-115	12/24/2019	12/27/2019
TSS	98	mg/L	100	98.0	90-110	12/26/2019	12/26/2019
Zinc	0.0460	mg/L	0.05	92.0	85-115	12/24/2019	12/26/2019
Zinc	0.0460	mg/L	0.05	92.0	85-115	12/24/2019	12/26/2019
Dissolved Zinc	0.0460	mg/L	0.05	92.0	85-115	12/24/2019	12/26/2019
Dissolved Copper	0.0469	mg/L	0.05	93.8	85-115	12/24/2019	12/26/2019
Copper	0.0469	mg/L	0.05	93.8	85-115	12/24/2019	12/26/2019
Copper	0.0469	mg/L	0.05	93.8	85-115	12/24/2019	12/26/2019
PO4/P	0.103	mg/L	0.1	103.0	80-120	12/20/2019	12/20/2019
Hardness	101	mg CaCO3/L	100	101.0	90-110	12/20/2019	12/20/2019

Lab Control Sample Duplicate								
	LCSD		LCSD			AR		
Parameter	Result	Units	Spike	%Rec	%RPD	%RPD	Prep Date	Analysis Date
Hardness	100	mg CaCO3/L	100	100.0	1.0	0-25	12/20/2019	12/20/2019

Matrix Spike	Matrix Spike											
	_	Sample	e MS		MS		AR					
Sample Number	Parameter	Result	Result	Units	Spike	%Rec	%Rec	Prep Date	Analysis Date			
191223010-001A	Zinc	0.423	0.461	mg/L	0.05	76.0	70-130	12/24/2019	12/26/2019			
191223010-001A	Zinc	0.423	0.461	mg/L	0.05	76.0	70-130	12/24/2019	12/26/2019			
191220035-003	Diesel	ND	0.973	mg/L	1	97.3	50-150	1/3/2020	1/3/2020			
191219006-001	TKN	1.24	3.45	mg/L	2	110.5	80-120	1/8/2020	1/8/2020			
191220035-003	TSS	5	120	mg/L	100	115.0	80-120	12/26/2019	12/26/2019			
191220035-003	PO4/P	0.215	0.312	mg/L	0.1	97.0	80-120	12/20/2019	12/20/2019			
191223005-001	NO3/N+NO2/N	<0.1	0.197	mg/L	0.2	98.5	70-130	12/31/2019	12/31/2019			
191223010-001A	Iron	0.0186	0.125	mg/L	0.1	106.4	70-130	12/24/2019	12/27/2019			
191217025-001B	Hardness	135	236	mg CaCO3/L	100	101.0	80-120	12/20/2019	12/20/2019			
191223010-001A	Dissolved Zinc	0.423	0.461	mg/L	0.05	76.0	70-130	12/24/2019	12/26/2019			
191223010-001A	Dissolved Iron	0.0186	0.125	mg/L	0.1	106.4	70-130	12/24/2019	12/27/2019			
191223010-001A	Dissolved Copper	0.105	0.156	mg/L	0.05	102.0	70-130	12/24/2019	12/26/2019			

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Friday, January 10, 2020 Page 1 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY
Address: 1026 W BROADWAY

Project Name: SAND FILTER

191220035

Batch #:

SPOKANE, WA 99260-0430

Attn: ETHAN MURNIN

Analytical Results Report Quality Control Data

Matrix Spike											
Sample Number	Darameter	Sample	MS	Units	MS	%Rec	AR	Bron Doto	Analysis Date		
Sample Number	Parameter	Result	Result	Ullits	Spike	70KeC	%Rec	Frep Date	Allalysis Date		
191223010-001A	Copper	0.105	0.156	mg/L	0.05	102.0	70-130	12/24/2019	12/26/2019		
191223010-001A	Copper	0.105	0.156	mg/L	0.05	102.0	70-130	12/24/2019	12/26/2019		

Matrix Spike Duplicate								
Parameter	MSD Result	Units	MSD Spike	%Rec	%RPD	AR %RPD	Prep Date	Analysis Date
Zinc	0.461	mg/L	0.05	76.0	0.0	0-20	12/24/2019	12/26/2019
Zinc	0.461	mg/L	0.05	76.0	0.0	0-20	12/24/2019	12/26/2019
Diesel	0.915	mg/L	1	91.5	6.1	0-50	1/3/2020	1/3/2020
TSS	118	mg/L	100	113.0	1.7	0-20	12/26/2019	12/26/2019
PO4/P	0.315	mg/L	0.1	100.0	1.0	0-20	12/20/2019	12/20/2019
NO3/N+NO2/N	0.161	mg/L	0.2	80.5	20.1	0-25	12/31/2019	12/31/2019
Iron	0.122	mg/L	0.1	103.4	2.4	0-20	12/24/2019	12/27/2019
Hardness	234	mg CaCO3/L	100	99.0	0.9	0-20	12/20/2019	12/20/2019
Dissolved Zinc	0.461	mg/L	0.05	76.0	0.0	0-20	12/24/2019	12/26/2019
Dissolved Iron	0.122	mg/L	0.1	103.4	2.4	0-20	12/24/2019	12/27/2019
Dissolved Copper	0.157	mg/L	0.05	104.0	0.6	0-20	12/24/2019	12/26/2019
Copper	0.157	mg/L	0.05	104.0	0.6	0-20	12/24/2019	12/26/2019
Copper	0.157	mg/L	0.05	104.0	0.6	0-20	12/24/2019	12/26/2019

Parameter	Result	Units	PQL	Prep Date	Analysis Date
	ND		0.001	12/24/2019	12/26/2019
Copper	ND	mg/L	0.001	12/24/2019	12/20/2019
Copper	ND	mg/L	0.001	12/24/2019	12/26/2019
Diesel	ND	mg/L	0.1	1/3/2020	1/3/2020
Dissolved Copper	ND	mg/L	0.001	12/24/2019	12/26/2019
Dissolved Iron	ND	mg/L	0.001	12/24/2019	12/27/2019
Dissolved Zinc	ND	mg/L	0.001	12/24/2019	12/26/2019
Hardness	<5	mg CaCO3/L	1	12/20/2019	12/20/2019
Iron	ND	mg/L	0.01	12/24/2019	12/27/2019
Lube Oil	ND	mg/L	0.4	1/3/2020	1/3/2020

NO3/N+NO2/N < 0.1 mg/L 0.05 12/31/2019 12/31/2019 PO4/P ND 0.01 12/20/2019 12/20/2019 mg/L TKN <0.5 mg/L 0.5 1/8/2020 1/8/2020 **TSS** mg/L 1 12/26/2019 12/26/2019 <1 Zinc ND 0.001 12/24/2019 12/26/2019 mg/L

Comments:

Method Blank

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Friday, January 10, 2020 Page 2 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: SPOKANE COUNTY
Address: 1026 W BROADWAY

Batch #: 191220035

Project Name: SAND FILTER

SPOKANE, WA 99260-0430

Attn: ETHAN MURNIN

Analytical Results Report

Quality Control Data

Method Blank									
Parameter		Ro	esult	Units	P	QL	Prep Date	Analysis Date	
Zinc		N	ND			001	12/24/2019	12/26/2019	
Duplicate									
Sample Number	Parameter	Sample Result	Duplicate Result	Units	%RPD	AR %RPD	Prep Date	Analysis Date	
191224006-002	TSS	13 11		mg/L	16.7	0-20	12/26/2019	12/26/2019	
191224006-002	TSS	13	11	mg/L	16.7	0-20	12/26/2019	12/26/2019	
191211029-001	Hardness	16.5	16.0	mg CaCO3/L	3.1	0-25	12/20/2019	12/20/2019	

AR Acceptable Range ND Not Detected

PQL Practical Quantitation Limit RPD Relative Percentage Difference

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; NV:ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Friday, January 10, 2020 Page 3 of 3

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: SPOKANE COUNTY Order ID: 191220035

1026 W BROADWAY Order Date: 12/20/2019

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment:

Sample #: 191220035-001 Customer Sample #: IN-11122019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/20/2019

Quantity: 1 Date Received: 12/20/2019 12:26:00 PM Time Collected: 9:00 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	1/4/2020	Normal (~10 Days)
IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	1/4/2020	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	1/4/2020	Normal (~10 Days)
TKN	S	SM4500NORGC	1/4/2020	Normal (~10 Days)
TOTAL NITROGEN	S	Calculation	1/4/2020	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	1/4/2020	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)

Sample #: 191220035-002 Customer Sample #: EF18-11122019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/20/2019

Quantity: 1 Date Received: 12/20/2019 12:26:00 PM Time Collected: 9:00 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	1/4/2020	Normal (~10 Days)
IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	1/4/2020	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)

Customer Name: SPOKANE COUNTY Order ID: 191220035

Order Date:

12/20/2019

1026 W BROADWAY

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment:

SOLIDS - TSS	S	SM 2540D	1/4/2020	Normal (~10 Days)
TKN	S	SM4500NORGC	1/4/2020	Normal (~10 Days)
TOTAL NITROGEN	S	Calculation	1/4/2020	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	1/4/2020	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)

Sample #: 191220035-003 **Customer Sample #:** EF12-11122019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/20/2019

Quantity: 1 Date Received: 12/20/2019 12:26:00 PM Time Collected: 9:00 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	1/4/2020	Normal (~10 Days)
IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	1/4/2020	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	1/4/2020	Normal (~10 Days)
TKN	S	SM4500NORGC	1/4/2020	Normal (~10 Days)
TOTAL NITROGEN	S	Calculation	1/4/2020	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	1/4/2020	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)

SAMPLE CONDITION RECORD

Samples received in a cooler?	Yes
Samples received intact?	Yes
What is the temperature of the sample(s)? (°C)	2.2
Samples received with a COC?	Yes
Samples received within holding time?	Yes
Are all sample bottles properly preserved?	Yes
Are VOC samples free of headspace?	
Is there a trip blank to accompany VOC samples?	
Labels and chain agree?	Yes
Total number of containers?	15

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name: SPOKANE COUNTY Order ID: 191220035

1026 W BROADWAY Order Date: 12/20/2019

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment:

Sample #: 191220035-001 Customer Sample #: IN-11122019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/20/2019

Quantity: 1 Date Received: 12/20/2019 12:26:00 PM Time Collected: 9:00 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	1/4/2020	Normal (~10 Days)
IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	1/4/2020	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	1/4/2020	Normal (~10 Days)
TKN	S	SM4500NORGC	1/4/2020	Normal (~10 Days)
TOTAL NITROGEN	S	Calculation	1/4/2020	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	1/4/2020	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)

Sample #: 191220035-002 Customer Sample #: EF18-11122019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/20/2019

Quantity: 1 Date Received: 12/20/2019 12:26:00 PM Time Collected: 9:00 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	1/4/2020	Normal (~10 Days)
IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	1/4/2020	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)

Customer Name: SPOKANE COUNTY Order ID: 191220035

Order Date:

12/20/2019

1026 W BROADWAY

SPOKANE WA 99260-0430

Contact Name: ETHAN MURNIN Project Name: SAND FILTER

Comment:

SOLIDS - TSS	S	SM 2540D	1/4/2020	Normal (~10 Days)
TKN	S	SM4500NORGC	1/4/2020	Normal (~10 Days)
TOTAL NITROGEN	S	Calculation	1/4/2020	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	1/4/2020	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)

Sample #: 191220035-003 **Customer Sample #:** EF12-11122019

Recv'd: ✓ Matrix: Water Collector: Date Collected: 12/20/2019

Quantity: 1 Date Received: 12/20/2019 12:26:00 PM Time Collected: 9:00 AM

Comment:

Test	Lab	Method	Due Date	Priority
COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED COPPER SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
DISSOLVED ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
HARDNESS EPA 130.2	S	EPA 130.2	1/4/2020	Normal (~10 Days)
IRON SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)
NITRATE+NITRITE FIA	S	SM 4500 NO3F	1/4/2020	Normal (~10 Days)
PHOSPHATE/P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
SOLIDS - TSS	S	SM 2540D	1/4/2020	Normal (~10 Days)
TKN	S	SM4500NORGC	1/4/2020	Normal (~10 Days)
TOTAL NITROGEN	S	Calculation	1/4/2020	Normal (~10 Days)
TOTAL P FIA	S	SM4500PF	1/4/2020	Normal (~10 Days)
TPHDX-NW	S	NWTPHDX	1/4/2020	Normal (~10 Days)
ZINC SPO	S	EPA 200.8	1/4/2020	Normal (~10 Days)

SAMPLE CONDITION RECORD

Samples received in a cooler?	Yes
Samples received intact?	Yes
What is the temperature of the sample(s)? (°C)	2.2
Samples received with a COC?	Yes
Samples received within holding time?	Yes
Are all sample bottles properly preserved?	Yes
Are VOC samples free of headspace?	
Is there a trip blank to accompany VOC samples?	
Labels and chain agree?	Yes
Total number of containers?	15

Chain of Custody Record

 191220
 035
 SPKC
 Last Due
 1/4/2020

 1st SAMP
 12/20/201
 1st RCVD
 12/20/2019

SAND FILTER

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433

Compa	any Name:	S	Spokane (County	/	Proje	ect Mai	nager:				Etha	n Mu	ırnin	1			Please refer to our normal turn around times at:
Address: 1026 W. Broadway Avenue					Project Name & #: Sand Filter									http://www.anateklabs.com/services/guidelines/reporting.asp				
City:	Spokane	Sta	te: WA	Zip:	99260	Ema	il Addr	ess:	E	MUF	RNIN	l@sp	oka	neco	unty	org/.org		Normal *All rush orderPhone Next Day* requests must beMail
hone):	(50	9) 477-74	20		Purc	hase C	Order #	# :									non_bay requests must beFaxFax
ax:						Sam	pler Na	ame &	phone	e:		(5	09)9	95-0	557			Other* <u>*_</u> Email
	Provide	e Sam	ple Desc	ription					List	Ana	lyse	s Re	que	sted				Note Special Instructions/Comments
	stormw	vater inf	fluent and ef	ffluent		Containers	Sample Volumes	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	Total Nitrogen SM4500 - Calculated	TKN SM4500	NO3-NO2 SM4500	Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identificat	tion S	ampling Dat	e/Time	Matrix	# of (Sam	TSS	Cu Zn 200	Cu Zn EPA 2	Han 23	Total	W N	Ortho	Tota SM450	¥	NO3-N	
	IN-11122019	12	1-20-19 0	M00	water	5		X	X	X	X	X	X	X	X	X	×	
	EF18-11122019	17	2-20-19 (water	5		×	X	X	X	X	X	X	×	X	X	
	EF12-11122019	12-	26-19 0	900	water	5	-	×	X	×	X	X	×	X	×	*	X	
		_				\vdash		+					\vdash					
		_				-	-	-	-	-	-	├-	-		-	_	-	Inspection Checklist
		_				\vdash	+-	+	\vdash	\vdash	+	\vdash	\vdash	\vdash	+-		-	Received Intact? (Y) N
						\vdash	+	+	†	_	\vdash	\vdash	1	 	<u> </u>	<u> </u>	 	Labels & Chains Agree? N
								1			\vdash	\vdash	1		<u> </u>	\vdash		Containers Sealed? N
											1						,	VOC Head Space? Y N
																		1
		Printed	Name	A	Signature	1	n		00	Con	npany			Date	-	Time		NCT - 200 - 251 gar
	nquished by	71	thran-	Balla	15 tayon	120	en	Bal	lis	2	CI	ple		_	20-19	-	26	Temperature (°C): 2-20 119-04 BVM Preservative: HCI R385-3
		Broe	K GREVE	ur_	Boer	4	7			M	vey	CW.		10	20 01	16	LO	H, SU4 R3863 pH 2 P182853
	eived by																	Date & Time: 12-20-19 14-00
	nquished by																	Inspected By: KAS
Rece	eived by																	

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

01/29/20 09:02

Attn: Ethan Murnin

Date Received:

Work Order: WAA0225
Project: Gonzaga

Reported: 2/20/2020 12:49

Analytical Results Report

Sample Location: IN-01282010

Lab/Sample Number: WAA0225-01

Collect Date: Collected By: 01/28/20 17:55

12" and 18" Effluents were switched in the

field.

Analyte	Result	Result Units		Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N + Nitrite/N	0.420	mg/L	0.100	2/7/20 10:51	TLM	SM 4500-NO3 F	
TKN	<0.5	mg/L	0.500	2/10/20 16:01	TLM	SM 4500-Norg D	
Hardness	20.0	mg CaCO3/L	1.00	2/3/20 11:40	NDE	SM 2340 C	
Phosphate/P	0.0502	mg/L	0.0100	1/30/20 15:29	TLM	SM 4500-P G	
Total P	0.105	mg/L	0.100	2/11/20 15:36	TLM	SM 4500-P F	
TSS	11.0	mg/L	1.00	2/4/20 15:45	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00369	mg/L	0.00100	2/3/20 14:58	Metals	EPA 200.8	
Dissolved Copper	0.00373	mg/L	0.00100	2/3/20 13:40	Metals	EPA 200.8	
Iron	0.313	mg/L	0.0100	2/3/20 14:58	Metals	EPA 200.8	
Dissolved Iron	0.0170	mg/L	0.0100	2/3/20 13:40	Metals	EPA 200.8	
Zinc	0.0217	mg/L	0.00100	2/3/20 14:58	Metals	EPA 200.8	
Dissolved Zinc	0.0192	mg/L	0.00100	2/3/20 13:40	Metals	EPA 200.8	
Semivolatiles							
Lube Oil	ND	mg/L	0.500	2/12/20 3:11	LMC	EPA 8015D	
Mineral Oil	ND	mg/L	0.100	2/12/20 3:11	LMC	EPA 8015D	
Diesel	ND	mg/L	0.100	2/12/20 3:11	LMC	EPA 8015D	
Surrogate: n-Hexacosane	103%		50-150	2/12/20 3:11	LMC	EPA 8015D	

Sample Location: EF18-01282020

Lab/Sample Number: WAA0225-02 Collect Date: 01/28/20 17:55

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N + Nitrite/N	1.00	mg/L	0.100	2/7/20 10:52	TLM	SM 4500-NO3 F	
TKN	<0.5	mg/L	0.500	2/10/20 16:02	TLM	SM 4500-Norg D	
Hardness	59.0	mg CaCO3/L	1.00	2/3/20 11:40	NDE	SM 2340 C	
Phosphate/P	0.445	mg/L	0.0100	1/30/20 15:30	TLM	SM 4500-P G	
Total P	0.516	mg/L	0.100	2/11/20 15:39	TLM	SM 4500-P F	
TSS	3.50	mg/L	1.00	2/4/20 15:45	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00685	mg/L	0.00100	2/3/20 15:02	Metals	EPA 200.8	
Dissolved Copper	0.00670	mg/L	0.00100	2/3/20 13:43	Metals	EPA 200.8	
Iron	0.282	mg/L	0.0100	2/3/20 15:02	Metals	EPA 200.8	
Dissolved Iron	0.136	mg/L	0.0100	2/3/20 13:43	Metals	EPA 200.8	
Zinc	0.00570	mg/L	0.00100	2/3/20 15:02	Metals	EPA 200.8	
Dissolved Zinc	0.0176	mg/L	0.00100	2/3/20 13:43	Metals	EPA 200.8	
Semivolatiles							
Lube Oil	ND	mg/L	0.500	2/12/20 4:06	LMC	EPA 8015D	
Mineral Oil	ND	mg/L	0.100	2/12/20 4:06	LMC	EPA 8015D	
Diesel	ND	mg/L	0.100	2/12/20 4:06	LMC	EPA 8015D	
Surrogate: n-Hexacosane	83.4%		50-150	2/12/20 4:06	LMC	EPA 8015D	

Sample Location: EF12-01282020

Lab/Sample Number: WAA0225-03 Collect Date: 01/28/20 17:55

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N + Nitrite/N	0.683	mg/L	0.100	2/7/20 10:57	TLM	SM 4500-NO3 F	
TKN	0.801	mg/L	0.500	2/10/20 16:03	TLM	SM 4500-Norg D	
Hardness	52.0	mg CaCO3/L	1.00	2/3/20 11:40	NDE	SM 2340 C	
Phosphate/P	0.738	mg/L	0.0100	1/30/20 15:31	TLM	SM 4500-P G	
Total P	0.945	mg/L	0.100	2/11/20 15:41	TLM	SM 4500-P F	
TSS	1.50	mg/L	1.00	2/4/20 15:45	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00835	mg/L	0.00100	2/3/20 15:05	Metals	EPA 200.8	
Dissolved Copper	0.00840	mg/L	0.00100	2/3/20 13:46	Metals	EPA 200.8	
Iron	0.476	mg/L	0.0100	2/3/20 15:05	Metals	EPA 200.8	
Dissolved Iron	0.166	mg/L	0.0100	2/3/20 13:46	Metals	EPA 200.8	
Zinc	0.00888	mg/L	0.00100	2/3/20 15:05	Metals	EPA 200.8	
Dissolved Zinc	0.0192	mg/L	0.00100	2/3/20 13:46	Metals	EPA 200.8	
Semivolatiles							
Lube Oil	ND	mg/L	0.500	2/12/20 5:00	LMC	EPA 8015D	
Mineral Oil	ND	mg/L	0.100	2/12/20 5:00	LMC	EPA 8015D	
Diesel	ND	mg/L	0.100	2/12/20 5:00	LMC	EPA 8015D	
Surrogate: n-Hexacosane	112%		50-150	2/12/20 5:00	LMC	EPA 8015D	

Sample Location: INDI-01282020

Lab/Sample Number: WAA0225-04 Collect Date: 01/28/20 17:55

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00204	mg/L	0.00100	2/3/20 13:49	Metals	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	2/3/20 13:49	Metals	EPA 200.8	
Dissolved Zinc	0.0147	mg/L	0.00100	2/3/20 13:49	Metals	EPA 200.8	

Sample Location: EF18DI-01282020

Lab/Sample Number: WAA0225-05 Collect Date: 01/28/20 17:55

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00569	mg/L	0.00100	2/3/20 13:53	Metals	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	2/3/20 13:53	Metals	EPA 200.8	
Dissolved Zinc	0.0828	mg/L	0.00100	2/3/20 13:53	Metals	EPA 200.8	

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Sample Location: EF12DI-01282020

Lab/Sample Number: WAA0225-06 Collect Date: 01/28/20 17:55

Date Received: 01/29/20 09:02 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00247	mg/L	0.00100	2/3/20 13:56	Metals	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	2/3/20 13:56	Metals	EPA 200.8	
Dissolved Zinc	0.00906	mg/L	0.00100	2/3/20 13:56	Metals	EPA 200.8	

Authorized Signature,

Brock Gerger For Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Back Dog

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAA0048 - W FIA										
Blank (BAA0048-BLK1)					Prepared 8	& Analyzed: 1	/30/2020			
Phosphate/P	ND		0.0100	mg/L						
LCS (BAA0048-BS1)					Prepared 8	& Analyzed: 1	/30/2020			
Phosphate/P	0.0958		0.0102	mg/L	0.102		93.9	0-200		
Matrix Spike (BAA0048-MS1)		Source: W	VAA0182-02		Prepared 8	& Analyzed: 1	/30/2020			
Phosphate/P	0.286		0.0102	mg/L	0.102	0.186	97.4	0-200		
Matrix Spike Dup (BAA0048-MSD1)		Source: W	VAA0182-02		Prepared & Analyzed: 1/30/2020					
Phosphate/P	0.287		0.0102	mg/L	0.102	0.186	98.4	0-200	0.357	200
Batch: BAB0003 - W Wet Chem Blank (BAB0003-BLK1) Hardness	ND		1.00 r	ng CaCO3/L	Prepared	& Analyzed: 2	2/3/2020			
Blank (BAB0003-BLK2)					Prepared	& Analyzed: 2	2/3/2020			
Hardness	ND		1.00 r	ng CaCO3/L	-,	,	, -,			
LCS (BAB0003-BS1)					Prepared	& Analyzed: 2	2/3/2020			
Hardness	101		r	ng CaCO3/L	100		101	0-200		
LCS Dup (BAB0003-BSD1)					Prepared	& Analyzed: 2	2/3/2020			
Hardness	100		r	ng CaCO3/L	100		100	0-200	0.995	200
Duplicate (BAB0003-DUP1)	Source: WAA0246-01 P		Prepared & Analyzed: 2/3/2020							
Hardness	168		2.00 r	ng CaCO3/L		167			0.597	200

Quality Control Data (Continued)

Annhan	5	0. 1	Reporting		Spike	Source	0/5=0	%REC	DDE	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0003 - W Wet Chem (Continue	d)								
Matrix Spike (BAB0003-MS1)		Source: V	VAA0224-01		Prepared	& Analyzed: 2	2/3/2020			
Hardness	114			mg CaCO3	/L 100	15.0	99.0	0-200		
Matrix Spike Dup (BAB0003-MSD1)		Source: V	VAA0224-01		Prepared	& Analyzed: 2	2/3/2020			
Hardness	115			mg CaCO3	/L 100	15.0	100	0-200	0.873	200
Batch: BAB0067 - FIA										
Blank (BAB0067-BLK1)					Prepared: 2/6,	/2020 Analyze	ed: 2/10/2020)		
TKN	ND		0.500	mg/L						
Blank (BAB0067-BLK2)					Prepared	& Analyzed: 2	/12/2020			
TKN	ND		0.500	mg/L						
LCS (BAB0067-BS1)					Prepared	& Analyzed: 2	/10/2020			
TKN	1.93		0.500	mg/L	2.00		96.5	80-120		
LCS (BAB0067-BS2)					Prepared	& Analyzed: 2	/10/2020			
TKN	1.87		0.500	mg/L	2.00		93.5	80-120		
Matrix Spike (BAB0067-MS1)		Source: V	VAB0075-02		Prepared: 2/6	/2020 Analyze	ed: 2/10/2020)		
TKN	2.31		0.500	mg/L	2.00	0.361	97.5	70-130		
Matrix Spike (BAB0067-MS2)		Source: V	VAB0085-02	185-02 Prepared: 2/6/2020 Analyzed: 2/10/2020						
TKN	2.70		0.500	mg/L	2.00	0.854	92.1	70-130		
Matrix Spike Dup (BAB0067-MSD1)		Source: V	VAB0075-02		Prepared	& Analyzed: 2	/10/2020			
TKN	2.44		0.500	mg/L	2.00	0.361	104	70-130	5.39	200

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0067 - FIA (Continued)										
Matrix Spike Dup (BAB0067-MSD2)		Source: V	VAB0085-02		Prepared: 2/6/					
TKN	2.78		0.500	mg/L	2.00	0.854	96.4	70-130	3.11	200
Batch: BAB0085 - W Filtration										
Blank (BAB0085-BLK1)					Prepared	& Analyzed: 2	2/4/2020			
TSS	ND		1.00	mg/L	·	·				
Blank (BAB0085-BLK2)					Prepared	& Analyzed: 2	2/4/2020			
TSS	ND		1.00	mg/L						
LCS (BAB0085-BS1)					Prepared					
TSS	99.0			mg/L	100		99.0	90-110		
LCS Dup (BAB0085-BSD1)	Prepared & Analyzed: 2/4/2020									
TSS	95.0			mg/L	100		95.0	90-110	4.12	10
Duplicate (BAB0085-DUP1)		Source: V	VAA0213-01		Prepared	& Analyzed: 2	2/4/2020			
TSS	33.0		1.00	mg/L		30.0			9.52	20
Matrix Spike (BAB0085-MS1)		Source: V	VAA0214-02		Prepared	& Analyzed: 2	2/4/2020			
TSS	218		2.00	mg/L	100	113	105	80-120		
Matrix Spike Dup (BAB0085-MSD1)		Source: V	VAA0214-02		Prepared	& Analyzed: 2	2/4/2020			
TSS	222		2.00	mg/L	100	113	109	80-120	1.82	20
Batch: BAB0218 - FIA										
					Dropared	9. Analyzodi 1	0/7/2020			
Blank (BAB0218-BLK1) Nitrate/N + Nitrite/N	ND		0.100	mg/L	Ргерагей	& Analyzed: 2	2///2020			
- Hadegir - Hamejir	יווי		0.100	1119/1-						

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0218 - FIA (Continu	ied)									
LCS (BAB0218-BS1)					Prepared	& Analyzed: 2	2/7/2020			
Nitrate/N + Nitrite/N	0.197		0.101	mg/L	0.203		97.2	90-110		
Matrix Spike (BAB0218-MS1)	;	Source: V	VAB0096-01		Prepared	& Analyzed: 2	2/7/2020			
Nitrate/N + Nitrite/N	2.22		0.101	mg/L	0.203	2.03	95.1	90-110		
Matrix Spike (BAB0218-MS2)	:	Source: V	VAB0096-01		Prepared	& Analyzed: 2	2/7/2020			
Nitrate/N + Nitrite/N	2.23		0.101	mg/L	0.203	2.03	100	90-110		
Batch: BAB0221 - W FIA										
Blank (BAB0221-BLK1)					Prepared 8	& Analyzed: 2,	/11/2020			
Total P	ND		0.0100	mg/L						
Blank (BAB0221-BLK2)					Prepared 8	& Analyzed: 2,	/11/2020			
Total P	ND		0.0100	mg/L						
LCS (BAB0221-BS1)					Prepared 8	& Analyzed: 2,	/11/2020			
Total P	0.0979		0.0102	mg/L	0.102		96.2	0-200		
LCS (BAB0221-BS2)					Prepared 8	& Analyzed: 2,	/11/2020			
Total P	0.0949		0.0102	mg/L	0.102	-	93.2	0-200		
Matrix Spike (BAB0221-MS1)	:	Source: V	VAA0209-02		Prepared & Analyzed: 2/11/2020		/11/2020			
Total P	0.383		0.0102	mg/L	0.102	0.287	94.4	0-200		
Matrix Spike (BAB0221-MS2)	:	Source: V	VAB0066-02		Prepared & Analyzed: 2/11/2020					
Total P	0.294		0.0102	mg/L	0.102	0.178	114	0-200		

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAB0221 - W FIA (Continu	ed)									
Matrix Spike Dup (BAB0221-MSD1)	9	Source: WA	A0209-02		Prepared 8	& Analyzed: 2/	11/2020			
Total P	0.380		0.0102	mg/L	0.102	0.287	91.0	0-200	0.907	200
Matrix Spike Dup (BAB0221-MSD2)	9	Source: WA	B0066-02		Prepared 8	& Analyzed: 2/	11/2020			
Total P	0.293		0.0102	mg/L	0.102	0.178	113	0-200	0.312	200

Quality Control Data (Continued)

Metals by ICP-MS

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0034 - W 3010 Digest										
Blank (BAB0034-BLK1)				I	Prepared: 1/31	./2020 Analyze	ed: 2/3/2020)		
Zinc	ND		0.00100	mg/L						
Iron	ND		0.0100	mg/L						
Copper	ND		0.00100	mg/L						
LCS (BAB0034-BS1)				I	Prepared: 1/31	./2020 Analyze	ed: 2/3/2020)		
Iron	0.110		0.0100	mg/L	0.100		110	85-115		
Zinc	0.0516		0.00100	mg/L	0.0500		103	85-115		
Copper	0.0537		0.00100	mg/L	0.0500		107	85-115		
Matrix Spike (BAB0034-MS1)		Source: W	/AA0226-02	1	Prepared: 1/31	./2020 Analyze	ed: 2/3/2020)		
Zinc	0.0769		0.00100	mg/L	0.0500	0.0264	101	70-130		
Copper	0.0535		0.00100	mg/L	0.0500	0.00792	91.2	70-130		
Iron	0.162		0.0100	mg/L	0.100	0.0547	107	70-130		
Matrix Spike Dup (BAB0034-MSD1)		Source: W	/AA0226-02	1	Prepared: 1/31	./2020 Analyze	ed: 2/3/2020)		
Iron	0.162		0.0100	mg/L	0.100	0.0547	107	70-130	0.201	20
Zinc	0.0758		0.00100	mg/L	0.0500	0.0264	98.8	70-130	1.40	20
Copper	0.0527		0.00100	mg/L	0.0500	0.00792	89.6	70-130	1.45	20
Batch: BAB0058 - W ICP-MS										
Blank (BAB0058-BLK1)					Prepared	& Analyzed: 2,	/3/2020			
Dissolved Copper	ND		0.00100	mg/L	-1	- ,				
Dissolved Iron	ND		0.0100	mg/L						
Dissolved Zinc	ND		0.00100	mg/L						
LCS (BAB0058-BS1)					Prepared	& Analyzed: 2,	/3/2020			
Dissolved Zinc	0.0504		0.00100	mg/L	0.0500		101	85-115		
Dissolved Copper	0.0523		0.00100	mg/L	0.0500		105	85-115		
Dissolved Iron	0.105		0.0100	mg/L	0.100		105	85-115		

Quality Control Data (Continued)

Semivolatiles

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0158 - W TPH-Dx										
Blank (BAB0158-BLK1)					Prepared 8	& Analyzed: 2	/11/2020			
Diesel	ND		0.100	mg/L						
Lube Oil	ND		0.500	mg/L						
Mineral Oil	ND		0.100	mg/L						
Surrogate: n-Hexacosane			49.0	ррт	50.0		98.1	50-150		
LCS (BAB0158-BS1)					Prepared 8	& Analyzed: 2,	/11/2020			
Diesel	0.936		0.100	mg/L	1.00		93.6	50-150		
Lube Oil	ND		0.500	mg/L				50-150		
Surrogate: n-Hexacosane			49.4	ppm	50.0		98.8	50-150		
Matrix Spike (BAB0158-MS1)		Source: W	/AA0224-03	Р	repared: 2/11	/2020 Analyze	ed: 2/12/202	0		
Diesel	0.773		0.100	mg/L	1.00	ND	77.3	50-150		
Lube Oil	ND		0.500	mg/L		ND		50-150		
Surrogate: n-Hexacosane			44.4	ppm	50.0		88.8	50-150		
Matrix Spike Dup (BAB0158-MSD1)		Source: W	/AA0224-03	Р	repared: 2/11	/2020 Analyze	ed: 2/12/202	0		
Diesel	0.893		0.100	mg/L	1.00	ND	89.3	50-150	14.3	20
Lube Oil	ND		0.500	mg/L		ND		50-150		20
Surrogate: n-Hexacosane			52.9	ррт	50.0		106	50-150		

Chain of Custody Record

Anatek Log-In # WAA 0225

_		and the second s		CARROLL RESPONSABLE SARON		AX 882-9246 🔍	
)	504 E Sprague	Ste D,	Spokane	WA 99202	(509) 838-3999	FAX 838-4433	0

Compa	Spokane County				nty	Proje	ect Mar	nager:				Etha	n Mı	urnin				Turn Around Time & Reporting
Addres	ss:	1026 V	V. Broa	dway Av	renue	Proje	ect Nar	ne &	#:			Gor	nzag	a Po	nd			Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	S	State:	WA Zip	99260	Ema	il Addr	ess:		EM	URN	IIN@)spol	kane	coun	ty.or	g	Normal *All rush orderPhone Next Day* requests must beMail
Phone		5	09-477	-7420		Purc	hase C	order #	t :									requests must beFaxFax
Fax:						Sam	pler Na	ame &	phone	e:		(5	09)9	95-0	557			Other* <u>R_</u> Email
	Provid	de Sai	mple D	escription	on all a			Tis.	List	Ana	lyse	s Re	ques	sted				Note Special Instructions/Comments
	stormw	ater infl	uent and	effluent	_	Containers	Sample Volumes	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	Total Nitrogen SM4500 -	TKN SM4500	NO3-NO2 SM4500	Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identification	ation	Sampling	Date/Time	e Matrix	# of (Sam	TSS	Cu Zn	Cu Zn EPA 2	Hardne	Total F	M.	Ortho	Total	¥	NO3	SINBS
	IN-01282010		01/28/20	20; 17:55	water	4		8	8	8	8	8	8	8	8	8	8	
31	EF18-01282020	0	01/28/20	20; 17:55	water	4		8	8	8	8	8	8	8	8	8	8	
	EF12-01282020	0	01/28/20	20; 17:55	water	1		8	8	8	8	8	8	8	8	8	8	
	INDI-01282020		01/28/202	20; 17:55	water	1				8								
	EF18DI-0128202	20	01/28/20	20; 17:55	water					8								
	EF12DI-0128202	20	01/28/20	20; 17:55	water					8								
								_										Inspection Checklist
																		Received Intact?
						_		_		_								Labels & Chains Agree?
						_		_										Containers Sealed? N
																		VOC Head Space?
		Deinter	. N		0:	<u> </u>				0				Dete		T:		
VALUE - 1873		Printed	Name	×	Signature	ID.				Com	pany			Date		Time	4	11000
Relinq	uished by	M	1110 F	-Chacci	anna 7	201	race	α		L ,					29	9.1	21	Temperature (°C): 4-2° Dig-04
Receiv	red by	Ryon	le G	erger	Breck	1	-			1	hort	ek		1-2	4-20	090	7	Preservative: HN03 P18009-7B 22-HC1 R385-8
Relinq	uished by			3														H2504 R400-1 42 DH P18285-31
Receiv	ed by																	Date & Time: 1-30-20 1740
Relinq	uished by																	Inspected By: Mg
Receiv	ed by																	

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analysis at report

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Date Received:

Work Order: WAA0224
Project: Gonzaga

Reported: 2/20/2020 12:50

Analytical Results Report

Sample Location: IN-01302020

Lab/Sample Number: WAA0224-01

01/30/20 08:53 Collected By:

Collect Date:

01/30/20 08:30

12" and 18" Effluents were switched in the field.

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N + Nitrite/N	ND	mg/L	0.100	2/7/20 10:39	TLM	SM 4500-NO3 F	
TKN	0.657	mg/L	0.250	2/13/20 16:37	TLM	SM 4500-Norg D	
Hardness	15.0	mg CaCO3/L	1.00	2/3/20 11:00	NDE	SM 2340 C	
Phosphate/P	0.115	mg/L	0.0100	1/30/20 15:27	TLM	SM 4500-P G	
Total P	0.107	mg/L	0.100	2/11/20 15:28	TLM	SM 4500-P F	
TSS	10.0	mg/L	1.00	2/4/20 15:45	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00414	mg/L	0.00100	2/3/20 14:34	Metals	EPA 200.8	
Dissolved Copper	0.00118	mg/L	0.00100	2/19/20 14:04	Metals	EPA 200.8	
Iron	0.381	mg/L	0.0100	2/3/20 14:34	Metals	EPA 200.8	
Dissolved Iron	0.0208	mg/L	0.0100	2/19/20 14:04	Metals	EPA 200.8	
Zinc	0.0198	mg/L	0.00100	2/3/20 14:34	Metals	EPA 200.8	
Dissolved Zinc	0.00804	mg/L	0.00100	2/19/20 14:04	Metals	EPA 200.8	
Semivolatiles							
Lube Oil	ND	mg/L	0.500	2/12/20 0:27	LMC	EPA 8015D	
Mineral Oil	ND	mg/L	0.100	2/12/20 0:27	LMC	EPA 8015D	
Diesel	ND	mg/L	0.100	2/12/20 0:27	LMC	EPA 8015D	
Surrogate: n-Hexacosane	97.1%		50-150	2/12/20 0:27	LMC	EPA 8015D	

Sample Location: EF18-01302020

01/30/20 08:30 Lab/Sample Number: WAA0224-02 Collect Date:

Date Received: 01/30/20 08:53 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N + Nitrite/N	0.134	mg/L	0.100	2/7/20 10:41	TLM	SM 4500-NO3 F	
TKN	0.884	mg/L	0.500	2/10/20 16:00	TLM	SM 4500-Norg D	
Hardness	51.0	mg CaCO3/L	1.00	2/3/20 11:00	NDE	SM 2340 C	
Phosphate/P	0.404	mg/L	0.0100	1/30/20 15:27	TLM	SM 4500-P G	
Total P	0.572	mg/L	0.100	2/11/20 15:31	TLM	SM 4500-P F	
TSS	3.50	mg/L	1.00	2/4/20 15:45	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00682	mg/L	0.00100	2/3/20 14:52	Metals	EPA 200.8	
Dissolved Copper	0.00463	mg/L	0.00100	2/19/20 14:07	Metals	EPA 200.8	
Iron	0.385	mg/L	0.0100	2/3/20 14:52	Metals	EPA 200.8	
Dissolved Iron	0.185	mg/L	0.0100	2/19/20 14:07	Metals	EPA 200.8	
Zinc	0.00644	mg/L	0.00100	2/3/20 14:52	Metals	EPA 200.8	
Dissolved Zinc	0.00483	mg/L	0.00100	2/19/20 14:07	Metals	EPA 200.8	
Semivolatiles							
Lube Oil	ND	mg/L	0.500	2/12/20 1:22	LMC	EPA 8015D	
Mineral Oil	ND	mg/L	0.100	2/12/20 1:22	LMC	EPA 8015D	
Diesel	ND	mg/L	0.100	2/12/20 1:22	LMC	EPA 8015D	
Surrogate: n-Hexacosane	110%		50-150	2/12/20 1:22	LMC	EPA 8015D	

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Sample Location: EF12-01302020

Lab/Sample Number: WAA0224-03 Collect Date: 01/30/20 08:30

Date Received: 01/30/20 08:53 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Nitrate/N + Nitrite/N	0.228	mg/L	0.100	2/7/20 10:42	TLM	SM 4500-NO3 F	
TKN	0.865	mg/L	0.500	2/10/20 16:00	TLM	SM 4500-Norg D	
Hardness	48.5	mg CaCO3/L	1.00	2/3/20 11:00	NDE	SM 2340 C	
Phosphate/P	0.776	mg/L	0.0100	1/30/20 15:28	TLM	SM 4500-P G	
Total P	0.911	mg/L	0.100	2/11/20 15:34	TLM	SM 4500-P F	
TSS	ND	mg/L	1.00	2/4/20 15:45	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00762	mg/L	0.00100	2/3/20 14:55	Metals	EPA 200.8	<u></u>
Dissolved Copper	0.00648	mg/L	0.00100	2/19/20 14:10	Metals	EPA 200.8	
Iron	0.295	mg/L	0.0100	2/3/20 14:55	Metals	EPA 200.8	
Dissolved Iron	0.245	mg/L	0.0100	2/19/20 14:10	Metals	EPA 200.8	
Zinc	0.00776	mg/L	0.00100	2/3/20 14:55	Metals	EPA 200.8	
Dissolved Zinc	0.00649	mg/L	0.00100	2/19/20 14:10	Metals	EPA 200.8	
Semivolatiles							
Lube Oil	ND	mg/L	0.500	2/12/20 2:17	LMC	EPA 8015D	
Mineral Oil	ND	mg/L	0.100	2/12/20 2:17	LMC	EPA 8015D	
Diesel	ND	mg/L	0.100	2/12/20 2:17	LMC	EPA 8015D	
Surrogate: n-Hexacosane	80.8%		<i>50-150</i>	2/12/20 2:17	LMC	EPA 8015D	

Authorized Signature,

Brock Gerger For Kathleen Sattler, Laboratory Manager

Back Degr

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Annish	D!	01	Reporting	11-26-	Spike	Source	0/ DEC	%REC	DDD	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAA0048 - W FIA										
Blank (BAA0048-BLK1)					Prepared 8	& Analyzed: 1/	/30/2020			
Phosphate/P	ND		0.0100	mg/L						
LCS (BAA0048-BS1)					Prepared 8	& Analyzed: 1/	/30/2020			
Phosphate/P	0.0958		0.0102	mg/L	0.102		93.9	0-200		
Matrix Spike (BAA0048-MS1)		Source: W	/AA0182-02		Prepared 8	& Analyzed: 1/	/30/2020			
Phosphate/P	0.286		0.0102	mg/L	0.102	0.186	97.4	0-200		
Matrix Spike Dup (BAA0048-MSD1)		Source: W	/AA0182-02		Prepared 8	& Analyzed: 1/	/30/2020			
Phosphate/P	0.287		0.0102	mg/L	0.102	0.186	98.4	0-200	0.357	200
Batch: BAB0003 - W Wet Chem Blank (BAB0003-BLK1) Hardness	ND		1.00 n	ng CaCO3/L	•	& Analyzed: 2	!/3/2020			
Blank (BAB0003-BLK2)					Prenared	& Analyzed: 2	/3/2020			
Hardness	ND		1.00 n	ng CaCO3/L	•	a Analyzeur z	-, 5, 2020			
LCS (BAB0003-BS1)					Prepared	& Analyzed: 2	/3/2020			
Hardness	101		n	ng CaCO3/L	•	, 	101	0-200		
LCS Dup (BAB0003-BSD1)					Prepared	& Analyzed: 2	/3/2020			
Hardness	100		n	ng CaCO3/L	•		100	0-200	0.995	200
Duplicate (BAB0003-DUP1)		Source: W	/AA0246-01		Dronared	& Analyzed: 2	/3/2020			
p (-n-0000 -0)		ocuicei ii	MAUZTU-UI		rrcparcu	a Analyzea. z	./ 5/ 2020			

Quality Control Data (Continued)

Annhan	5	0. 1	Reporting		Spike	Source	0/5=0	%REC	DDE	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0003 - W Wet Chem (Continue	d)								
Matrix Spike (BAB0003-MS1)		Source: V	VAA0224-01		Prepared	& Analyzed: 2	2/3/2020			
Hardness	114			mg CaCO3	/L 100	15.0	99.0	0-200		
Matrix Spike Dup (BAB0003-MSD1)		Source: V	VAA0224-01		Prepared	& Analyzed: 2	2/3/2020			
Hardness	115			mg CaCO3	/L 100	15.0	100	0-200	0.873	200
Batch: BAB0067 - FIA										
Blank (BAB0067-BLK1)					Prepared: 2/6,	/2020 Analyze	ed: 2/10/2020)		
TKN	ND		0.500	mg/L						
Blank (BAB0067-BLK2)					Prepared	& Analyzed: 2	/12/2020			
TKN	ND		0.500	mg/L						
LCS (BAB0067-BS1)					Prepared	& Analyzed: 2	/10/2020			
TKN	1.93		0.500	mg/L	2.00		96.5	80-120		
LCS (BAB0067-BS2)					Prepared	& Analyzed: 2	/10/2020			
TKN	1.87		0.500	mg/L	2.00		93.5	80-120		
Matrix Spike (BAB0067-MS1)		Source: V	VAB0075-02		Prepared: 2/6	/2020 Analyze	ed: 2/10/2020)		
TKN	2.31		0.500	mg/L	2.00	0.361	97.5	70-130		
Matrix Spike (BAB0067-MS2)		Source: V	VAB0085-02		Prepared: 2/6	/2020 Analyze	ed: 2/10/2020)		
TKN	2.70		0.500	mg/L	2.00	0.854	92.1	70-130		
Matrix Spike Dup (BAB0067-MSD1)		Source: V	VAB0075-02		Prepared	& Analyzed: 2	/10/2020			
TKN	2.44		0.500	mg/L	2.00	0.361	104	70-130	5.39	200

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0067 - FIA (Continued)										
Matrix Spike Dup (BAB0067-MSD2)		Source: V	VAB0085-02		Prepared: 2/6/	'2020 Analyze	d: 2/10/2020			
TKN	2.78		0.500	mg/L	2.00	0.854	96.4	70-130	3.11	200
Batch: BAB0085 - W Filtration										
Blank (BAB0085-BLK1)					Prepared	& Analyzed: 2	2/4/2020			
TSS	ND		1.00	mg/L						
Blank (BAB0085-BLK2)					Prepared	& Analyzed: 2	:/4/2020			
TSS	ND		1.00	mg/L						
LCS (BAB0085-BS1)					Prepared	& Analyzed: 2	:/4/2020			
TSS	99.0			mg/L	100		99.0	90-110		
LCS Dup (BAB0085-BSD1)					Prepared	& Analyzed: 2	:/4/2020			
TSS	95.0			mg/L	100		95.0	90-110	4.12	10
Duplicate (BAB0085-DUP1)		Source: V	VAA0213-01		Prepared	& Analyzed: 2	:/4/2020			
TSS	33.0		1.00	mg/L		30.0			9.52	20
Matrix Spike (BAB0085-MS1)		Source: V	VAA0214-02		Prepared	& Analyzed: 2	:/4/2020			
TSS	218		2.00	mg/L	100	113	105	80-120		
Matrix Spike Dup (BAB0085-MSD1)		Source: V	VAA0214-02		Prepared	& Analyzed: 2	:/4/2020			
TSS	222		2.00	mg/L	100	113	109	80-120	1.82	20
Batala BARO218 FIA										
Batch: BAB0218 - FIA					Duamanad	0 Ameliand. 7	/7/2020			
Blank (BAB0218-BLK1) Nitrate/N + Nitrite/N	ND		0.100	mg/L	Prepared	& Analyzed: 2	2///2020			
Made 14 - Male 14			0.100	mg/ L						

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0218 - FIA (Continu	ied)									
LCS (BAB0218-BS1)					Prepared	& Analyzed: 2	2/7/2020			
Nitrate/N + Nitrite/N	0.197		0.101	mg/L	0.203		97.2	90-110		
Matrix Spike (BAB0218-MS1)	;	Source: V	VAB0096-01		Prepared	& Analyzed: 2	2/7/2020			
Nitrate/N + Nitrite/N	2.22		0.101	mg/L	0.203	2.03	95.1	90-110		
Matrix Spike (BAB0218-MS2)	:	Source: V	VAB0096-01		Prepared	& Analyzed: 2	2/7/2020			
Nitrate/N + Nitrite/N	2.23		0.101	mg/L	0.203	2.03	100	90-110		
Batch: BAB0221 - W FIA										
Blank (BAB0221-BLK1)					Prepared 8	& Analyzed: 2,	/11/2020			
Total P	ND		0.0100	mg/L						
Blank (BAB0221-BLK2)					Prepared 8	& Analyzed: 2,	/11/2020			
Total P	ND		0.0100	mg/L						
LCS (BAB0221-BS1)					Prepared 8	& Analyzed: 2,	/11/2020			
Total P	0.0979		0.0102	mg/L	0.102		96.2	0-200		
LCS (BAB0221-BS2)					Prepared 8	& Analyzed: 2,	/11/2020			
Total P	0.0949		0.0102	mg/L	0.102	-	93.2	0-200		
Matrix Spike (BAB0221-MS1)	:	Source: V	VAA0209-02		Prepared 8	& Analyzed: 2,	/11/2020			
Total P	0.383		0.0102	mg/L	0.102	0.287	94.4	0-200		
Matrix Spike (BAB0221-MS2)	:	Source: V	VAB0066-02		Prepared 8	& Analyzed: 2,	/11/2020			
Total P	0.294		0.0102	mg/L	0.102	0.178	114	0-200		

Quality Control Data (Continued)

Inorganics (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0221 - W FIA (Continu	ued)									
Matrix Spike Dup (BAB0221-MSD1)	- :	Source: V	VAA0209-02		Prepared 8	& Analyzed: 2,	/11/2020			
Total P	0.380		0.0102	mg/L	0.102	0.287	91.0	0-200	0.907	200
Matrix Spike Dup (BAB0221-MSD2)	:	Source: V	VAB0066-02		Prepared 8	& Analyzed: 2,	/11/2020			
Total P	0.293		0.0102	mg/L	0.102	0.178	113	0-200	0.312	200
Batch: BAB0252 - W FIA										
Blank (BAB0252-BLK1)					Propared 5	& Analyzed: 2,	/13/2020			
TKN	ND		0.250	mg/L	Frepared	x Analyzeu. Z	13/2020			
INN	ND		0.230	IIIg/L						
Blank (BAB0252-BLK2)					Prepared 8	& Analyzed: 2,	/13/2020			
TKN	ND		0.250	mg/L	·	,	-			
LCS (BAB0252-BS1)					Prepared 8	& Analyzed: 2,	/13/2020			
TKN	2.16		0.250	mg/L	2.00		108	80-120		
LCS (BAB0252-BS2)					Prepared 8	& Analyzed: 2,	/13/2020			
TKN	2.00		0.250	mg/L	2.00		100	80-120		
Matrix Spike (BAB0252-MS1)	:	Source: V	VAB0121-01		Prepared 8	& Analyzed: 2,	/13/2020			
TKN	2.94		0.250	mg/L	2.00	1.26	83.7	70-130		
Matrix Spike Dup (BAB0252-MSD1)	:	Source: V	VAB0121-01		Prepared 8	& Analyzed: 2,	/13/2020			
TKN	2.99		0.250	mg/L	2.00	1.26	86.6	70-130	1.90	200

Quality Control Data (Continued)

Metals by ICP-MS

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0034 - W 3010 Digest										
Blank (BAB0034-BLK1)				F	Prepared: 1/31	L/2020 Analyze	ed: 2/3/2020			
Zinc	ND		0.00100	mg/L						
Iron	ND		0.0100	mg/L						
Copper	ND		0.00100	mg/L						
LCS (BAB0034-BS1)				F	Prepared: 1/31	L/2020 Analyze	ed: 2/3/2020			
Copper	0.0537		0.00100	mg/L	0.0500		107	85-115		
Zinc	0.0516		0.00100	mg/L	0.0500		103	85-115		
Iron	0.110		0.0100	mg/L	0.100		110	85-115		
Matrix Spike (BAB0034-MS1)		Source: W	/AA0226-02	F	Prepared: 1/31	L/2020 Analyze	ed: 2/3/2020			
Copper	0.0535		0.00100	mg/L	0.0500	0.00792	91.2	70-130		
Iron	0.162		0.0100	mg/L	0.100	0.0547	107	70-130		
Zinc	0.0769		0.00100	mg/L	0.0500	0.0264	101	70-130		
Matrix Spike Dup (BAB0034-MSD1)		Source: W	/AA0226-02	F	Prepared: 1/31	L/2020 Analyze	ed: 2/3/2020			
Iron	0.162		0.0100	mg/L	0.100	0.0547	107	70-130	0.201	20
Copper	0.0527		0.00100	mg/L	0.0500	0.00792	89.6	70-130	1.45	20
Zinc	0.0758		0.00100	mg/L	0.0500	0.0264	98.8	70-130	1.40	20

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

		Reporting		Spike	Source		%REC		RPD	1
Analyte Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	1

Batch: BAB0034 - W 3010 Digest (Continued)

Batch: BAB0348 - W 3010 D	igest						
Blank (BAB0348-BLK1)				Prepared & Analyz	zed: 2/19/2020		
Dissolved Zinc	ND	0.00100	mg/L				
Dissolved Iron	ND	0.0100	mg/L				
Dissolved Copper	ND	0.00100	mg/L				
LCS (BAB0348-BS1)				Prepared & Analyz	zed: 2/19/2020		
Dissolved Zinc	0.0474	0.00100	mg/L	0.0500	94.8	85-115	
Dissolved Iron	0.101	0.0100	mg/L	0.100	101	85-115	
Dissolved Copper	0.0474	0.00100	mg/L	0.0500	94.8	85-115	

Quality Control Data (Continued)

Semivolatiles

Analyto	Result	Oual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	Qual	LIMIT	Units	Levei	Result	%KEC	LITTICS	KPD	LITTIL
Batch: BAB0158 - W TPH-Dx										
Blank (BAB0158-BLK1)					Prepared 8	k Analyzed: 2	/11/2020			
Diesel	ND		0.100	mg/L						
Lube Oil	ND		0.500	mg/L						
Mineral Oil	ND		0.100	mg/L						
Surrogate: n-Hexacosane			49.0	ppm	50.0		98.1	50-150		
LCS (BAB0158-BS1)					Prepared 8	k Analyzed: 2	/11/2020			
Diesel	0.936		0.100	mg/L	1.00		93.6	50-150		
Lube Oil	ND		0.500	mg/L				50-150		
Surrogate: n-Hexacosane			49.4	ppm	50.0		98.8	50-150		
Matrix Spike (BAB0158-MS1)		Source: V	VAA0224-03	F	Prepared: 2/11,	/2020 Analyze	ed: 2/12/202	0		
Diesel	0.773		0.100	mg/L	1.00	ND	77.3	50-150		
Lube Oil	ND		0.500	mg/L		ND		50-150		
Surrogate: n-Hexacosane			44.4	ppm	50.0		88.8	50-150		
Matrix Spike Dup (BAB0158-MSD1)		Source: V	VAA0224-03	F	Prepared: 2/11,	/2020 Analyze	ed: 2/12/202	0		
Diesel	0.893		0.100	mg/L	1.00	ND	89.3	50-150	14.3	20
Lube Oil	ND		0.500	mg/L		ND		50-150		20
Surrogate: n-Hexacosane			52.9	ppm	50.0		106	50-150		

Chain of Custody Record

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433

Anatek Log-In # WAA 02214	
------------------------------	--

Compa	any Name:		Spc	kane	Count	у	Proje	ect Ma	nager:				Etha	n Mu	ırnin				Turn Around Time & Reporting
Addres	ss: 1	026	W. Bro	oadwa	y Aver	nue	Proje	ect Nar	ne &	#:		Gor	nzaga	a Bio	infilt	ratior	1		Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane		State:	WA	Zip:	99260	Ema	il Addr	ess:	- 1	EMU	RNI	V@s _l	ooka	necc	ounty	.org		Normal *All rush orderPhone Next Day* requests must beMail
Phone			509-4	77-74	20		Purc	hase (order #	t:									2nd Day*Fax
Fax:					32		Sam	pler Na	ame &	phone	э:		(50	09)99	95-0	557			Other* X_Email
	Provi	de S	ample	Desc	ription	n				List	Ana	lyse	s Re	ques	ted				Note Special Instructions/Comments
	storr	nwate	r influen	it and e	ffluent			ervative:	-			8						83.5	Please email results to both
							Containers	Sample Volume	TSS SM 2540D	Çu Zn Fe Total EPA 200.8 ICP/MS	Gu Zn Fe Dissolved EPA 200.8 ICP/MS	fardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	/ Total Nitrogen SM4500 - Calculated	TKN SM4500	NO3-NO2 SM4500	EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identific	ation	Sampl	ling Da	te/Time	Matrix	# of C	Samp	TSS	Çu Zn F 200.	Qu Zn F EPA 20	Hardnes	Total F SM	ATWN	Ortho	/ Tota SM4500	/ TKN	NO3-N	
	IN-01302020		1-30	/8:	30	water	4		X	X	X	X	X	X	X	X	X	X	DISSOLVED METALS HAVE
	EF18-01302020	0	1-30	18:	30	water	4		X	X	X	X	X	X	X	X	X	X	NOT BEEN FILTERED.
	EF12-01302020)	1-50	18:	30	water	1		X	X	X	X	X	X	X	X	X	X	
	(INDI-01302020		1-30	18:	30	water	1				X								
X	F18DI-013020	20	1-30	18:	30	water					X								* No samples recid
	EF12DI-0130202	20	1-30	18:	30	water					X								
100																			
																			Inspection Checklist
							<u> </u>												Received Intact?
							_												Labels & Chains Agree? Y N
							_												Containers Sealed? Y N
							_		_	_									VOC Head Space?
		To : :																	he.
		_	ed Nam			Signature	- 1	—			Com	pany			Date		Time	2	
Relinq	uished by	-	hn h	100K	aı	19/	11		-						1/3		8:5	9	Temperature (°C): 50°04
Receiv	ved by	Bin	de	Grevy	ev	Bout.	لمد	pr	_	ĺ	Ana	tek			1-3	0-20	085	3	Preservative: #N03 P18009-7B<2
Relinq	uished by																		H2SO, R400-1<2 HC1 R385-3<2
Receiv	ved by																		Date & Time: 1-30-20 1740
Relinq	uished by																		Inspected By: My
Receiv	ved by																		04 P18285-3 V

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAB0557

Project: Gonzaga University Bioretention Cell

Reported: 3/11/2020 14:51

Analytical Results Report

02/23/20 18:15

Collect Date:

Collected By:

Sample Location: IN-02232020

Lab/Sample Number: WAB0557-01

Date Received: 02/24/20 12:08

Matrix: Stormwater

12" and 18" Effluents were switched in the

field.

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	24.5	mg CaCO3/L		3/3/20 15:15	NDE	SM 2340 C	
Nitrate/N + Nitrite/N	0.154	mg/L	0.100	2/25/20 11:33	TLM	SM 4500-NO3 F	
Phosphate/P	0.0645	mg/L	0.00980	2/25/20 10:02	TLM	SM 4500-P G	
TKN	0.878	mg/L	0.500	3/3/20 16:16	Franklin	SM 4500-Norg D	
Total Nitrogen	1.03	mg/L	0.600	3/3/20 16:16	Franklin	varies	
Total P	0.153	mg/L	0.0500	3/3/20 10:20	TLM	SM 4500-P F	
TSS	90.0	mg/L	0.100	2/28/20 16:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00759	mg/L	0.00100	2/28/20 14:11	TRC	EPA 200.8	
Dissolved Copper	0.00274	mg/L	0.00100	2/28/20 13:28	TRC	EPA 200.8	
Iron	1.86	mg/L	0.0100	2/28/20 14:11	TRC	EPA 200.8	
Dissolved Iron	0.0514	mg/L	0.0100	2/28/20 13:28	TRC	EPA 200.8	
Zinc	0.0654	mg/L	0.00100	2/28/20 14:11	TRC	EPA 200.8	
Dissolved Zinc	0.0398	mg/L	0.00100	2/28/20 13:28	Metals	EPA 200.8	
Semivolatiles							
Lube Oil	ND	mg/L	0.500	3/6/20 14:28	ARC	EPA 8015D	·
Mineral Oil	ND	mg/L	0.100	3/6/20 14:28	ARC	EPA 8015D	
Diesel	ND	mg/L	0.100	3/6/20 14:28	ARC	EPA 8015D	
Surrogate: n-Hexacosane	92.8%		50-150	3/6/20 14:28	ARC	EPA 8015D	

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

0.500

0.600

3/3/20 16:16

3/3/20 16:16

Franklin

Franklin

SM 4500-Norg D

varies

Sample Location: EF18-02232020

Lab/Sample Number: WAB0557-02 Collect Date: 02/23/20 18:15

Date Received: 02/24/20 12:08 Matrix: Stormwater

TKN

Total Nitrogen

Analyte Result Units PQL Analyzed Analyst Method **Inorganics** mg CaCO3/L SM 2340 C 143 3/3/20 15:15 NDE Hardness Nitrate/N + Nitrite/N 0.307 mg/L 0.100 2/25/20 11:35 TLM SM 4500-NO3 F 0.245 2/25/20 10:02 SM 4500-P G Phosphate/P mg/L 0.00980 TLM

mg/L

mg/L

Collected By:

< 0.5

ND

Total P	0.285	mg/L	0.0500	3/3/20 10:22	TLM	SM 4500-P F
TSS	2.70	mg/L	0.0100	2/28/20 16:00	BAS	SM 2540 D

0.00181	mg/L	0.00100	2/28/20 14:14	TRC	EPA 200.8	
0.00309	mg/L	0.00100	2/28/20 13:32	TRC	EPA 200.8	
0.147	mg/L	0.0100	2/28/20 14:14	TRC	EPA 200.8	
0.0449	mg/L	0.0100	2/28/20 13:32	TRC	EPA 200.8	
	0.00309 0.147	0.00309 mg/L 0.147 mg/L	0.00309 mg/L 0.00100 0.147 mg/L 0.0100	0.00309 mg/L 0.00100 2/28/20 13:32 0.147 mg/L 0.0100 2/28/20 14:14	0.00309 mg/L 0.00100 2/28/20 13:32 TRC 0.147 mg/L 0.0100 2/28/20 14:14 TRC	0.00309 mg/L 0.00100 2/28/20 13:32 TRC EPA 200.8 0.147 mg/L 0.0100 2/28/20 14:14 TRC EPA 200.8

Zinc	0.00255	mg/L	0.00100	2/28/20 14:14	TRC	EPA 200.8	
Dissolved Zinc	0.0400	mg/L	0.00100	2/28/20 13:32	Metals	EPA 200.8	
Semivolatiles							
Lube Oil	ND	mg/L	0.500	3/6/20 15:24	ARC	EPA 8015D	
Mineral Oil	ND	mg/L	0.100	3/6/20 15:24	ARC	EPA 8015D	
Diesel	ND	mg/L	0.100	3/6/20 15:24	ARC	EPA 8015D	
Surrogate: n-Hexacosane	72.8%		50-150	3/6/20 15:24	ARC	EPA 8015D	

Qualifier

Sample Location: EF12-02232020

Lab/Sample Number: 02/23/20 18:15 WAB0557-03 Collect Date:

Collected By:

Date Received: 02/24/20 12:08

Matrix: Stormwater

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	193	mg CaCO3/L		3/3/20 15:15	NDE	SM 2340 C	
Nitrate/N + Nitrite/N	0.742	mg/L	0.100	2/25/20 11:36	TLM	SM 4500-NO3 F	
Phosphate/P	0.329	mg/L	0.00980	2/25/20 10:05	TLM	SM 4500-P G	
TKN	0.958	mg/L	0.500	3/3/20 16:17	Franklin	SM 4500-Norg D	
Total Nitrogen	1.70	mg/L	0.600	3/3/20 16:17	Franklin	varies	
Total P	0.381	mg/L	0.0500	3/3/20 10:25	TLM	SM 4500-P F	
TSS	1.50	mg/L	0.0100	2/28/20 16:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00164	mg/L	0.00100	2/28/20 14:17	TRC	EPA 200.8	
Dissolved Copper	0.00228	mg/L	0.00100	2/28/20 13:35	TRC	EPA 200.8	
Iron	0.0869	mg/L	0.0100	2/28/20 14:17	TRC	EPA 200.8	
Dissolved Iron	0.0328	mg/L	0.0100	2/28/20 13:35	TRC	EPA 200.8	
Zinc	0.00186	mg/L	0.00100	2/28/20 14:17	TRC	EPA 200.8	
Dissolved Zinc	0.0279	mg/L	0.00100	2/28/20 13:35	Metals	EPA 200.8	
Semivolatiles							
Lube Oil	ND	mg/L	0.500	3/6/20 16:20	ARC	EPA 8015D	·
Mineral Oil	ND	mg/L	0.100	3/6/20 16:20	ARC	EPA 8015D	
Diesel	ND	mg/L	0.100	3/6/20 16:20	ARC	EPA 8015D	
Surrogate: n-Hexacosane	76.9%		50-150	3/6/20 16:20	ARC	EPA 8015D	

Sample Location: INDI-02232020

Lab/Sample Number: 02/23/20 18:15 WAB0557-04 Collect Date:

Collected By:

Date Received: 02/24/20 12:08

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	<0.00007	mg/L	0.00100	2/28/20 13:38	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	2/28/20 13:38	TRC	EPA 200.8	
Dissolved Zinc	0.0131	mg/L	0.00100	2/28/20 13:38	Metals	EPA 200.8	

Sample Location: EF18DI-02232020

Lab/Sample Number: 02/23/20 18:15 WAB0557-05 Collect Date:

Date Received: 02/24/20 12:08 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	ND	mg/L	0.00100	2/28/20 13:41	TRC	EPA 200.8	
Dissolved Iron	0.0139	mg/L	0.0100	2/28/20 13:41	TRC	EPA 200.8	
Dissolved Zinc	0.0234	mg/L	0.00100	2/28/20 13:41	Metals	EPA 200.8	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 8832839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Sample Location: EF12DI-02232020

Lab/Sample Number: WAB0557-06 Collect Date: 02/23/20 18:15

Date Received: 02/24/20 12:08 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	ND	mg/L	0.00100	2/28/20 13:45	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	2/28/20 13:45	TRC	EPA 200.8	
Dissolved Zinc	0.0192	mg/L	0.00100	2/28/20 13:45	Metals	EPA 200.8	

Authorized Signature,

Karice Scott For Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAB0444 - W FIA										
Blank (BAB0444-BLK1)					Prepared 8	& Analyzed: 2/	/25/2020			
Phosphate/P	ND		0.00980	mg/L						
LCS (BAB0444-BS1)					Prepared 8	& Analyzed: 2/	/25/2020			
Phosphate/P	0.0927		0.00980	mg/L	0.100		92.7	85-115		
Matrix Spike (BAB0444-MS1)		Source: W	VAB0557-02		Prepared 8	& Analyzed: 2/	/25/2020			
Phosphate/P	0.338		0.00980	mg/L	0.100	0.245	93.0	80-120		
Matrix Spike Dup (BAB0444-MSD1)		Source: W	VAB0557-02		Prepared 8	& Analyzed: 2/	/25/2020			
Phosphate/P	0.341		0.00980	mg/L	0.100	0.245	95.7	80-120	0.795	20
Batch: BAB0448 - FIA										
Batch: BAB0448 - FIA Blank (BAB0448-BLK1)					Prepared 8	& Analyzed: 2/	/25/2020			
	ND		0.100	mg/L	Prepared 8	& Analyzed: 2,	/25/2020			
Blank (BAB0448-BLK1)	ND		0.100	mg/L		& Analyzed: 2/				
Blank (BAB0448-BLK1) Nitrate/N + Nitrite/N	ND ND		0.100	mg/L		, , .				
Blank (BAB0448-BLK1) Nitrate/N + Nitrite/N Blank (BAB0448-BLK2)					Prepared 8	, , .	/25/2020			
Blank (BAB0448-BLK1) Nitrate/N + Nitrite/N Blank (BAB0448-BLK2) Nitrate/N + Nitrite/N					Prepared 8	& Analyzed: 2/	/25/2020	85-115		
Blank (BAB0448-BLK1) Nitrate/N + Nitrite/N Blank (BAB0448-BLK2) Nitrate/N + Nitrite/N LCS (BAB0448-BS1)	ND 0.192	Source: W	0.100	mg/L	Prepared 8 Prepared 8 0.200	& Analyzed: 2/	/25/2020 /25/2020 96.2	85-115		
Blank (BAB0448-BLK1) Nitrate/N + Nitrite/N Blank (BAB0448-BLK2) Nitrate/N + Nitrite/N LCS (BAB0448-BS1) Nitrate/N + Nitrite/N	ND 0.192	Source: W	0.100	mg/L	Prepared 8 Prepared 8 0.200	& Analyzed: 2/	/25/2020 /25/2020 96.2	85-115 80-120		
Blank (BAB0448-BLK1) Nitrate/N + Nitrite/N Blank (BAB0448-BLK2) Nitrate/N + Nitrite/N LCS (BAB0448-BS1) Nitrate/N + Nitrite/N Matrix Spike (BAB0448-MS1)	0.192 0.330		0.100 0.100 VAB0222-01	mg/L	Prepared 8 Prepared 8 0.200 Prepared 8 0.200	& Analyzed: 2/ & Analyzed: 2/ & Analyzed: 2/	/25/2020 /25/2020 96.2 /25/2020 89.8			

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAC0022 - W Wet Chem										
Blank (BAC0022-BLK1)					Prepared	& Analyzed: 3	3/3/2020			
Hardness	0.500		r	ng CaCO3/L						
Blank (BAC0022-BLK2)					Prepared	& Analyzed: 3	3/3/2020			
Hardness	0.00		r	ng CaCO3/L						
LCS (BAC0022-BS1)					Prepared	& Analyzed: 3	3/3/2020			
Hardness	101		r	ng CaCO3/L	100		101	90-110		
LCS Dup (BAC0022-BSD1)					Prepared	& Analyzed: 3	3/3/2020			
Hardness	100		r	ng CaCO3/L	100		100	90-110	0.509	20
Duplicate (BAC0022-DUP1)		Source: W	/AB0557-01		Prepared	& Analyzed: 3	3/3/2020			
Hardness	24.0		r	ng CaCO3/L		24.5			2.06	20
Batch: BAC0026 - W FIA										
Blank (BAC0026-BLK1)					Prepared	& Analyzed: 3	3/3/2020			
Total P	ND		0.00500	mg/L						
Blank (BAC0026-BLK2)					Prepared	& Analyzed: 3	3/3/2020			
Total P	ND		0.00500	mg/L	-	-				
LCS (BAC0026-BS1)					Prepared	& Analyzed: 3	3/3/2020			
Total P	0.101		0.00500	mg/L	0.100		101	90-110		
Matrix Spike (BAC0026-MS1)		Source: W	/AC0004-02		Prepared	& Analyzed: 3	3/3/2020			
Total P	0.215		0.00500	mg/L	0.100	0.106	110	80-120		

Quality Control Data (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qua	al Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAC0026 - W FIA (Continu	ied)								
Matrix Spike Dup (BAC0026-MSD1)	-	rce: WAC0004-02		Prepared	& Analyzed: 3	3/3/2020			
Total P	0.216	0.00500	mg/L	0.100	0.106	111	80-120	0.417	20
Batch: BAC0027 - W FIA									
Blank (BAC0027-BLK1)				Prepared	& Analyzed: 3	3/3/2020			
TKN	ND	0.500	mg/L						
Blank (BAC0027-BLK2)				Prepared	& Analyzed: 3	/3/2020			
TKN	ND	0.500	mg/L						
LCS (BAC0027-BS1)				Prepared	& Analyzed: 3	3/2020			
TKN	2.04	0.500	mg/L	2.00		102	85-115		
Matrix Spike (BAC0027-MS1)	Sour	rce: WAB0539-02		Prepared	& Analyzed: 3	3/2020			
TKN	2.81	0.500	mg/L	2.00	0.734	104	80-120		
Matrix Spike Dup (BAC0027-MSD1)	Sour	rce: WAB0539-02		Prepared	& Analyzed: 3	3/2020			
TKN	2.90	0.500	mg/L	2.00	0.734	108	80-120	3.28	20
Batch: BAC0056 - W Filtration									
Blank (BAC0056-BLK1)				Prepared 8	& Analyzed: 2,	/28/2020			
TSS	ND	0.100	mg/L						
Blank (BAC0056-BLK2)				Prepared 8	& Analyzed: 2,	/28/2020			
TSS	ND	0.100	mg/L						

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·						<u> </u>				
Batch: BAC0056 - W Filtration (C	ontinued)	1								
Blank (BAC0056-BLK3)					Prepared 8	& Analyzed: 2	/28/2020			
TSS	ND		0.100	mg/L						
LCS (BAC0056-BS1)					Prepared 8	& Analyzed: 2	/28/2020			
TSS	94.0			mg/L	100		94.0	90-110		
LCS (BAC0056-BS2)					Prepared 8	& Analyzed: 2	/28/2020			
TSS	104			mg/L	100		104	90-110		
LCS Dup (BAC0056-BSD1)					Prepared 8	& Analyzed: 2	/28/2020			
TSS	94.0			mg/L	100		94.0	90-110	0.00	10
Duplicate (BAC0056-DUP1)		Source: M	1AB0083-01		Prepared 8	& Analyzed: 2	/28/2020			
TSS	32.0		0.100	mg/L	·	30.0			6.45	20
Duplicate (BAC0056-DUP2)		Source: V	VAB0564-01		Prepared 8	& Analyzed: 2	/28/2020			
TSS	9.00		0.0330	mg/L	·	8.00			11.8	20
Matrix Spike (BAC0056-MS1)		Source: M	1AB0084-02		Prepared 8	& Analyzed: 2	/28/2020			
TSS	108			mg/L	100	2.50	106	80-120		
Matrix Spike (BAC0056-MS2)		Source: V	VAB0592-02		Prepared 8	& Analyzed: 2	/28/2020			
TSS	120			mg/L	100	0.440	120	80-120		
Matrix Spike Dup (BAC0056-MSD1)		Source: M	1AB0084-02		Prepared 8	& Analyzed: 2	/28/2020			
TSS	106		_	mg/L	100	2.50	104	80-120	1.87	20
Matrix Spike Dup (BAC0056-MSD2)		Source: V	VAB0592-02		Prepared 8	& Analyzed: 2	/28/2020			
TSS	116			mg/L	100	0.440	116	80-120	3.39	20

Quality Control Data (Continued)

Metals by ICP-MS

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAB0511 - W 3010 Digest										
Blank (BAB0511-BLK1)				Р	repared: 2/27/	2020 Analyze	d: 2/28/2020	כ		
Iron	ND		0.0101	mg/L						
Copper	ND		0.00101	mg/L						
Zinc	ND		0.00101	mg/L						
LCS (BAB0511-BS1)				Р	Prepared: 2/27/	2020 Analyze	d: 2/28/2020)		
Copper	0.0474		0.00101	mg/L	0.0503		94.3	85-115		
Iron	0.102		0.0101	mg/L	0.101		101	85-115		
Zinc	0.0469		0.00101	mg/L	0.0503		93.4	85-115		
Matrix Spike (BAB0511-MS1)		Source: W	AB0597-02	Р	Prepared: 2/27/	2020 Analyze	d: 2/28/2020)		
Copper	0.0445		0.00101	mg/L	0.0503	0.00126	86.0	70-130		
Iron	0.151		0.0101	mg/L	0.101	0.0592	91.1	70-130		
Zinc	0.0685		0.00101	mg/L	0.0503	0.0247	87.1	70-130		

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAB0511 - W 3010 Digest	(Continued)								
Matrix Spike Dup (BAB0511-MSD1)	Source	WAB0597-02	Pr	repared: 2/27	/2020 Analyze	d: 2/28/202	0		
Zinc	0.0703	0.00101	mg/L	0.0503	0.0247	90.6	70-130	2.52	20
Copper	0.0457	0.00101	mg/L	0.0503	0.00126	88.4	70-130	2.68	20
Iron	0.154	0.0101	mg/L	0.101	0.0592	94.5	70-130	2.21	20
Batch: BAB0513 - W 3010 Digest	•								
<i>Batch: BAB0513 - W 3010 Digest</i> Blank (BAB0513-BLK1)	•		Pr	repared: 2/27	/2020 Analyze	d: 2/28/202	0		
•	ND	0.0101	Pı mg/L	repared: 2/27	/2020 Analyze	d: 2/28/202	0		
Blank (BAB0513-BLK1)		0.0101 0.00101		repared: 2/27	/2020 Analyze	d: 2/28/202	0		
Blank (BAB0513-BLK1) Dissolved Iron	ND		mg/L	repared: 2/27	/2020 Analyze	d: 2/28/202	0		
Blank (BAB0513-BLK1) Dissolved Iron Dissolved Zinc	ND ND	0.00101	mg/L mg/L mg/L		/2020 Analyze /2020 Analyze	. ,			
Blank (BAB0513-BLK1) Dissolved Iron Dissolved Zinc Dissolved Copper	ND ND	0.00101	mg/L mg/L mg/L		,	. ,			
Blank (BAB0513-BLK1) Dissolved Iron Dissolved Zinc Dissolved Copper LCS (BAB0513-BS1)	ND ND ND	0.00101 0.00101	mg/L mg/L mg/L	repared: 2/27	,	d: 2/28/202	0		

Quality Control Data (Continued)

Semivolatiles

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAC0113 - W TPH-Dx										
Blank (BAC0113-BLK1)					Prepared 8	& Analyzed: 3	3/6/2020			
Diesel	ND		0.100	mg/L						
Lube Oil	ND		0.500	mg/L						
Mineral Oil	ND		0.100	mg/L						
Surrogate: n-Hexacosane			45.0	ррт	50.0		90.0	50-150		
LCS (BAC0113-BS1)					Prepared 8	& Analyzed: 3	3/6/2020			
Diesel	0.824		0.100	mg/L	1.00		82.4	70-130		
Lube Oil	ND		0.500	mg/L				70-130		
Surrogate: n-Hexacosane			44.4	ppm	50.0		88.8	50-150		
Matrix Spike (BAC0113-MS1)		Source: W	/AB0557-01		Prepared 8	& Analyzed: 3	3/6/2020			
Diesel	0.706		0.100	mg/L	1.00	ND	70.6	70-130		
Lube Oil	ND		0.500	mg/L		ND		70-130		
Surrogate: n-Hexacosane			39.4	ppm	50.0		78.7	50-150		
Matrix Spike Dup (BAC0113-MSD1)		Source: W	/AB0557-01		Prepared 8	& Analyzed: 3	3/6/2020			
Diesel	0.763		0.100	mg/L	1.00	ND	76.3	70-130	7.78	20
Lube Oil	ND		0.500	mg/L		ND		70-130		20
Surrogate: n-Hexacosane			32.1	ррт	50.0		64.3	50-150		

4 . 7
Anatek
Labs,
Inc.

Chain of Custody Record

Anatek Log-In #

WAB0557	

Due: 03/09/20

	1282 Alturas	Drive, N	Ioscow II	83843	(208) 883	-2839 F	FAX 882-9246	0
0	504 E Sprague	Ste D, S	pokane V	VA 99202	2 (509) 83	8-3999	FAX 838-443	3

Compar	ny Name:		Spokane	County	v		Proje	ect iviai	nager:				Etha	n Mu	urnin	1			Tam Alban	
Address	s: 1	026 W	. Broadwa				Proje	ct Nar	ne &	# : G	Sonza	aga l	Jnive	rsity	Bior	etent	ion C	Cell	Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp	
City:	Spokane	St	ate: WA	Zip:	ć	99260	Ema	il Addr	ess :		EMU	RNII	N@s	poka	nec	ounty	.org		Normal *All rush orderPhone Next Day* requests must beMail	
Phone:		50	09-477-74	120			Purc	hase C	Order #	# :										
Fax:							Sam	pler Na	ame &	phon	e:		(5	09)9	95-0	557				
	Provid	de San	nple Des	cription	1					List	Ana	lyse	s Re	que	sted				Note Special Instructions/Comments	
	storn	nwater ir	nfluent and e	effluent			Containers	Sample Volume	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	Total Nitrogen SM4500 - Calculated	TKN SM4500	NO3-NO2 SM4500	Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com	
Lab ID	Sample Identific	ation S	Sampling Da	ate/Time		Matrix	# of (Sam	TSS	Cu Zn 200	Cu Zn EPA 2	Hardne	Total	WN N	Ortho	Tota SM450	TKI	NO3-h	SWBS	
	IN-02232020	2	-23,-20	1815	ίķ	water	A	h	IX	IX	IX	\mathbf{X}	X	X	IX	X	X	X		
	EF18-02232020		i		1	water	4	h	IX	IX	IX	IX	IX	X	IX	IΧ	X	X		
	EF12-02232020		1,		2	water	1	6	IX	X	X	IX	X	X	X	IX	X	X		
	INDI-02232020					water	1				X									
	EF18DI-0223202	0				water	1				X								*	
	EF12DI-0223202	0				water	-				X							-		
																			Inspection Checklist	
									↓						_				Received Intact?	
															_				Labels & Chains Agree? 📉 N	
																_			Containers Sealed? (Y) N	
									_	_	1	_							VOC Head Space? Y N	
																<u> </u>			hci * per bag labels	
		Printed			Sign	nature					Com	pany			Date		Time		1001	
Relinqu	uished by	Anno	a Bonac	cci	a	maces	10	ymy							06	124	12	:07	Temperature (°C): 400 cg-07	
Receiv	ed by	Bio	ckbres	Kr	7	Black.	1	alaning stability and required	/		A	neit	ek		2-	24-26	12	08	Preservative: HCI R385-3 22 4m-1	2
Relinqu	uished by		h		C		/												HN03 P18009-7B < 2 45.50, R350	
Receiv	ed by										_								Date & Time: 2-24-20 1630	
Relinqu	uished by				_						_				_				Inspected By: May	
Receive	ed by																		OH P18285-3VV	

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1 Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

Materials Testing & Consulting, Inc.

Date Received: May 8, 2020

Sampled By: Others

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Gonzaga Project #: 20S091-01

Client: Spokane County	Date Tested: May 8, 2020
Source: Multiple	Tested By: B. Goble
MTC Sample#: Multiple	<u></u>
CASE N	NARRATIVE
	ize distribution by laser diffraction according to TAPE g sediment concentration according to modified ASTM acentration per Size Fraction" in mg/L. testing.

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc.

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Gonzaga	Client: Spokane County
Project #: 20S091-01	<u> </u>
Date Received: May 8, 2020	Sampled by: Others
Date Tested: May 8, 2020	Tested by: B. Goble

Sediment Concentration per Size Fraction

TAPE 2011 / ASTM D3977 Method C

Sample Identification	20 4.49 020 1.57	Coarse Fractions g/L)	Concentration of <62.5µm Fraction	Total Sample Concentration	Date	Analysis
·	>250 µm	250 - 62.5 μm	(mg/L)	(mg/L)	Sampled	Date
INF05062020	4.49	23.93	54.37	82.79	5/7/2020	5/8/2020
EFF1205062020	1.57	3.14	8.52	13.23	5/7/2020	5/8/2020
EFF1805062020	2.05	3.02	3.66	8.73	5/7/2020	5/8/2020

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices:Olympia $\sim 360.534.9777$ Bellingham $\sim 360.647.6111$ Silverdale $\sim 360.698.6787$ Tukwila $\sim 206.241.1974$ Visit our website: www.mtc-inc.net

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAE0230
Project: Gonzaga

Reported: 5/27/2020 15:36

Analytical Results Report

Sample Location: INF05062020

Lab/Sample Number: WAE0230-01 Collect Date: 05/07/20 08:30

Date Received: 05/07/20 10:38 Collected By:

Matrix: Stormwater

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	19.6	mg CaCO3/L	3.00	5/12/20 10:15	NDE	SM 2340 C	
Total Nitrate/Nitrite	0.134	mg/L	0.100	5/13/20 14:35	TLM	SM 4500-NO3 F	
Phosphate/P	0.0308	mg/L	0.0180	5/8/20 11:07	TLM	SM 4500-P G	
Total Nitrogen	0.134	mg/L	0.100	5/13/20 14:35	TLM	varies	
Total P	0.358	mg/L	0.0500	5/22/20 10:51	TLM	SM 4500-P H	
TSS	83.0	mg/L	1.00	5/12/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00844	mg/L	0.00100	5/11/20 13:03	TRC	EPA 200.8	
Dissolved Copper	0.00550	mg/L	0.00100	5/11/20 12:35	TRC	EPA 200.8	
Iron	0.677	mg/L	0.0100	5/11/20 13:03	TRC	EPA 200.8	
Dissolved Iron	0.0449	mg/L	0.0100	5/11/20 12:35	TRC	EPA 200.8	
Zinc	0.0575	mg/L	0.00100	5/11/20 13:03	TRC	EPA 200.8	
Dissolved Zinc	0.0355	mg/L	0.00100	5/11/20 12:35	TRC	EPA 200.8	
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	5/16/20 1:45	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	5/16/20 1:45	ARC	NWTPH-Dx	
Diesel	ND	mg/L	0.160	5/16/20 1:45	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	91.9%	6	<i>50-150</i>	5/16/20 1:45	ARC	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: EFF1205062020

Lab/Sample Number: WAE0230-02 Collect Date: 05/07/20 08:30

Date Received: Collected By: 05/07/20 10:38

Matrix: Stormwater

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	135	mg CaCO3/L	3.00	5/12/20 10:15	NDE	SM 2340 C	
Total Nitrate/Nitrite	0.142	mg/L	0.100	5/13/20 14:36	TLM	SM 4500-NO3 F	
Phosphate/P	0.342	mg/L	0.0180	5/8/20 11:10	TLM	SM 4500-P G	
TKN	1.66	mg/L	0.500	5/27/20 13:27	TLM	SM 4500-Norg D	
Total Nitrogen	1.80	mg/L	0.600	5/27/20 13:27	TLM	varies	
Total P	0.505	mg/L	0.0500	5/22/20 10:54	TLM	SM 4500-P H	
TSS	10.0	mg/L	1.00	5/12/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00533	mg/L	0.00100	5/11/20 13:11	TRC	EPA 200.8	
Dissolved Copper	0.00519	mg/L	0.00100	5/11/20 12:44	TRC	EPA 200.8	
Iron	0.231	mg/L	0.0100	5/11/20 13:11	TRC	EPA 200.8	
Dissolved Iron	0.0633	mg/L	0.0100	5/11/20 12:44	TRC	EPA 200.8	
Zinc	0.00681	mg/L	0.00100	5/11/20 13:11	TRC	EPA 200.8	
Dissolved Zinc	0.0194	mg/L	0.00100	5/11/20 12:44	TRC	EPA 200.8	
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	5/16/20 3:33	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	5/16/20 3:33	ARC	NWTPH-Dx	
Diesel	ND	mg/L	0.160	5/16/20 3:33	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane		,	50-150	5/16/20 3:33	ARC	NWTPH-Dx	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1805062020

Lab/Sample Number: WAE0230-03 Collect Date: 05/07/20 08:30

Date Received: 05/07/20 10:38 Collected By:

Matrix: Stormwater

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	154	mg CaCO3/L	3.00	5/12/20 10:15	NDE	SM 2340 C	
Total Nitrate/Nitrite	0.328	mg/L	0.100	5/13/20 14:38	TLM	SM 4500-NO3 F	
Phosphate/P	0.574	mg/L	0.0180	5/8/20 11:06	TLM	SM 4500-P G	
TKN	1.56	mg/L	0.500	5/27/20 13:28	TLM	SM 4500-Norg D	
Total Nitrogen	1.88	mg/L	0.600	5/27/20 13:28	TLM	varies	
Total P	0.739	mg/L	0.0500	5/22/20 10:56	TLM	SM 4500-P H	
TSS	5.00	mg/L	1.00	5/12/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Iron	0.272	mg/L	0.0100	5/11/20 13:15	TRC	EPA 200.8	
Dissolved Iron	0.102	mg/L	0.0100	5/11/20 12:47	TRC	EPA 200.8	
Zinc	0.00616	mg/L	0.00100	5/11/20 13:15	TRC	EPA 200.8	
Dissolved Zinc	0.0242	mg/L	0.00100	5/11/20 12:47	TRC	EPA 200.8	
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	5/16/20 4:27	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	5/16/20 4:27	ARC	NWTPH-Dx	
Diesel	ND	mg/L	0.160	5/16/20 4:27	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane		6	<i>50-150</i>	5/16/20 4:27	ARC	NWTPH-Dx	

Authorized Signature,

Karice Scott For Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAE0278 - W Wet Chem										
Blank (BAE0278-BLK1)					Prepared 8	& Analyzed: 5	/12/2020			
Hardness	ND		3.00 r	ng CaCO3/L						
Blank (BAE0278-BLK2)					Prepared 8	& Analyzed: 5	/12/2020			
Hardness	ND		3.00 r	ng CaCO3/L						
LCS (BAE0278-BS1)					Prepared 8	& Analyzed: 5	/12/2020			
Hardness	101		r	ng CaCO3/L	100	,	101	90-110		
LCS Dup (BAE0278-BSD1)					Prepared 8	& Analyzed: 5	/12/2020			
Hardness	100		r	ng CaCO3/L	100		100	90-110	0.499	20
Duplicate (BAE0278-DUP1)		Source: V	VAE0230-01		Prepared 8	& Analyzed: 5	/12/2020			
Hardness	20.1		3.00 r	ng CaCO3/L	•	19.6	-		2.53	20
Matrix Spike (BAE0278-MS1)		Source: V	VAE0172-01		Prepared 8	& Analyzed: 5,	/12/2020			
Hardness	111		6.00 r	ng CaCO3/L	100	9.55	101	80-120		
Matrix Spike Dup (BAE0278-MSD1)		Source: V	VAE0172-01		Prepared 8	& Analyzed: 5,	/12/2020			
Hardness	110		6.00 r	ng CaCO3/L	100	9.55	100	80-120	0.913	20
Batch: BAE0335 - W FIA										
Blank (BAE0335 - W F1A					Dropared (& Analyzed: 5	/12/2020			
Nitrate/N + Nitrite/N	ND		0.100	mg/L	гтератей (x Analyzed: 5	13/2020			
Plank (PAE022E PLV2)					Propared S	& Analyzed: 5	/13/2020			
Blank (BAE0335-BLK2) Nitrate/N + Nitrite/N	ND		0.100	mg/L	i iepaieu (x Allalyzeu. 3	1 13/2020			

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAE0335 - W FIA (Continu										
LCS (BAE0335-BS1)	/				Prepared 8	& Analyzed: 5/	13/2020			
Nitrate/N + Nitrite/N	0.192		0.100	mg/L	0.201	,_505/	95.4	90-110		
Matrix Spike (BAE0335-MS1)		Source: V	VAE0129-01		Prepared 8	& Analyzed: 5/	13/2020			
Nitrate/N + Nitrite/N	1.86		0.100	mg/L	0.201	1.70	82.6	80-120		
Matrix Spike Dup (BAE0335-MSD1)		Source: V	VAE0129-01		Prepared 8	& Analyzed: 5/	13/2020			
Nitrate/N + Nitrite/N	1.86		0.100	mg/L	0.201	1.70	82.1	80-120	0.0483	20
Blank (BAE0451-BLK1) TSS Blank (BAE0451-BLK2) TSS	ND ND		1.00	mg/L	Prepared: 5/11,	. ,				
133	ИП		1.00	mg/L						
LCS (BAE0451-BS1)					Prepared: 5/11,	/2020 Analyze				
TSS	97.0			mg/L	100		97.0	90-110		
LCS Dup (BAE0451-BSD1)					Prepared: 5/11,	/2020 Analyze	:d: 5/12/2020	0		
TSS	95.0			mg/L	100		95.0	90-110	2.08	10
Duplicate (BAE0451-DUP1)		Source: V	VAE0178-02		Prepared: 5/11,	/2020 Analyze	:d: 5/12/2020	0		
TSS	9.00		1.00	mg/L		9.00			0.00	20
Matrix Spike (BAE0451-MS1)		Source: V	VAE0181-02		Prepared: 5/11,	/2020 Analyze	d: 5/12/2020	0		
TSS	58.0		1.00	mg/L	50.0	17.0	82.0	80-120		

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAE0451 - W Filtration (C	Continued)									
Matrix Spike Dup (BAE0451-MSD1)		Source: W	/AE0181-02	Pi	repared: 5/11	/2020 Analyze	d: 5/12/202	0		
TSS	60.0		1.00	mg/L	50.0	17.0	86.0	80-120	3.39	20
Batch: BAE0500 - W FIA										
Blank (BAE0500-BLK1)					Prepared	& Analyzed: 5	/8/2020			
Phosphate/P	ND		0.0180	mg/L	-	- '				
LCS (BAE0500-BS1)					Prepared	& Analyzed: 5	/8/2020			
Phosphate/P	0.103		0.0180	mg/L	0.100	· · · · · ·	103	85-115		
LCS Dup (BAE0500-BSD1)					Prepared	& Analyzed: 5	/8/2020			
Phosphate/P	0.103		0.0180	mg/L	0.100		103	85-115	0.0974	20
Batch: BAE0641 - W FIA										
Blank (BAE0641-BLK1)					Prepared 8	k Analyzed: 5/	22/2020			
Total P	ND		0.00500	mg/L	-					
Blank (BAE0641-BLK2)					Prepared 8	& Analyzed: 5/	22/2020			
Total P	ND		0.00500	mg/L						
Blank (BAE0641-BLK3)					Prepared 8	& Analyzed: 5/	22/2020			
Total P	ND		0.00500	mg/L						
LCS (BAE0641-BS1)					Prepared 8	& Analyzed: 5/	22/2020			
Total P	0.100		0.00500	mg/L	0.100		100	90-110		

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAE0641 - W FIA (Continu	ied)									
LCS (BAE0641-BS2)					Prepared 8	& Analyzed: 5/	'22/2020			
Total P	0.0988		0.00500	mg/L	0.100		98.8	90-110		
Matrix Spike (BAE0641-MS1)		Source: W	VAE0565-02		Prepared 8	& Analyzed: 5/	22/2020			
Total P	0.157		0.00500	mg/L	0.100	0.0556	101	80-120		
Matrix Spike (BAE0641-MS2)		Source: W	VAE0638-02		Prepared 8	& Analyzed: 5/	22/2020			
Total P	0.159		0.00500	mg/L	0.100	0.0560	103	80-120		
Matrix Spike Dup (BAE0641-MSD1)		Source: V	VAE0565-02		Prepared 8	& Analyzed: 5/	22/2020			
Total P	0.162		0.00500	mg/L	0.100	0.0556	106	80-120	3.20	20
Matrix Spike Dup (BAE0641-MSD2)		Source: W	VAE0638-02		Prepared 8	& Analyzed: 5/	22/2020			
Total P	0.160		0.00500	mg/L	0.100	0.0560	104	80-120	0.314	20
Batch: BAE0746 - W FIA										
Blank (BAE0746-BLK1)					Prepared 8	& Analyzed: 5/	′27/2020			
TKN	ND		0.500	mg/L						
Blank (BAE0746-BLK2)					Prepared 8	& Analyzed: 5/	27/2020			
TKN	ND		0.500	mg/L						
Blank (BAE0746-BLK3)					Prepared 8	& Analyzed: 5/	27/2020			
TKN	ND		0.500	mg/L						
LCS (BAE0746-BS1)					Prepared 8	& Analyzed: 5/	27/2020			
TKN	1.99		0.500	mg/L	2.00		99.4	85-115		

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAE0746 - W FIA (Continu	ed)								
LCS (BAE0746-BS2)				Prepared 8	& Analyzed: 5,	/27/2020			
TKN	1.94	0.500	mg/L	2.00		97.0	85-115		
Matrix Spike (BAE0746-MS1)	Sourc	e: WAE0210-01		Prepared 8	& Analyzed: 5,	/27/2020			
TKN	3.16	0.500	mg/L	2.00	1.34	90.9	80-120		
Matrix Spike Dup (BAE0746-MSD1)	Sourc	e: WAE0210-01		Prepared 8	& Analyzed: 5,	/27/2020			
TKN	3.18	0.500	mg/L	2.00	1.34	91.7	80-120	0.512	20

Quality Control Data (Continued)

Metals by ICP-MS

-										
Analyte	Result	Oual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·			Little	30			75.120			
Batch: BAE0197 - W 3010 Digest						2020 : :	L = /4 4 /= = :			
Blank (BAE0197-BLK1)					Prepared: 5/8/	2020 Analyze	d: 5/11/2020)		
Dissolved Copper	ND		0.00100	mg/L						
Dissolved Iron	ND		0.0100	mg/L						
Dissolved Zinc	ND		0.00100	mg/L						
LCS (BAE0197-BS1)					Prepared: 5/8/	2020 Analyze	d: 5/11/2020)		
Dissolved Iron	0.111		0.0100	mg/L	0.100		111	85-115		
Dissolved Zinc	0.0482		0.00100	mg/L	0.0500		96.3	85-115		
Dissolved Copper	0.0482		0.00100	mg/L	0.0500		96.4	85-115		
Matrix Spike (BAE0197-MS1) Source: WAE0230-01					Prepared: 5/8/	2020 Analyze	d: 5/11/2020)		
Dissolved Copper	0.257		0.00500	mg/L	0.250	0.00550	101	70-130		
Dissolved Zinc	0.286		0.00500	mg/L	0.250	0.0355	100	70-130		
Dissolved Iron	0.540		0.0500	mg/L	0.500	0.0449	99.0	70-130		
Matrix Spike Dup (BAE0197-MSD1)		Source: V	VAE0230-01		Prepared: 5/8/	2020 Analyze	d: 5/11/2020)		
Dissolved Iron	0.545		0.0500	mg/L	0.500	0.0449	100	70-130	0.867	20
Dissolved Zinc	0.281		0.00500	mg/L	0.250	0.0355	98.3	70-130	1.83	20
Dissolved Copper	0.253		0.00500	mg/L	0.250	0.00550	99.1	70-130	1.55	20
Batch: BAE0203 - W 3010 Digest Blank (BAE0203-BLK1)					Prepared: 5/8/	2020 Apalema	d, E/11/2020	1		
•	ND		0.00100		riepaieu. 5/6/	ZUZU AHAIYZE	J. 3/11/2020	,		
Copper	ND ND		0.00100	mg/L						
Iron				mg/L						
Zinc	ND		0.00100	mg/L						
LCS (BAE0203-BS1)					Prepared: 5/8/	2020 Analyze	d: 5/11/2020			
Copper	0.0487		0.00100	mg/L	0.0500		97.4	85-115		
Iron	0.101		0.0100	mg/L	0.100		101	85-115		
Zinc	0.0481		0.00100	mg/L	0.0500		96.2	85-115		

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAE0203 - W 3010 Digest	(Continue	ed)								
Matrix Spike (BAE0203-MS1)		Source: V	VAE0230-01	Р	repared: 5/8/	2020 Analyzed	l: 5/11/2020)		
Iron	1.25		0.0500	mg/L	0.500	0.677	115	70-130		
Zinc	0.302		0.00500	mg/L	0.250	0.0575	97.7	70-130		
Copper	0.248		0.00500	mg/L	0.250	0.00844	96.0	70-130		
Matrix Spike Dup (BAE0203-MSD1)		Source: V	VAE0230-01	Р	repared: 5/8/	2020 Analyzed	l: 5/11/2020)		
Copper	0.251		0.00500	mg/L	0.250	0.00844	96.9	70-130	0.998	20
Iron	1.31		0.0500	mg/L	0.500	0.677	127	70-130	4.47	20
Zinc	0.302		0.00500	mg/L	0.250	0.0575	97.8	70-130	0.0729	20

Quality Control Data (Continued)

Hydrocarbons

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAE0062 - W TPH-Dx										
Blank (BAE0062-BLK1)				Pr	repared: 5/14/	'2020 Analyze	:d: 5/15/2020	C		
Diesel	ND		0.160	mg/L						
Lube Oil	ND		0.400	mg/L						
Mineral Oil	ND		0.160	mg/L						
Surrogate: n-Hexacosane			47.2	ррт	50.0		94.3	50-150		
LCS (BAE0062-BS1)				Pr	repared: 5/14/	'2020 Analyze	ed: 5/15/2020)		
Diesel	0.781		0.160	mg/L	1.00		78.1	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			45.0	ppm	50.0		89.9	50-150		
Duplicate (BAE0062-DUP1)		Source: W	/AE0230-01	Pr	repared: 5/14/	'2020 Analyze	ed: 5/16/2020)		
Diesel	ND		0.160	mg/L		ND				20
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20
Surrogate: n-Hexacosane			45.9	ррт	50.0		91.9	50-150		

Anatek Labs,
Inc.

Chain of Custody Record

Anatek Log-In#

WA	E0230	

Due: 05/21/20

	1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246	0
)	504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433	

Company Name: S	pha	ne County adway Aver State: WA Zip:		Proje	ect Mar	nager:	EH	hon	M	ww	nîn					Turn Arou
Address: 1076 U	J BV	adway Aver	nue	1 10,0	ot I vai	iic a	3	CVV	H		× (9	OVIZ	zag	CL		Please refer to our
City: Spokane		State: WA Zip:	99360	Ema	il Addr	ess:	ZMU	LRN	INC	250	olia	nec	au	Ay.	ovq	Normal *All rush orderPhone Next Day*Mail
Phone: (509)47	77-	7420		Purc	nase C	raer #	F:							•)	Next Day* requests must beMailFaxFaxKEmail
Fax:				Sam	pler Na	ame &	phone	e: (S	99)	195	-6	557				
		ample Description					List	Ana	lyse	s Re	ques	sted				Note Special Instructions/Comments
	viv	fluent + elfl	uent	Containers Sead	Sample Volumerise	250	nte	in Fe	iness SM	Total	WA-DX	spriete	358	ton-san	2	Please email results to both IZMURVINO spokare county org and aimeen@osbornconsulting.org
Lab ID Sample Identifi	ication	Sampling Date/Time	Matrix	# of (Sam	55	227	Cuz	古が33七	Photo	NE B	Dry S	25	SA		activities (1970) sources (1970)
INF050620	90	05/07/2020 8:300	water			X	×	×	\times	×	X	X	X	X		SINBS
EFF 1205062	2020					×	2	×	X	×	×	X	×	X		
EFF1805067	070	1	1			\sim	X	X	×	×	×	×	×	X		
						ļ										
				_		ļ										
				_	-	-										
						-		-								Inspection Checklist
				_		-		-								Received Intact? Y N
				-	-	-		-	\vdash							Labels & Chains Agree?
				\vdash	-	-		-								
				-	-	-										0 1 0
	Printe	ed Name	Signature					Com	pany			Date		Time		Ice/Ice Packs Present?
Deline viehed by		to Ballana	tengh Ad	0	il	11	7								SAN TELEVISION	a 116.18
Relinquished by			anger Tre	<u>en</u>	Da	ling			901							
Received by	Pr	och Grego	The	7			ANNA MALGON	A	reife	u.		2-1	-40	103	(Preservative: <u>HCI 2001/80 < 2 pH 20010</u> , 3
Relinquished by	-		2 9													H2SOU 200118142 HN032000994<2
Received by																Date & Time: 5-7-20 1530
Relinquished by																Inspected By: My
Received by																V

Samples submitted to Anatek Labs may be subcontacted to other accredited labs if necessary. This message serves as notice of this possibility. Subcontracted analyses will be clearly noted on the analytical report.

Materials Testing & Consulting, Inc.

Source: Multiple	Tested By: B. Goble
Sample#: Multiple	
CA	ASE NARRATIVE
2011 Methods. These methods include r D3977, Method C.	cle size distribution by laser diffraction according to TAPE unning sediment concentration according to modified ASTM s "Concentration per Size Fraction" in mg/L. g this testing.

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc.

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Gonzaga	Client: Spokane County
Project #: 20S091-01	
Date Received: May 26, 2020	Sampled by: Others
Date Tested: May 26, 2020	Tested by: B. Goble

Sediment Concentration per Size Fraction

TAPE 2011 / ASTM D3977 Method C

Sample Identification		Coarse Fractions g/L)	Concentration of <62.5µm Fraction	Total Sample Concentration	Date	Analysis Date	
·	>250 µm	250 - 62.5 μm	(mg/L)	(mg/L)	Sampled		
INF05202020	4.31	15.70	28.92	48.93	5/20/2020	5/26/2020	
EFF12052020	1.06	1.73	6.63	9.42	5/20/2020	5/26/2020	
EFF1805202020	1.07	2.25	4.93	8.24	5/20/2020	5/26/2020	

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAF0004
Project: Gonzaga

Reported: 6/25/2020 15:56

Analytical Results Report

Sample Location: INF05302020

Lab/Sample Number: WAF0004-01 Collect Date: 05/31/20 16:00

Date Received: 06/01/20 12:23 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	12.7	mg CaCO3/L	6.00	6/11/20 9:45	NDE	SM 2340 C	
TSS	120	mg/L	1.00	6/5/20 11:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00477	mg/L	0.00100	6/19/20 14:53	TRC	EPA 200.8	
Dissolved Copper	0.00119	mg/L	0.00100	6/24/20 14:08	TRC	EPA 200.8	
Iron	0.842	mg/L	0.0100	6/22/20 12:38	TRC	EPA 200.8	
Dissolved Iron	0.0218	mg/L	0.0100	6/24/20 14:08	TRC	EPA 200.8	
Zinc	0.0428	mg/L	0.00100	6/19/20 14:53	TRC	EPA 200.8	
Dissolved Zinc	0.00810	mg/L	0.00100	6/24/20 14:08	TRC	EPA 200.8	
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	6/12/20 21:29	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	6/12/20 21:29	ARC	NWTPH-Dx	
Diesel	ND	mg/L	0.160	6/12/20 21:29	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	77.3%	6	50-150	6/12/20 21:29	ARC	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: EFF18-05302020

Lab/Sample Number: WAF0004-02 Collect Date: 05/31/20 16:00

Date Received: Collected By: 06/01/20 12:23

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	116	mg CaCO3/L	6.00	6/11/20 9:45	NDE	SM 2340 C	
TSS	4.00	mg/L	1.00	6/5/20 11:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00488	mg/L	0.00100	6/19/20 14:56	TRC	EPA 200.8	
Dissolved Copper	0.00432	mg/L	0.00100	6/24/20 14:10	TRC	EPA 200.8	
Iron	0.478	mg/L	0.0100	6/22/20 12:40	TRC	EPA 200.8	
Dissolved Iron	0.0984	mg/L	0.0100	6/24/20 14:10	TRC	EPA 200.8	
Zinc	0.00506	mg/L	0.00100	6/19/20 14:56	TRC	EPA 200.8	
Dissolved Zinc	0.00412	mg/L	0.00100	6/24/20 14:10	TRC	EPA 200.8	
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	6/12/20 22:25	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	6/12/20 22:25	ARC	NWTPH-Dx	
Diesel	ND	mg/L	0.160	6/12/20 22:25	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	87.3%	;	50-150	6/12/20 22:25	ARC	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: EFF12-05302020

Lab/Sample Number: WAF0004-03 Collect Date: 05/31/20 16:00

Date Received: Collected By: 06/01/20 12:23

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	91.1	mg CaCO3/L	6.00	6/11/20 9:45	NDE	SM 2340 C	
TSS	12.0	mg/L	2.00	6/5/20 11:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00422	mg/L	0.00100	6/19/20 14:58	TRC	EPA 200.8	
Dissolved Copper	0.00344	mg/L	0.00100	6/24/20 14:17	TRC	EPA 200.8	
Iron	0.459	mg/L	0.0100	6/22/20 12:43	TRC	EPA 200.8	
Dissolved Iron	0.0825	mg/L	0.0100	6/24/20 14:17	TRC	EPA 200.8	
Zinc	0.0140	mg/L	0.00100	6/19/20 14:58	TRC	EPA 200.8	
Dissolved Zinc	0.0143	mg/L	0.00100	6/24/20 14:17	TRC	EPA 200.8	
Hydrocarbons							
Lube Oil	ND	mg/L	0.400	6/12/20 23:21	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	6/12/20 23:21	ARC	NWTPH-Dx	
Diesel	ND	mg/L	0.160	6/12/20 23:21	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	90.8%	,	50-150	6/12/20 23:21	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: INF-05302020-DI

Lab/Sample Number: WAF0004-04

Collect Date: 05/31/20 16:00

Collected By:

Date Received: 06/01/20 12:23

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	<0.00007	mg/L	0.00100	6/24/20 14:20	TRC	EPA 200.8	
Dissolved Iron	0.0163	mg/L	0.0100	6/24/20 14:20	TRC	EPA 200.8	
Dissolved Zinc	0.0254	mg/L	0.00100	6/24/20 14:20	TRC	EPA 200.8	

Analytical Results Report

(Continued)

05/31/20 16:00

Sample Location: EFF18-05302020-DI

Lab/Sample Number: WAF0004-05 Collect Date:

Date Received: Collected By: 06/01/20 12:23

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	<0.00007	mg/L	0.00100	6/24/20 14:22	TRC	EPA 200.8	
Dissolved Iron	0.0106	mg/L	0.0100	6/24/20 14:22	TRC	EPA 200.8	
Dissolved Zinc	0.0197	mg/L	0.00100	6/24/20 14:22	TRC	EPA 200.8	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF12-05302020-DI

Lab/Sample Number: WAF0004-06 Collect Date: 05/31/20 16:00

Date Received: 06/01/20 12:23 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	<0.00007	mg/L	0.00100	6/24/20 14:34	TRC	EPA 200.8	_
Dissolved Iron	< 0.00397	mg/L	0.0100	6/24/20 14:34	TRC	EPA 200.8	
Dissolved Zinc	0.0221	mg/L	0.00100	6/24/20 14:34	TRC	EPA 200.8	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable. Potential matrix effect

M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable. Potential matrix effect.

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a certified analyteRPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory

The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Annhan	D "	01	Reporting	l laika	Spike	Source	0/ PEC	%REC	DDD	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAF0246 - W Filtration										
Blank (BAF0246-BLK1)					Prepared	& Analyzed: 6	/5/2020			
TSS	ND		1.00	mg/L						
Blank (BAF0246-BLK2)					Prepared	& Analyzed: 6	/5/2020			
TSS	ND		1.00	mg/L						
Blank (BAF0246-BLK3)					Prepared	& Analyzed: 6	/5/2020			
TSS	ND		1.00	mg/L	•	•				
Blank (BAF0246-BLK4)					Prepared	& Analyzed: 6	/5/2020			
TSS	ND		1.00	mg/L	•	,				
LCS (BAF0246-BS1)					Prepared	& Analyzed: 6	/5/2020			
TSS	99.0			mg/L	100	,	99.0	90-110		
LCS (BAF0246-BS2)					Prepared	& Analyzed: 6	/5/2020			
TSS	98.0			mg/L	100	,	98.0	90-110		
LCS Dup (BAF0246-BSD1)					Prepared	& Analyzed: 6	/5/2020			
TSS	100			mg/L	100	,	100	90-110	1.01	10
LCS Dup (BAF0246-BSD2)					Prepared	& Analyzed: 6	/5/2020			
TSS	102			mg/L	100	. ,	102	90-110	4.00	10
Duplicate (BAF0246-DUP1)		Source: N	MAF0054-02		Prepared	& Analyzed: 6	/5/2020			
TSS	6.00		1.00	mg/L		7.00	· ·		15.4	20
Duplicate (BAF0246-DUP2)		Source: \	WAF0152-01		Prepared	& Analyzed: 6	/5/2020			
TSS	7.00		1.00	mg/L	-1	4.00			54.5	20

Quality Control Data (Continued)

			Reporting		Spike	Source	<u>-</u>	%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAF0246 - W Filtration (Co	ontinued))								
Matrix Spike (BAF0246-MS1)	_	Source: N	1AF0052-01		Prepared	& Analyzed: 6	5/5/2020			
TSS	100		2.00	mg/L	100	ND	100	80-120		
Matrix Spike (BAF0246-MS2)		Source: V	VAF0131-01		Prepared	& Analyzed: 6	5/5/2020			
TSS	100		2.00	mg/L	100	7.00	93.0	80-120		
Matrix Spike Dup (BAF0246-MSD1)		Source: N	1AF0052-01		Prepared	& Analyzed: 6	5/5/2020			
TSS	102		2.00	mg/L	100	ND	102	80-120	1.98	20
Matrix Spike Dup (BAF0246-MSD2)		Source: V	VAF0131-01		Prepared	& Analyzed: 6	5/5/2020			
TSS	104		2.00	mg/L	100	7.00	97.0	80-120	3.92	20
Batch: BAF0364 - W Wet Chem Blank (BAF0364-BLK1)					Prepared 8	& Analyzed: 6	/11/2020			
Hardness	ND		3.00 ו	mg CaCO3/L						
LCS (BAF0364-BS1)					Prepared 8	& Analyzed: 6	/11/2020			
Hardness	99.0		ı	mg CaCO3/L	100		99.0	90-110		
LCS Dup (BAF0364-BSD1)					Prepared 8	& Analyzed: 6	/11/2020			
Hardness	98.5		l	mg CaCO3/L	100		98.5	90-110	0.496	20
Duplicate (BAF0364-DUP1)		Source: V	VAF0108-01		Prepared 8	& Analyzed: 6	/11/2020			
Hardness	253		6.00	mg CaCO3/L		252			0.388	20
Matrix Spike (BAF0364-MS1)	Source: WAE0894-01			Prepared & Analyzed: 6/11/2020						
Hardness	284		12.0	mg CaCO3/L	100	182	102	80-120		

Quality Control Data (Continued)

Inorganics (Continued)

			Reporting		Spike	Source		%REC		RPD	-1
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch: BAF0364 - W Wet Chem (C	Continued)									
Matrix Spike Dup (BAF0364-MSD1)	:	Source: W	AE0894-01		Prepared 8	k Analyzed: 6/	11/2020				
Hardness	282		12.0 r	mg CaCO3/L	100	182	100	80-120	0.692	20	

Quality Control Data (Continued)

Metals by ICP-MS

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAF0090 - W 3010 Digest										
Blank (BAF0090-BLK1)				1	Prepared: 6/3/	2020 Analyzed	d: 6/24/2020)		
Dissolved Zinc	ND		0.00100	mg/L						
Dissolved Iron	ND		0.0100	mg/L						
Dissolved Copper	ND		0.00100	mg/L						
LCS (BAF0090-BS1)				ı	Prepared: 6/3/	2020 Analyzed	d: 6/24/2020)		
Dissolved Zinc	0.0489		0.00100	mg/L	0.0500		97.8	85-115		
Dissolved Copper	0.0480		0.00100	mg/L	0.0500		96.0	85-115		
Dissolved Iron	0.106		0.0100	mg/L	0.100		106	85-115		
Matrix Spike (BAF0090-MS1)		Source: W	/AF0004-02	I	Prepared: 6/3/	2020 Analyzed	d: 6/24/2020)		
Dissolved Zinc	0.250		0.00500	mg/L	0.250	0.00412	98.2	70-130		
Dissolved Iron	0.613		0.0500	mg/L	0.500	0.0984	103	70-130		
Dissolved Copper	0.246		0.00500	mg/L	0.250	0.00432	96.7	70-130		
Matrix Spike Dup (BAF0090-MSD1)		Source: W	/AF0004-02		Prepared: 6/3/	2020 Analyzed	d: 6/24/2020)		
Dissolved Iron	0.729		0.0500	mg/L	0.500	0.0984	126	70-130	17.3	20
Dissolved Zinc	0.246		0.00500	mg/L	0.250	0.00412	96.8	70-130	1.40	20
Dissolved Copper	0.242		0.00500	mg/L	0.250	0.00432	95.2	70-130	1.49	20
Batch: BAF0120 - W 3010 Digest										
Blank (BAF0120-BLK1)				1	Prepared: 6/3/	2020 Analyzed	d: 6/22/2020)		
Iron	ND		0.0100	mg/L		•				
Copper	ND		0.00100	mg/L						
Zinc	ND		0.00100	mg/L						
LCS (BAF0120-BS1)				ĺ	Prepared: 6/3/	2020 Analyzed	d: 6/19/2020)		
Copper	0.0481		0.00100	mg/L	0.0500		96.2	85-115		
Iron	0.101		0.0100	mg/L	0.100		101	85-115		
Zinc	0.0493		0.00100	mg/L	0.0500		98.6	85-115		

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAF0120 - W 3010 Digest	(Continue	ed)								
Matrix Spike (BAF0120-MS1)		Source: W	/AE0919-03	F	Prepared: 6/3/	2020 Analyzed	l: 6/19/2020)		
Copper	0.0470		0.00100	mg/L	0.0500	0.00631	81.3	70-130		
Iron	4.52	M1	0.0100	mg/L	0.100	4.05	463	70-130		
Zinc	0.0560		0.00100	mg/L	0.0500	0.0133	85.4	70-130		
Matrix Spike (BAF0120-MS2)		Source: W	/AE0919-14	F	Prepared: 6/3/	2020 Analyzed	l: 6/19/2020	1		
Zinc	0.0466	M2	0.00100	mg/L	0.0500	0.0136	66.0	70-130		
Copper	0.0441		0.00100	mg/L	0.0500	0.00620	75.7	70-130		
Iron	1.10	M2	0.0100	mg/L	0.100	5.94	NR	70-130		
Matrix Spike Dup (BAF0120-MSD1)		Source: W	/AE0919-03	F	Prepared: 6/3/	2020 Analyzed	l: 6/19/2020)		
Copper	0.0500		0.00100	mg/L	0.0500	0.00631	87.4	70-130	6.31	20
Zinc	0.0600		0.00100	mg/L	0.0500	0.0133	93.4	70-130	6.90	20
Iron	4.96	M1	0.0100	mg/L	0.100	4.05	910	70-130	9.43	20
Matrix Spike Dup (BAF0120-MSD2)		Source: W	/AE0919-14	F	Prepared: 6/3/	2020 Analyzed	l: 6/19/2020)		
Zinc	0.0473	M2	0.00100	mg/L	0.0500	0.0136	67.5	70-130	1.55	20
Copper	0.0449		0.00100	mg/L	0.0500	0.00620	77.4	70-130	1.90	20
Iron	1.16	M2	0.0100	mg/L	0.100	5.94	NR	70-130	5.23	20

Quality Control Data (Continued)

Hydrocarbons

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAF0399 - W TPH-Dx										
Blank (BAF0399-BLK1)					Prepared: 6/11	/2020 Analyze	ed: 6/12/202	0		
Diesel	ND		0.160	mg/L	, , ,	•				
Lube Oil	ND		0.400	mg/L						
Mineral Oil	ND		0.160	mg/L						
Surrogate: n-Hexacosane			44.6	ррт	50.0		89.2	50-150		
LCS (BAF0399-BS1)					Prepared: 6/11,	/2020 Analyze	ed: 6/12/202	0		
Diesel	1.03		0.160	mg/L	1.00		103	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			46.5	ррт	50.0		93.1	50-150		
Duplicate (BAF0399-DUP1)		Source: W	AF0168-01		Prepared: 6/11,	/2020 Analyze	ed: 6/13/202	0		
Diesel	ND		0.160	mg/L		ND				20
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20
Surrogate: n-Hexacosane			47.6	ppm	50.0		<i>95.2</i>	50-150		
Matrix Spike (BAF0399-MS1)		Source: W	AF0003-01		Prepared: 6/11,	/2020 Analyze	ed: 6/12/202	0		
Diesel	0.901		0.160	mg/L	1.00	ND	90.1	70-130		
Lube Oil	ND		0.400	mg/L		ND		70-130		
Surrogate: n-Hexacosane			44.7	ppm	50.0		89.4	50-150		

Matrix Spike Dup (BAF0399-MSD1) Prepared: 6/11/2020 Analyzed: 6/12/2020 **Source: WAF0003-01**

Quality Control Data (Continued)

Hydrocarbons (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAF0399 - W TPH-Dx (Con	tinued)									
Matrix Spike Dup (BAF0399-MSD1)	9	Source: WAF0	0003-01	Pre	epared: 6/11/	2020 Analyze	ed: 6/12/2020	0		
Diesel	0.759		0.160	mg/L	1.00	ND	75.9	70-130	17.2	20
Lube Oil	ND		0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane			42.3	ррт	50.0		84.6	50-150		

Anatek
Labs
Inc.

Chain of Custody Record

Anatek Log-In#

VOC Head Space?

VV <i>F</i>	4 F C	000	4

	Labs, Inc.	1282 A	lturas Drive,	Moso	ow II	838	43 (2	208) 8	383-2	839	FAX	882-	9246			Log-111#		
	The.	○ 504 E S _I	orague Ste D,	Spok	ane V	VA 99	202	(509)	838	-3999	FA	X 83	8-443	33 (2	Due: 06/15/20		
Comp	any Name:	Spokane Count	у	Proje	ect Mai	nager:				Etha	n Mı	ırnin	1			Turn Aroun		
Address: 1026 W. Broadway Avenue				Project Name & #: Gonzaga											Please refer to our normal turn around times at: http://www.anateklabs.com/services/guidelines/reporting.asp			
City:	Spokane	State: WA Zip:	99260	Email Address : EMURNIN@spokanecounty.org								neco	Normal *All rush orderPhone Next Day* requests must beMail					
Phone	e: ((509) 477-7420		Purchase Order #:										2nd Day* prior approvedFax				
ax:				Sam	pler Na	ame &	phone	э:		(5	09)9	95-0	557			Other* <u>*_</u> Email		
	Provide Sa	ample Description	1				List	Ana	lyse	s Re	ques	sted				Note Special Instructions/Comments		
	stormwate	r influent and effluent		Containers	Sample Volume	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	Total Nitrogen SM4500 - Calculated	rkn SM4500	NO3-NO2 SM4500	Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com		
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of (Sam	TSS	Cu Zn F 200.	Cu Zn I EPA 20	Harc 234	Total F SM	TWN VN	Ortho F	Tota SM4500	TK	N-EON			
	INF05302020	5/31/2020 16:00	water			X	X	X	X		X							
	EFF18-05302020	5/31/2020 16:00	water			X	X	X	X		X							
	EFF12-05302020	5/31/2020 16:00	water			X	X	X	X		X							
	INF05302020-DI	5/31/2020 16:00	water					x										
	EFF18-05302020-DI	5/31/2020 16:00	water					X										
	EFF12-05302020-DI	5/31/2020 16:00	water					X										
				+	 	-	-								+	Inspection Checklist		
																Received Intact? Labels & Chains Agree? Containers Sealed? N		

		Signature	Company	Date	Time	
Relinquished by	Taylor Holfman-Ballano	terder Geller Balles		6/1/2020		Temperature (°C): 5.0° dig-07
Received by	Aunny Younger	& D	ainerteek	6/1/20	9:00 an	Preservative: <u>HN03 20099</u> 442
Relinquished by						HC1 2001180 <2 H250+ Nag pH 2001
Received by						Date & Time: 6-1-20 1230
Relinquished by						Inspected By: Wog
Received by						O

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAI1018
Project: Gonzaga

Reported: 10/15/2020 08:23

Analytical Results Report

Sample Location: INF092520

Lab/Sample Number: WAI1018-01 Collect Date: 09/25/20 17:30

Date Received: 09/28/20 14:37 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	49.9	mg CaCO3/L	6.00	10/6/20 7:30	ary	SM 2340 C	
Total P	0.477	mg/L	0.0500	9/30/20 16:15	TLM	SM 4500-P H	
TSS	36.0	mg/L	1.00	10/2/20 14:25	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.0146	mg/L	0.00100	10/8/20 12:23	TRC	EPA 200.8	
Dissolved Copper	0.0112	mg/L	0.00100	10/8/20 11:34	TRC	EPA 200.8	
Iron	1.20	mg/L	0.0100	10/8/20 12:23	TRC	EPA 200.8	
Dissolved Iron	0.139	mg/L	0.0100	10/8/20 11:34	TRC	EPA 200.8	
Zinc	0.0595	mg/L	0.00100	10/8/20 12:23	TRC	EPA 200.8	
Dissolved Zinc	0.0444	mg/L	0.00100	10/8/20 11:34	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF12092520

Lab/Sample Number: WAI1018-02 Collect Date: 09/25/20 17:30

Date Received: Collected By: 09/28/20 14:37

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	204	mg CaCO3/L	6.00	10/6/20 7:30	ary	SM 2340 C	
Total P	0.433	mg/L	0.0500	9/30/20 16:18	TLM	SM 4500-P H	
TSS	25.0	mg/L	1.00	10/2/20 14:25	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00674	mg/L	0.00100	10/8/20 12:25	TRC	EPA 200.8	
Dissolved Copper	0.00671	mg/L	0.00100	10/8/20 11:36	TRC	EPA 200.8	
Iron	0.185	mg/L	0.0100	10/8/20 12:25	TRC	EPA 200.8	
Dissolved Iron	0.0543	mg/L	0.0100	10/8/20 11:36	TRC	EPA 200.8	
Zinc	0.00427	mg/L	0.00100	10/14/20 17:21	TRC	EPA 200.8	
Dissolved Zinc	0.00327	mg/L	0.00100	10/14/20 17:16	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF18092520

Lab/Sample Number: WAI1018-03 Collect Date: 09/25/20 17:30

Date Received: Collected By: 09/28/20 14:37

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	196	mg CaCO3/L	12.0	10/6/20 7:30	ary	SM 2340 C	
Total P	0.751	mg/L	0.0500	9/30/20 16:20	TLM	SM 4500-P H	
TSS	153	mg/L	1.00	10/2/20 14:25	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00560	mg/L	0.00100	10/8/20 12:28	TRC	EPA 200.8	
Dissolved Copper	0.00297	mg/L	0.00100	10/8/20 13:33	TRC	EPA 200.8	
Iron	0.435	mg/L	0.0100	10/8/20 12:28	TRC	EPA 200.8	
Dissolved Iron	0.0426	mg/L	0.0100	10/8/20 13:33	TRC	EPA 200.8	
Zinc	0.00940	mg/L	0.00100	10/14/20 17:23	TRC	EPA 200.8	
Dissolved Zinc	0.00323	mg/L	0.00100	10/14/20 17:18	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location:

INF092520-DI

Lab/Sample Number:

WAI1018-04

Collect Date:

09/25/20 17:30

Date Received:

09/28/20 14:37

Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00611	mg/L	0.00100	10/8/20 11:46	TRC	EPA 200.8	_
Dissolved Iron	ND	mg/L	0.0100	10/8/20 11:46	TRC	EPA 200.8	
Dissolved Zinc	0.0743	mg/L	0.00100	10/8/20 11:46	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF12092520-DI

Lab/Sample Number: WAI1018-05 Collect Date: 09/25/20 17:30

Date Received: Collected By: 09/28/20 14:37

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00612	mg/L	0.00100	10/8/20 11:48	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	10/8/20 11:48	TRC	EPA 200.8	
Dissolved Zinc	0.0751	mg/L	0.00100	10/8/20 11:48	TRC	EPA 200.8	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF18092520-DI

Lab/Sample Number: WAI1018-06 Collect Date: 09/25/20 17:30

Date Received: 09/28/20 14:37 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00615	mg/L	0.00100	10/8/20 11:51	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	10/8/20 11:51	TRC	EPA 200.8	
Dissolved Zinc	0.0777	mg/L	0.00100	10/8/20 11:51	TRC	EPA 200.8	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
		•								
Batch: BAI0922 - W FIA										
Blank (BAI0922-BLK1)					Prepared 8	k Analyzed: 9,	/30/2020			
Total P	ND		0.00500	mg/L						
Blank (BAI0922-BLK2)					Prepared 8	k Analyzed: 9,	/30/2020			
Total P	ND		0.00500	mg/L						
Blank (BAI0922-BLK3)					Prepared 8	k Analyzed: 9,	/30/2020			
Total P	ND		0.00500	mg/L		,,				
LCS (BAI0922-BS1)					Prepared 8	k Analyzed: 9	/30/2020			
Total P	0.100		0.00500	mg/L	0.100	,======	100	90-110		
LCS (BAI0922-BS2)					Prenared 8	k Analyzed: 9,	/30/2020			
Total P	0.105		0.00500	mg/L	0.100		105	90-110		
Matrix Spike (BAI0922-MS1)		Source: W	/AI0984-02		Prepared 8	k Analyzed: 9	/30/2020			
Total P	0.143		0.00500	mg/L	0.100	0.0325	110	80-120		
Matrix Spike (BAI0922-MS2)		Source: W	AI0985-02		Prepared 8	k Analyzed: 9,	/30/2020			
Total P	0.136		0.00500	mg/L	0.100	0.0312	105	80-120		
Matrix Spike Dup (BAI0922-MSD1)		Source: W	AI0984-02		Prenared 8	k Analyzed: 9	/30/2020			
Total P	0.138	Source: W	0.00500	mg/L	0.100	0.0325	106	80-120	3.41	20
Matrix Spike Dup (BAI0922-MSD2)		Source: W	AI0985-02		Prenared 8	& Analyzed: 9	/30/2020			
Total P	0.136	Jource. W	0.00500	mg/L	0.100	0.0312	105	80-120	0.147	20

Batch: BAJ0124 - W Wet Chem

Blank (BAJ0124-BLK1) Prepared: 10/5/2020 Analyzed: 10/6/2020

Hardness ND 3.00 mg CaCO3/L

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAJ0124 - W Wet Chem (C	Continued)								
Blank (BAJ0124-BLK2)				Pre	pared: 10/5	/2020 Analyzo	ed: 10/6/202	.0		
Hardness	ND		3.00 r	ng CaCO3/L						
LCS (BAJ0124-BS1)				Pre	pared: 10/5	/2020 Analyz	ed: 10/6/202	.0		
Hardness	101		3.00 r	ng CaCO3/L	100		101	90-110		
LCS Dup (BAJ0124-BSD1)				Pre	pared: 10/5	/2020 Analyz	ed: 10/6/202	.0		
Hardness	98.9		3.00 r	ng CaCO3/L	100	·	98.9	90-110	1.92	20
Duplicate (BAJ0124-DUP1)	:	Source: W	AJ0094-01	Pre	pared: 10/5	/2020 Analyz	ed: 10/6/202	.0		
Hardness	159		6.00 r	ng CaCO3/L		163			2.38	20
Matrix Spike (BAJ0124-MS1)	:	Source: W	AI1016-02	Pre	pared: 10/5	/2020 Analyz	ed: 10/6/202	.0		
Hardness	140		6.00 r	ng CaCO3/L	100	45.1	95.0	80-120		
Matrix Spike Dup (BAJ0124-MSD1)	:	Source: W	AI1016-02	Pre	pared: 10/5	/2020 Analyz	ed: 10/6/202	.0		
Hardness	140		6.00 r	ng CaCO3/L	100	45.1	95.0	80-120	0.00	20
Batch: BAJ0151 - W Filtration										
Blank (BAJ0151-BLK1)					Prepared 8	k Analyzed: 1	0/2/2020			
TSS	ND		1.00	mg/L	opurcu c		o, <u>_,</u> _520			
Blank (BAJ0151-BLK2)					Prepared 8	k Analyzed: 1	0/2/2020			
TSS	ND		1.00	mg/L		. ,====	-, , :			
Blank (BAJ0151-BLK3)					Prepared 8	k Analyzed: 1	0/2/2020			
TSS	ND		1.00	mg/L		•				

Quality Control Data (Continued)

Inorganics (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0151 - W Filtration (Co	ontinued)									
Blank (BAJ0151-BLK4)					Prepared 8	& Analyzed: 1	0/2/2020			
TSS	ND		1.00	mg/L						
LCS (BAJ0151-BS1)					Prepared 8	& Analyzed: 1	0/2/2020			
TSS	102			mg/L	100		102	90-110		
LCS (BAJ0151-BS2)					Prepared 8	& Analyzed: 1	0/2/2020			
TSS	98.0			mg/L	100		98.0	90-110		
LCS Dup (BAJ0151-BSD1)					Prepared 8	& Analyzed: 1	0/2/2020			
TSS	96.0			mg/L	100		96.0	90-110	6.06	10
LCS Dup (BAJ0151-BSD2)					Prepared 8	& Analyzed: 1	0/2/2020			
TSS	94.0			mg/L	100		94.0	90-110	4.17	10
Duplicate (BAJ0151-DUP1)		Source: W	/AI1113-01		Prepared 8	& Analyzed: 1	0/2/2020			
TSS	1.00		1.00	mg/L		1.00			0.00	20
Duplicate (BAJ0151-DUP2)		Source: W	/AJ0005-02		Prepared 8	& Analyzed: 1	0/2/2020			
TSS	1.00		1.00	mg/L		1.00			0.00	20
Matrix Spike (BAJ0151-MS1)		Source: W	/AI1018-02		Prepared 8	& Analyzed: 1	0/2/2020			
TSS	124		2.00	mg/L	100	25.0	99.0	80-120		
Matrix Spike (BAJ0151-MS2)		Source: W	/AJ0007-02		Prepared 8	& Analyzed: 1	0/2/2020			
TSS	100		2.00	mg/L	100	3.00	97.0	80-120		
Matrix Spike Dup (BAJ0151-MSD1)		Source: W	/AI1018-02		Prepared 8	& Analyzed: 1	0/2/2020			
TSS	118		2.00	mg/L	100	25.0	93.0	80-120	4.96	20

Quality Control Data (Continued)

Inorganics (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result (Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0151 - W Filtration (Con	ntinued)									
Matrix Spike Dup (BAJ0151-MSD2)	Sc	ource: WAJ0	007-02		Prepared 8	Analyzed: 10	/2/2020			
TSS	98.0		2.00	mg/L	100	3.00	95.0	80-120	2.02	20

Quality Control Data (Continued)

Metals by ICP-MS

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0003 - W 3010 Digest										
Blank (BAJ0003-BLK1)				Pi	epared: 10/1	/2020 Analyze	d: 10/8/202)		
Dissolved Copper	ND		0.00100	mg/L						
Dissolved Zinc	ND		0.00100	mg/L						
Dissolved Iron	ND		0.0100	mg/L						
LCS (BAJ0003-BS1)				Pi	repared: 10/1	/2020 Analyze	d: 10/8/202	0		
Dissolved Iron	0.110		0.0100	mg/L	0.100		110	85-115		
Dissolved Copper	0.0484		0.00100	mg/L	0.0500		96.8	85-115		
Dissolved Zinc	0.0450		0.00100	mg/L	0.0500		89.9	85-115		
Matrix Spike (BAJ0003-MS1)		Source: W	/AI1018-03	Pi	epared: 10/1	/2020 Analyze	d: 10/8/202)		
Dissolved Iron	0.131		0.0100	mg/L	0.100	0.0426	88.1	70-130		
Dissolved Zinc	0.0468		0.00100	mg/L	0.0500	0.00323	87.2	70-130		
Dissolved Copper	0.0490		0.00100	mg/L	0.0500	0.00297	92.1	70-130		
Matrix Spike Dup (BAJ0003-MSD1)		Source: W	/AI1018-03	Pi	epared: 10/1	/2020 Analyze	d: 10/8/202)		
Dissolved Iron	0.130		0.0100	mg/L	0.100	0.0426	87.6	70-130	0.348	20
Dissolved Copper	0.0498		0.00100	mg/L	0.0500	0.00297	93.7	70-130	1.56	20
Dissolved Zinc	0.0471		0.00100	mg/L	0.0500	0.00323	87.7	70-130	0.554	20
Batch: BAJ0004 - W 3010 Digest										
Blank (BAJ0004-BLK1)				Pi	epared: 10/1	/2020 Analyze	d: 10/8/202)		
Copper	ND		0.00100	mg/L						
Iron	ND		0.0100	mg/L						
Zinc	ND		0.00100	mg/L						
LCS (BAJ0004-BS1)				Pi	repared: 10/1	/2020 Analyze	d: 10/8/202)		
Copper	0.0474		0.00100	mg/L	0.0500		94.8	85-115		
Iron	0.0983		0.0100	mg/L	0.100		98.3	85-115		
Zinc	0.0440		0.00100	mg/L	0.0500		88.0	85-115		

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAJ0004 - W 3010 Digest	(Continue	ed)								
Matrix Spike (BAJ0004-MS1)		Source: W	/AI1018-03	Pr	epared: 10/1,	/2020 Analyze	d: 10/8/202	0		
Copper	0.0516		0.00100	mg/L	0.0500	0.00560	92.1	70-130		
Iron	0.526		0.0100	mg/L	0.100	0.435	90.6	70-130		
Zinc	0.0488		0.00100	mg/L	0.0500	0.00940	78.7	70-130		
Matrix Spike Dup (BAJ0004-MSD1)		Source: W	/AI1018-03	Pr	epared: 10/1,	/2020 Analyze	d: 10/8/202	0		
Iron	0.516		0.0100	mg/L	0.100	0.435	81.2	70-130	1.81	20
Zinc	0.0496		0.00100	mg/L	0.0500	0.00940	80.4	70-130	1.75	20
Copper	0.0520		0.00100	mg/L	0.0500	0.00560	92.8	70-130	0.747	20

Anatek Labs,
Inc.

Chain of Custody Record

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433

Anatek	
Log-In#	

V	V	ΑI	1	0,	1	8	

Due: 10/13/20

ompar	y Name:		Spokane	Count	y	rioje	ici iviai	ager.				Etha	n Mu	ırnin	1		Places refer to our
ddress	102	26 W	/. Broadwa	y Aver	nue		ct Nan		# :			- S a	nd F	ilter	-G0	nza	
ity:	Spokane	;	State: WA	Zip:	99260	Emai	il Addre	ess :	Ε	MUF	RNIN	@sp	okaı	neco	unty	.org	Normal *All rush orderPhoneMail
hone:		(!	509) 477-74	20		Purc	hase C	rder #	<u>:</u>								2nd Day* prior approvedFax
ax:						Sam	pler Na	me &	phone	∋:		(5	09)99	95-0	557		Other* <u>x_</u> Email
	Provid	e Sa	mple Desc	ription					List	Ana	lyse	s Re	ques	sted			Note Special Instructions/Comments
			influent and e			Containers	Sample Volumetaria	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	3977-97		Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identifica	ation	Sampling Da	te/Time	Matrix	# of (Sam	TSS	Cu Zn 200	Cu Zn EPA 2	Har 23	Total	N N	Ortho	8.0		
	INF092520		09/25/20 5:	30 pm	water			X	X	X	X	X					SUBS
	EFF12092520		09/25/20 5:	30 pm	water			X	X	X	X	X					
	EFF18092520		09/25/20 5:	30 pm	water			X	X	X	X	X					
	INF092520-DI		09/25/20 5:	30 pm	water					×							
	EFF12092520-D	ı	09/25/20 5:	30 pm	water					X							
	EFF18092520-D	I	09/25/20 5:	30 pm	water					X							
																	Inspection Checklist
																	Received Intact? X N
											<u> </u>	<u> </u>					Labels & Chains Agree? 🙀 N
		-															Containers Sealed? Y N
																	VOC Head Space?
		Print	ed Name		Signature				0.0	Com	pany			Date	1	Time	1 Ectus 0.1.
Relino	uished by	Ke	Vin Flana	aan	Kunn F	low	you	/		Osibo	ira Co	sult	ing In	9/3	3/20		Temperature (°C): 1-5 Teg \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	ved by	0	oo Ch Grey	()	Bru	15				A	inte	1	Û	9-7	K-20	43-	Preservative: $\frac{H_2SO_4}{400181} = \frac{300181}{4001015} = \frac{4001015}{1655}$ Date & Time: $\frac{9-28-20}{1655} = \frac{1655}{1655}$
Relind	uished by				4//	/											HNUS 000994 < 2 PH2001015
Recei	ved by				0				_	_				-			
Relind	quished by									-				-			Inspected By: Notes
Rece	ved by													<u></u>			

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAJ0380

Project: Gonzaga BioRetention Cell

Reported: 10/27/2020 11:48

Analytical Results Report

Sample Location: INF101020

Lab/Sample Number: WAJ0380-01 Collect Date: 10/10/20 18:30

Date Received: 10/12/20 16:31 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	26.9	mg CaCO3/L	6.00	10/15/20 13:00	ARY	SM 2340 C	
Total Nitrate/Nitrite	0.120	mg/L	0.100	10/23/20 10:32	TLM	SM 4500-NO3 F	
Phosphate/P	0.194	mg/L	0.0180	10/12/20 17:51	TLM	SM 4500-P G	
TKN	1.39	mg/L	0.500	10/26/20 16:09	TLM	SM 4500-Norg D	
Total Nitrogen	1.51	mg/L	0.600	10/26/20 16:09	TLM	varies	
Total P	0.288	mg/L	0.0500	10/21/20 16:17	TLM	SM 4500-P H	
TSS	12.0	mg/L	1.00	10/16/20 13:28	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00734	mg/L	0.00100	10/22/20 16:21	TRC	EPA 200.8	
Dissolved Copper	0.00491	mg/L	0.00100	10/21/20 15:51	TRC	EPA 200.8	
Iron	0.866	mg/L	0.0100	10/22/20 16:21	TRC	EPA 200.8	
Dissolved Iron	0.0771	mg/L	0.0100	10/22/20 15:31	TRC	EPA 200.8	
Zinc	0.0423	mg/L	0.00100	10/22/20 16:21	TRC	EPA 200.8	
Dissolved Zinc	0.0319	mg/L	0.00100	10/22/20 15:31	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	10/22/20 0:41	ARC	NWTPH-Dx	
Lube Oil	0.520	mg/L	0.400	10/22/20 0:41	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	10/22/20 0:41	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	85.2%		50-150	10/22/20 0:41	ARC	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: EFF12101020

Lab/Sample Number: WAJ0380-02 Collect Date: 10/10/20 18:30

Date Received: Collected By: 10/12/20 16:31

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	136	mg CaCO3/L	6.00	10/15/20 13:00	ARY	SM 2340 C	
Total Nitrate/Nitrite	0.177	mg/L	0.100	10/23/20 10:34	TLM	SM 4500-NO3 F	
Phosphate/P	0.418	mg/L	0.0180	10/12/20 17:52	TLM	SM 4500-P G	
TKN	2.19	mg/L	0.500	10/26/20 16:10	TLM	SM 4500-Norg D	
Total Nitrogen	2.37	mg/L	0.600	10/26/20 16:10	TLM	varies	
Total P	0.475	mg/L	0.0500	10/21/20 16:20	TLM	SM 4500-P H	
TSS	4.40	mg/L	0.400	10/16/20 13:28	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00742	mg/L	0.00100	10/22/20 16:23	TRC	EPA 200.8	
Dissolved Copper	0.00651	mg/L	0.00100	10/21/20 15:54	TRC	EPA 200.8	
Iron	0.502	mg/L	0.0100	10/22/20 16:23	TRC	EPA 200.8	
Dissolved Iron	0.0826	mg/L	0.0100	10/22/20 15:33	TRC	EPA 200.8	
Zinc	0.00739	mg/L	0.00100	10/22/20 16:23	TRC	EPA 200.8	
Dissolved Zinc	0.0149	mg/L	0.00100	10/22/20 15:33	TRC	EPA 200.8	
lydrocarbons							
Diesel	ND	mg/L	0.160	10/22/20 1:36	ARC	NWTPH-Dx	·
Lube Oil	ND	mg/L	0.400	10/22/20 1:36	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	10/22/20 1:36	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	90.4%		50-150	10/22/20 1:36	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF18101020

Lab/Sample Number: WAJ0380-03 Collect Date: 10/10/20 18:30

Date Received: Collected By: 10/12/20 16:31

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	146	mg CaCO3/L	6.00	10/15/20 13:00	ARY	SM 2340 C	
Total Nitrate/Nitrite	0.468	mg/L	0.100	10/23/20 10:35	TLM	SM 4500-NO3 F	
Phosphate/P	0.642	mg/L	0.0180	10/12/20 17:53	TLM	SM 4500-P G	
TKN	1.56	mg/L	0.500	10/26/20 16:11	TLM	SM 4500-Norg D	
Total Nitrogen	2.03	mg/L	0.600	10/26/20 16:11	TLM	varies	
Total P	0.715	mg/L	0.0500	10/21/20 16:22	TLM	SM 4500-P H	
TSS	4.00	mg/L	0.333	10/16/20 13:28	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00633	mg/L	0.00100	10/22/20 16:26	TRC	EPA 200.8	
Dissolved Copper	0.00563	mg/L	0.00100	10/21/20 15:57	TRC	EPA 200.8	
Iron	0.444	mg/L	0.0100	10/22/20 16:26	TRC	EPA 200.8	
Dissolved Iron	0.114	mg/L	0.0100	10/22/20 15:36	TRC	EPA 200.8	
Zinc	0.00893	mg/L	0.00100	10/22/20 16:26	TRC	EPA 200.8	
Dissolved Zinc	0.0223	mg/L	0.00100	10/22/20 15:36	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	10/22/20 2:30	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	10/22/20 2:30	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	10/22/20 2:30	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	87.6%		<i>50-150</i>	10/22/20 2:30	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

10/10/20 18:30

Sample Location:

INF101020-DI

Lab/Sample Number:

WAJ0380-04

Collect Date:

Date Received:

10/12/20 16:31

Collected By:

Matrix:

Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00541	mg/L	0.00100	10/21/20 16:01	TRC	EPA 200.8	
Dissolved Iron	0.0213	mg/L	0.0100	10/22/20 15:38	TRC	EPA 200.8	
Dissolved Zinc	0.0654	mg/L	0.00100	10/22/20 15:38	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF12101020-DI

Lab/Sample Number: WAJ0380-05 Collect Date: 10/10/20 18:30

Date Received: Collected By: 10/12/20 16:31

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00383	mg/L	0.00100	10/21/20 16:04	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	10/22/20 15:41	TRC	EPA 200.8	
Dissolved Zinc	0.0174	mg/L	0.00100	10/22/20 15:41	TRC	EPA 200.8	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF18101020-DI

Lab/Sample Number: WAJ0380-06 Collect Date: 10/10/20 18:30

Date Received: 10/12/20 16:31 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00461	mg/L	0.00100	10/21/20 16:07	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	10/22/20 15:43	TRC	EPA 200.8	
Dissolved Zinc	0.0673	mg/L	0.00100	10/22/20 15:43	TRC	EPA 200.8	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAJ0421 - W Wet Chem										
Blank (BAJ0421-BLK1)					Prepared &	Analyzed: 10	0/15/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
Blank (BAJ0421-BLK2)					Prepared &	Analyzed: 10	0/15/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
LCS (BAJ0421-BS1)					Prepared &	Analyzed: 10	0/15/2020			
Hardness	101		n	ng CaCO3/L	100	·	101	90-110		
LCS Dup (BAJ0421-BSD1)					Prepared &	Analyzed: 10	0/15/2020			
Hardness	99.8		n	ng CaCO3/L	100	·	99.8	90-110	0.957	20
Duplicate (BAJ0421-DUP1)	Source: WAJ0129-01			Prepared &	Analyzed: 10	0/15/2020				
Hardness	194		6.00 n	ng CaCO3/L	-	194			0.00	20
Matrix Spike (BAJ0421-MS1)		Source: V	/AJ0535-01		Prepared &	Analyzed: 10	0/15/2020			
Hardness	129		6.00 n	ng CaCO3/L	100	38.4	90.2	80-120		
Matrix Spike Dup (BAJ0421-MSD1)		Source: V	/AJ0535-01		Prepared &	Analyzed: 10	0/15/2020			
Hardness	136		6.00 n	ng CaCO3/L	100	38.4	97.9	80-120	5.80	20
Datah, DAJOSIC WETA										
Batch: BAJ0516 - W FIA					D 10		. (4.2./2020			
Blank (BAJ0516-BLK1)	NE		0.0100	/1	Prepared &	Analyzed: 10)/12/2020			
Phosphate/P	ND		0.0180	mg/L						
LCS (BAJ0516-BS1)					Prepared &	Analyzed: 10	0/12/2020			
Phosphate/P	0.0868		0.0180	mg/L	0.100		86.8	85-115		

Quality Control Data (Continued)

Inorganics (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result ()ual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0516 - W FIA (Continu	ied)									
Matrix Spike (BAJ0516-MS1)	So	urce: W	AJ0379-02		Prepared 8	Analyzed: 10)/12/2020			
Phosphate/P	0.392		0.0180	mg/L	0.100	0.303	89.0	80-120		
Matrix Spike Dup (BAJ0516-MSD1)	So	urce: W	AJ0379-02		Prepared 8	Analyzed: 10)/12/2020			
Phosphate/P	0.398		0.0180	mg/L	0.100	0.303	95.2	80-120	1.57	20
Batch: BAJ0601 - W Filtration										
Blank (BAJ0601-BLK1)					Prepared 8	Analyzed: 10)/16/2020			
TSS	ND		1.00	mg/L		. ,	,			
Blank (BAJ0601-BLK2)					Prepared 8	Analyzed: 10	0/16/2020			
TSS	ND		1.00	mg/L						
LCS (BAJ0601-BS1)					Prepared 8	Analyzed: 10)/16/2020			
TSS	97.0			mg/L	100		97.0	90-110		
LCS Dup (BAJ0601-BSD1)					Prepared 8	Analyzed: 10)/16/2020			
TSS	94.0			mg/L	100		94.0	90-110	3.14	10
Duplicate (BAJ0601-DUP1)	So	urce: W	AJ0379-01		Prepared 8	Analyzed: 10)/16/2020			
TSS	48.0		1.00	mg/L		49.0			2.06	20
Matrix Spike (BAJ0601-MS1)	So	urce: M	AJ0312-01		Prepared 8	Analyzed: 10)/16/2020			
TSS	260		2.00	mg/L	100	178	82.0	80-120		
Matrix Spike Dup (BAJ0601-MSD1)	So	urce: M	AJ0312-01		Prepared 8	Analyzed: 10)/16/2020			
TSS	270		2.00	mg/L	100	178	92.0	80-120	3.77	20

Quality Control Data (Continued)

Inorganics (Continued)

		Reporting		Spike	Source		%REC		RPD
Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
				Prepared 8	Analyzed: 10)/21/2020			
ND		0.00500	mg/L						
				Prepared 8	Analyzed: 10)/21/2020			
ND		0.00500	mg/L						
				Prepared 8	Analyzed: 10)/21/2020			
ND		0.00500	mg/L						
				Prepared 8	Analyzed: 10)/21/2020			
0.104		0.00500	mg/L	0.100		104	90-110		
				Prepared 8	Analyzed: 10)/21/2020			
0.104		0.00500	mg/L	0.100	,	104	90-110		
	Source: W	/AJ0620-02		Prepared 8	Analyzed: 10)/21/2020			
0.158		0.00500	mg/L	0.100	0.0514	107	80-120		
	Source: W	/AJ0626-02		Prepared 8	Analyzed: 10)/21/2020			
0.174		0.00500	mg/L	0.100	0.0614	113	80-120		
	Source: W	/AJ0620-02		Prepared 8	Analyzed: 10)/21/2020			
0.162		0.00500	mg/L	0.100	0.0514	110	80-120	2.31	20
	Source: W	/AJ0626-02		Prepared 8	Analyzed: 10)/21/2020			
0.166		0.00500	mg/L	0.100	0.0614	104	80-120	4.94	20
				Dropared O	Analyzadi 10	1/26/2020			
ND		0.500	mg/L	гтерагей 8	t Analyzed: 10	0/20/2020			
	ND ND 0.104 0.104 0.158 0.174 0.162	ND ND 0.104 0.104 Source: W 0.158 Source: W 0.174 Source: W 0.162 Source: W 0.166	Result Qual Limit ND 0.00500 ND 0.00500 0.104 0.00500 Source: WAJ0620-02 0.158 0.00500 Source: WAJ0626-02 0.174 0.00500 Source: WAJ0620-02 0.162 0.00500 Source: WAJ0626-02 0.162 0.00500	Result Qual Limit Units ND 0.00500 mg/L ND 0.00500 mg/L ND 0.00500 mg/L 0.104 0.00500 mg/L Source: WAJ0620-02 0.158 0.00500 mg/L Source: WAJ0626-02 0.174 0.00500 mg/L Source: WAJ0620-02 0.162 0.00500 mg/L Source: WAJ0626-02 0.166 0.00500 mg/L	Result Qual Limit Units Level	Result Qual Limit Units Level Result	Result Qual Limit Units Level Result %REC	ND	ND

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result Qua	Reporting I Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Allalyte	Result Qua	II LIIIIL	UTILS	Level	Result	70REC	LIIIIICS	KPD	LIIIIL
Batch: BAJ0751 - W FIA (Continu	ied)								
LCS (BAJ0751-BS1)				Prepared 8	k Analyzed: 10	0/26/2020			
TKN	2.08	0.500	mg/L	2.00		104	85-115		
Matrix Spike (BAJ0751-MS1)	Sou	rce: WAJ0444-02		Prepared 8	k Analyzed: 10	0/26/2020			
TKN	3.66	0.500	mg/L	2.00	1.67	99.3	80-120		
Matrix Spike Dup (BAJ0751-MSD1)	Sou	rce: WAJ0444-02		Prepared 8	k Analyzed: 10	0/26/2020			
TKN	3.62	0.500	mg/L	2.00	1.67	97.2	80-120	1.13	20
Batch: BAJ0763 - W FIA									
Blank (BAJ0763-BLK1)				Prepared 8	k Analyzed: 10	0/23/2020			
Nitrate/N + Nitrite/N	ND	0.100	mg/L						
Blank (BAJ0763-BLK2)				Prepared 8	k Analyzed: 10	0/23/2020			
Nitrate/N + Nitrite/N	ND	0.100	mg/L						
LCS (BAJ0763-BS1)				Prepared 8	k Analyzed: 10	0/23/2020			
Nitrate/N + Nitrite/N	0.203	0.100	mg/L	0.201		101	90-110		
Matrix Spike (BAJ0763-MS1)	Sou	rce: WAJ0444-01		Prepared 8	k Analyzed: 10	0/23/2020			
Nitrate/N + Nitrite/N	0.309	0.100	mg/L	0.201	0.137	85.7	80-120		
Matrix Spike Dup (BAJ0763-MSD1)	Sou	rce: WAJ0444-01		Prepared 8	k Analyzed: 10	0/23/2020			
Nitrate/N + Nitrite/N	0.316	0.100	mg/L	0.201	0.137	89.1	80-120	2.18	20

Quality Control Data (Continued)

Metals by ICP-MS

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0368 - W 3010 Digest										
Blank (BAJ0368-BLK1)				Pre	pared: 10/14	/2020 Analyze	d: 10/22/20	20		
Dissolved Iron	ND		0.0100	mg/L						
Dissolved Zinc	ND		0.00100	mg/L						
Dissolved Copper	ND		0.00100	mg/L						
LCS (BAJ0368-BS1)				Pre	pared: 10/14	/2020 Analyze	d: 10/21/20	20		
Dissolved Copper	0.0489		0.00100	mg/L	0.0500		97.8	85-115		
Dissolved Iron	0.112		0.0100	mg/L	0.100		112	85-115		
Dissolved Zinc	0.0481		0.00100	mg/L	0.0500		96.2	85-115		
Matrix Spike (BAJ0368-MS1)		Source: W	/AJ0379-02	Pre	pared: 10/14	/2020 Analyze	d: 10/22/20	20		
Dissolved Iron	1.42		0.100	mg/L	1.00	0.208	121	70-130		
Dissolved Zinc	0.535		0.0100	mg/L	0.500	0.0558	95.8	70-130		
Dissolved Copper	0.515		0.0100	mg/L	0.500	0.0149	100	70-130		
Matrix Spike Dup (BAJ0368-MSD1)	Source: WAJ0379-02		Pre	pared: 10/14	/2020 Analyze	d: 10/21/20	20			
Dissolved Zinc	0.540		0.0100	mg/L	0.500	0.0558	96.8	70-130	0.962	20
Dissolved Iron	1.28		0.100	mg/L	1.00	0.208	107	70-130	10.4	20
Dissolved Copper	0.520		0.0100	mg/L	0.500	0.0149	101	70-130	0.977	20

Quality Control Data (Continued)

Metals b	y ICP-MS ((Continued)
----------	------------	-------------

		Reporting		Spike	Source		%REC		RPD	
Analyte Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch: BAJ0368 - W 3010 Digest (Continued)

Batch:	<i>BAJ0369</i>	- W 30	10 Digest
--------	----------------	--------	-----------

Batch: BAJ0369 - W 3010 Digest									
Blank (BAJ0369-BLK1)			Pre	pared: 10/14	/2020 Analyze	d: 10/22/20	20		
Zinc	ND	0.00100	mg/L						
Copper	ND	0.00100	mg/L						
Iron	ND	0.0100	mg/L						
LCS (BAJ0369-BS1)			Pre	pared: 10/14	/2020 Analyze	d: 10/22/20	20		
Copper	0.0501	0.00100	mg/L	0.0500		100	85-115		
Iron	0.113	0.0100	mg/L	0.100		113	85-115		
Zinc	0.0487	0.00100	mg/L	0.0500		97.4	85-115		
Matrix Spike (BAJ0369-MS1)	Source	: WAJ0389-01	Pre	pared: 10/14	/2020 Analyze	d: 10/22/20	20		
Iron	0.329	0.0100	mg/L	0.100	0.240	89.2	70-130		
Zinc	0.0665	0.00100	mg/L	0.0500	0.0169	99.2	70-130		
Copper	0.0541	0.00100	mg/L	0.0500	0.00191	104	70-130		
Matrix Spike Dup (BAJ0369-MSD1)	Source: WAJ0389-01			pared: 10/14	/2020 Analyze	d: 10/22/20	20		
Zinc	0.0647	0.00100	mg/L	0.0500	0.0169	95.7	70-130	2.68	20

Quality Control Data (Continued)

mg/L

mg/L

0.0500

0.100

0.00191

0.240

101

85.7

70-130

70-130

3.37

1.09

20

20

0.00100

0.0100

0.0523

0.325

Hydrocarbons

Copper

Iron

	Reporting		Spike	Source		%REC		RPD
Result Qu	ual Limit	Units	Level	Result	%REC	Limits	RPD	Limit
			Prepared 8	Analyzed: 10	/21/2020			
ND	0.160	mg/L						
ND	0.400	mg/L						
ND	0.160	mg/L						
	45.9	ррт	50.1		91.6	50-150		
			Prepared 8	Analyzed: 10	/21/2020			
0.986	0.160	mg/L	1.01		97.7	70-130		
ND	0.400	mg/L				70-130		
	45.0	ррт	50.1		89.9	50-150		
Sou	urce: WAJ0488-02	Prepared: 10/21/2020 Analyzed: 10/22/2020						
ND	0.160	mg/L		ND				20
0.193	0.400	mg/L		0.202			4.58	20
ND	0.160	mg/L		ND				20
	45.6	ррт	50.1		91.1	50-150		
Source: WAJ0380-03		Pro	epared: 10/21	/2020 Analyze	ed: 10/22/20	20		
0.832	0.160	mg/L	1.01	ND	82.4	70-130		
0.173	0.400	mg/L		0.174		70-130		
	42.1	ррт	50.1		84.0	50-150		
	ND ND 0.986 ND ND 0.193 ND Soi 0.832	ND	ND	Prepared 8 ND	Result Qual Limit Units Level Result	Prepared & Analyzed: 10/21/2020	Prepared & Analyzed: 10/21/2020	Prepared & Analyzed: 10/21/2020 ND

Quality Control Data (Continued)

Hydrocarbons (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Batch: BAJ0511 - W TPH-Dx (Continued)

Matrix Spike Dup (BAJ0511-MSD1)	Source: V	Pre	pared: 10/21,	20					
Diesel	0.862	0.160	mg/L	1.01	ND	85.4	70-130	3.54	20
Lube Oil	0.192	0.400	mg/L		0.174		70-130	10.2	20
Surrogate: n-Hexacosane		44.4	ррт	50.1		88.5	50-150		

Anatek Labs,

Chain of Custody Record

Anatek Log-In#

M	/A	J0	38	0	

	Labs, Inc.		lturas Drive, orague Ste D,												•	Due: 10/27/20				
Compa	any Name:	Spokane Count	y	Proje	ct Man	ager:			1	Etha	n Mu	rnin				Tur				
Addres	ss: 1026 V	V. Broadway Aver	nue	Project Name & # : Gonzaga BioRetention Cell							ioRe	Please refer to our normal turn around unles at. http://www.anateklabs.com/services/guidelines/reporting.asp								
City:	Spokane	State: WA Zip:	99260	Email Address : EMURNIN@spokanecounty.org							okar	Normal *All rush orderPhone Next Day* requests must beMail								
Phone	one: (509) 477-7420 Purchase Order #:											2nd Day* prior approvedFax								
Fax:			Sam	pler Na	me &	phone	e:		(5	09)99	95-05	557			Other* <u>*_</u> Email					
	Provide S	1	List Analyses Requested							ques	Note Special Instructions/Comments									
	stormwater influent and effluent			containers	arvative:	TSS SM 2540D	J Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	D ASTM 3977-97	pttag	6C.4	Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com				
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of C	Sample	TSS	Cu Zn F 200.	Cu Zn E EPA 20	Harc 234	Total F SM	HWN WN	Ortho SN SN	su)	No		SWBS				
	INF101020	10/10/20 6:30 pm	water			X	X	X	X	X	X	X	×							
	EFF12101020	10/10/20 6:30 pm	water			X	X	X	X	X	X	X	X							
	EFF18101020	10/10/20 6:30 pm	water			X	X	X	X	X	X	X	X							
	INF101020-DI	10/10/20 6:30 pm	water					X												
	EFF12101020-DI	10/10/20 6:30 pm	water					X												
	EFF18101020-DI	10/10/20 6:30 pm	water					X												
		I	I	1	1	1	1	1	1	1	1	l	l	1 1						

						Containers Sealed?
						VOC Head Space?
	Printed Name	Signature	Company	Date	Time	w:
elinquished by	Kevin Flanagan	Kim Flynn	Osban Consulting	(0/12/20		Temperature (°C): 6-7° IR 1/6.2° Not
eceived by	Brock Gege	July	Are file	10-1220	1631	Preservative: HCI 2002747 42
elinquished by		1 ///	01			H2SQ 200205 - 11-102-200228
teceived by						Date & Time: 10-12-20 1730

Form COC01.00 - Eff 1 Mar 2015

Relinquished by

Received by

Page 1 of 1

Inspection Checklist

Received Intact?

Labels & Chains Agree?

Inspected By: W/ 4

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

N

HN03 2000994 <2

Anatek Labs,
Inc.

Chain of Custody Record

Anatek Log-In# WAJ0380

	Lab. Inc	s, c.			lturas Drive, l orague Ste D, S													
Compa	any Name:		Spokane Co				ect Mar			(309)		Etha			_	3		Tur Due: 10/27/20
Addre	ss: 10	26 W	. Broadway A			Proje	ect Nar	ne &	#:	G	onza	ga B	ioRe	etent	ion (Cell		Please refer to our normal turn around times at. http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	(State: WA	Zip:	99260	Ema	il Addr	ess :	E	MUF	RNIN	@sp	oka	neco	unty	.org		Normal *All rush orderPhone Next Day* requests must beMail
Phone);	(5	509) 477-7420)		Purc	hase C	Order #	# :									2nd Day* prior approvedFax
Fax:						Sam	pler Na	ame &	phone	е:		(50	09)9	95-0	557			Other* <u>*_</u> Email
	Provid	le Sa	mple Descrip	otion	1				List	Ana	lyse	s Re	que	sted				Note Special Instructions/Comments
	storm	water	influent and efflue	ent		Containers	Sample Volumes	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	PSD ASTM D3977-97	b##d	Cecial Nothage	Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identifica	ation	Sampling Date/T	ime	Matrix	# of C	Samp	TSS	Cu Zn F 200.	Cu Zn F EPA 20	Harc 234	Total F SM	NW W	Ortho SN	S _a	No	10	3 per Kevin SWBS
	INF101020		10/10/20 6:30 p	om	water			X	X	X	×	X	X	X	×		X	
	EFF12101020		10/10/20 6:30 p	om	water			X	X	X	X	X	X	X	X		X	
	EFF18101020		10/10/20 6:30 p	om	water			X	X	X	X	X	X	X	X		+	
	INF101020-DI		10/10/20 6:30 p	m	water					X								
	EFF12101020-DI		10/10/20 6:30 p	om	water					X								
	EFF18101020-DI		10/10/20 6:30 p	om	water	_				X				<u> </u>				
						_		_										
		\dashv				<u> </u>			<u> </u>	<u> </u>	↓			↓				Inspection Checklist
						1		-	 	<u> </u>	—	<u> </u>		ـ	-			Received Intact? Y N
						<u> </u>	 	-	-	├		-		-				Labels & Chains Agree? N
						_	-	+	-	├		ļ		-	-			Containers Sealed?
				- 1		-	╁	┼	┼	-	-		-	╂	├		-	VOC Head Space?
		Drinto	ed Name		Signature					Com	npany			Date		Time		- Wi
					01 -		1			1						200025000000		Temperature (°C): 6-7° I/21/6.2° ind
Relin	quished by	Ker	in Flanage	ŧΛ	Kim 7	1		DA.	<u>~</u>	USb		1	altim		12/20		5	
Rece	ived by	Bn	ock (rege	1	Mr		Z,	1	_		A	res /	uh.	10	1220	16	31	Preservative: #C1 2003747 42
Relin	quished by		*		#/						U							H2SQ 200203 -2 41/193 2002080 -
Rece	ived by				, ,	2												Date & Time: 10-12-20 173D
Relin	quished by		And the second s															Inspected By: W/4
Rece	ived by																	NA 2001015 HN03 2000994 <2
	2 200 00 0		. 000															Process Dis

Form COC01.00 - Eff 1 Mar 2015

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAJ0488

Project: Gonzaga BioRetention Cell

Reported: 11/5/2020 15:54

Analytical Results Report

Sample Location: INF101220

Matrix:

Surrogate: n-Hexacosane

Lab/Sample Number: WAJ0488-01

10/12/20 14:30 Ethan Murnin

Collect Date:

Collected By:

89.3%

Date Received: 10/12/20 16:31

Water

Analyte Result Units PQL Analyzed Analyst Method Qualifier **Inorganics** 19.2 mg CaCO3/L 10/15/20 13:00 SM 2340 C Hardness 6.00 ARY 10/23/20 10:49 SM 4500-NO3 F Total Nitrate/Nitrite 0.159 mg/L TLM 0.100 TKN 0.653 mg/L 0.500 11/4/20 10:39 TLM SM 4500-Norg D 0.812 11/4/20 10:39 TLM Total Nitrogen mg/L varies 0.600 10/21/20 16:25 Total P 0.148 mg/L 0.0500 TLM SM 4500-P H SM 2540 D TSS 12.3 mg/L 10/16/20 13:28 BAS 0.333 Metals by ICP-MS 0.00523 10/29/20 13:40 TRC EPA 200.8 Copper mg/L 0.00100 Dissolved Copper 0.00366 mg/L 0.00100 10/29/20 14:46 TRC EPA 200.8 Iron 0.544 mg/L 0.0100 10/29/20 13:40 TRC EPA 200.8 M2 0.0258 10/29/20 14:46 TRC EPA 200.8 Dissolved Iron mg/L 0.0100 TRC Zinc 0.0274 10/29/20 13:40 EPA 200.8 mg/L 0.00100 TRC Dissolved Zinc 0.0244 mg/L 0.00100 10/29/20 14:46 EPA 200.8 Hydrocarbons ND mg/L 10/22/20 5:14 ARC NWTPH-Dx Diesel 0.160 ND 10/22/20 5:14 ARC NWTPH-Dx Lube Oil mg/L 0.400 ND 10/22/20 5:14 NWTPH-Dx ARC Mineral Oil mg/L 0.160

50-150

10/22/20 5:14

ARC

NWTPH-Dx

Analytical Results Report

(Continued)

Sample Location: EFF12101220

Lab/Sample Number: WAJ0488-02 Collect Date: 10/12/20 14:30 Date Received: Collected By: 10/12/20 16:31 Ethan Murnin

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	136	mg CaCO3/L	6.00	10/15/20 13:00	ARY	SM 2340 C	
Total Nitrate/Nitrite	0.146	mg/L	0.100	10/23/20 10:50	TLM	SM 4500-NO3 F	
TKN	1.29	mg/L	0.500	11/4/20 10:39	TLM	SM 4500-Norg D	
Total Nitrogen	1.44	mg/L	0.600	11/4/20 10:39	TLM	varies	
Total P	0.427	mg/L	0.0500	10/21/20 16:27	TLM	SM 4500-P H	
TSS	9.40	mg/L	0.200	10/19/20 8:30	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00931	mg/L	0.00100	10/29/20 13:43	TRC	EPA 200.8	
Dissolved Copper	0.00762	mg/L	0.00100	10/29/20 14:49	TRC	EPA 200.8	
Iron	0.676	mg/L	0.0100	10/29/20 13:43	TRC	EPA 200.8	M2
Dissolved Iron	0.0798	mg/L	0.0100	10/29/20 14:49	TRC	EPA 200.8	
Zinc	0.00841	mg/L	0.00100	10/29/20 13:43	TRC	EPA 200.8	
Dissolved Zinc	0.0208	mg/L	0.00100	10/29/20 14:49	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	10/22/20 6:08	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	10/22/20 6:08	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	10/22/20 6:08	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92.5%		50-150	10/22/20 6:08	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF18101220

Lab/Sample Number: WAJ0488-03 Collect Date: 10/12/20 14:30 Date Received: Collected By: 10/12/20 16:31 Ethan Murnin

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	190	mg CaCO3/L	6.00	10/15/20 13:00	ARY	SM 2340 C	
Total Nitrate/Nitrite	0.194	mg/L	0.100	10/23/20 10:53	TLM	SM 4500-NO3 F	
TKN	1.05	mg/L	0.500	11/4/20 10:40	TLM	SM 4500-Norg D	
Total Nitrogen	1.25	mg/L	0.600	11/4/20 10:40	TLM	varies	
Total P	0.450	mg/L	0.0500	10/21/20 16:30	TLM	SM 4500-P H	
TSS	7.60	mg/L	0.200	10/19/20 8:30	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00818	mg/L	0.00100	10/29/20 13:52	TRC	EPA 200.8	
Dissolved Copper	0.00648	mg/L	0.00100	10/29/20 14:56	TRC	EPA 200.8	
Iron	0.447	mg/L	0.0100	10/29/20 13:52	TRC	EPA 200.8	M2
Dissolved Iron	0.0594	mg/L	0.0100	10/29/20 14:56	TRC	EPA 200.8	
Zinc	0.00994	mg/L	0.00100	10/29/20 13:52	TRC	EPA 200.8	
Dissolved Zinc	0.00719	mg/L	0.00100	10/29/20 14:56	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	10/22/20 7:57	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	10/22/20 7:57	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	10/22/20 7:57	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	90.9%		<i>50-150</i>	10/22/20 7:57	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location:

INF101220-DI

Lab/Sample Number:

WAJ0488-04

Collect Date:

Collected By:

10/12/20 14:30

Date Received:

10/12/20 16:31

Ethan Murnin

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	ND	mg/L	0.00100	10/29/20 14:58	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	10/29/20 14:58	TRC	EPA 200.8	
Dissolved Zinc	0.0255	mg/L	0.00100	10/29/20 14:58	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF12101220-DI

Lab/Sample Number: WAJ0488-05 Collect Date: 10/12/20 14:30 Date Received: Collected By: 10/12/20 16:31 Ethan Murnin

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	ND	mg/L	0.00100	10/29/20 15:00	TRC	EPA 200.8	
Dissolved Iron	0.0131	mg/L	0.0100	10/29/20 15:00	TRC	EPA 200.8	
Dissolved Zinc	0.0111	mg/L	0.00100	10/29/20 15:00	TRC	EPA 200.8	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF18101220-DI

Lab/Sample Number: WAJ0488-06 Collect Date: 10/12/20 14:30

Date Received: 10/12/20 16:31 Collected By: Ethan Murnin

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	ND	mg/L	0.00100	10/29/20 15:03	TRC	EPA 200.8	
Dissolved Iron	ND	mg/L	0.0100	10/29/20 15:03	TRC	EPA 200.8	
Dissolved Zinc	0.0124	mg/L	0.00100	10/29/20 15:03	TRC	EPA 200.8	

Authorized Signature,

Karice Scott For Kathleen Sattler, Laboratory Manager

M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable. Potential matrix effect.

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a certified analyte RPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory

The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAJ0421 - W Wet Chem	•			•						
Blank (BAJ0421-BLK1)					Prepared &	Analyzed: 10)/15/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
Blank (BAJ0421-BLK2)					Prepared &	Analyzed: 10)/15/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
LCS (BAJ0421-BS1)					Prepared &	Analyzed: 10)/15/2020			
Hardness	101		n	ng CaCO3/L	100		101	90-110		
LCS Dup (BAJ0421-BSD1)					Prepared &	Analyzed: 10	0/15/2020			
Hardness	99.8		n	ng CaCO3/L	100		99.8	90-110	0.957	20
Duplicate (BAJ0421-DUP1)		Source: V	VAJ0129-01		Prepared &	Analyzed: 10	0/15/2020			
Hardness	194		6.00 n	ng CaCO3/L	•	194			0.00	20
Matrix Spike (BAJ0421-MS1)		Source: V	VAJ0535-01		Prepared &	Analyzed: 10)/15/2020			
Hardness	129			ng CaCO3/L	100	38.4	90.2	80-120		
Matrix Spike Dup (BAJ0421-MSD1)		Source: V	VAJ0535-01		Prepared &	Analyzed: 10)/15/2020			
Hardness	136		6.00 n	ng CaCO3/L	100	38.4	97.9	80-120	5.80	20
Batch: BAJ0601 - W Filtration										
Blank (BAJ0601-BLK1)					Prepared &	Analyzed: 10)/16/2020			
TSS	ND		1.00	mg/L						
Blank (BAJ0601-BLK2)					Prepared &	Analyzed: 10)/16/2020			
TSS	ND		1.00	mg/L						

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0601 - W Filtration (Co	ontinued)									
LCS (BAJ0601-BS1)					Prepared 8	Analyzed: 10	/16/2020			
TSS	97.0			mg/L	100		97.0	90-110		
LCS Dup (BAJ0601-BSD1)					Prepared 8	Analyzed: 10	/16/2020			
TSS	94.0			mg/L	100		94.0	90-110	3.14	10
Duplicate (BAJ0601-DUP1)		Source: V	VAJ0379-01		Prepared 8	Analyzed: 10	/16/2020			
TSS	48.0		1.00	mg/L		49.0			2.06	20
Matrix Spike (BAJ0601-MS1)		Source: M	IAJ0312-01		Prepared 8	Analyzed: 10	/16/2020			
TSS	260		2.00	mg/L	100	178	82.0	80-120		
Matrix Spike Dup (BAJ0601-MSD1)		Source: M	IAJ0312-01		Prepared 8	Analyzed: 10	/16/2020			
TSS	270		2.00	mg/L	100	178	92.0	80-120	3.77	20
Batch: BAJ0634 - W FIA										
Blank (BAJ0634-BLK1)					Prepared 8	Analyzed: 10	/21/2020			
Total P	ND		0.00500	mg/L						
Blank (BAJ0634-BLK2)					Prepared 8	Analyzed: 10	/21/2020			
Total P	ND		0.00500	mg/L						
Blank (BAJ0634-BLK3)					Prepared 8	Analyzed: 10	/21/2020			
Total P	ND		0.00500	mg/L						
LCS (BAJ0634-BS1)					Prepared 8	Analyzed: 10	/21/2020			
Total P	0.104		0.00500	mg/L	0.100		104	90-110		

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0634 - W FIA (Continu	ied)									
LCS (BAJ0634-BS2)	_				Prepared 8	k Analyzed: 10	/21/2020			
Total P	0.104		0.00500	mg/L	0.100		104	90-110		
Matrix Spike (BAJ0634-MS1)		Source: W	VAJ0620-02		Prepared 8	k Analyzed: 10	/21/2020			
Total P	0.158		0.00500	mg/L	0.100	0.0514	107	80-120		
Matrix Spike (BAJ0634-MS2)		Source: W	VAJ0626-02		Prepared 8	k Analyzed: 10	/21/2020			
Total P	0.174		0.00500	mg/L	0.100	0.0614	113	80-120		
Matrix Spike Dup (BAJ0634-MSD1)		Source: W	VAJ0620-02		Prepared 8	k Analyzed: 10	/21/2020			
Total P	0.162		0.00500	mg/L	0.100	0.0514	110	80-120	2.31	20
Matrix Spike Dup (BAJ0634-MSD2)		Source: W	VAJ0626-02		Prepared 8	k Analyzed: 10	/21/2020			
Total P	0.166		0.00500	mg/L	0.100	0.0614	104	80-120	4.94	20
Batch: BAJ0671 - W Filtration										
Blank (BAJ0671-BLK1)					Prepared 8	k Analyzed: 10	/19/2020			
TSS	ND		1.00	mg/L						
Blank (BAJ0671-BLK2)					Prepared 8	k Analyzed: 10	/19/2020			
TSS	ND		1.00	mg/L						
LCS (BAJ0671-BS1)					Prepared 8	k Analyzed: 10	/19/2020			
TSS	96.0			mg/L	100		96.0	90-110		
LCS Dup (BAJ0671-BSD1)					Prepared 8	k Analyzed: 10	/19/2020			
TSS	96.0			mg/L	100		96.0	90-110	0.00	10

Quality Control Data (Continued)

		· ·	Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0671 - W Filtration (C	ontinued)									
Duplicate (BAJ0671-DUP1)	-	Source: V	VAJ0535-01		Prepared 8	k Analyzed: 10)/19/2020			
TSS	54.0		1.00	mg/L		65.0			18.5	20
Matrix Spike (BAJ0671-MS1)		Source: V	VAJ0570-01		Prepared 8	k Analyzed: 10)/19/2020			
TSS	136		2.00	mg/L	100	33.0	103	80-120		
Matrix Spike Dup (BAJ0671-MSD1)		Source: V	VAJ0570-01		Prepared 8	k Analyzed: 10	/19/2020			
TSS	140		2.00	mg/L	100	33.0	107	80-120	2.90	20
Batch: BAJ0763 - W FIA										
Blank (BAJ0763-BLK1)					Prepared 8	k Analyzed: 10	1/23/2020			
Nitrate/N + Nitrite/N	ND		0.100	mg/L						
Blank (BAJ0763-BLK2)					Prepared 8	k Analyzed: 10	1/23/2020			
Nitrate/N + Nitrite/N	ND		0.100	mg/L						
LCS (BAJ0763-BS1)					Prepared 8	k Analyzed: 10	1/23/2020			
Nitrate/N + Nitrite/N	0.203		0.100	mg/L	0.201		101	90-110		
Matrix Spike (BAJ0763-MS1)		Source: V	VAJ0444-01		Prepared 8	k Analyzed: 10	1/23/2020			
Nitrate/N + Nitrite/N	0.309		0.100	mg/L	0.201	0.137	85.7	80-120		
Matrix Spike Dup (BAJ0763-MSD1)		Source: V	VAJ0444-01		Prepared 8	k Analyzed: 10	1/23/2020			
Nitrate/N + Nitrite/N	0.316		0.100	mg/L	0.201	0.137	89.1	80-120	2.18	20
Batch: BAK0106 - W FIA										
Blank (BAK0106-BLK1)					Prepared 8	& Analyzed: 1	1/4/2020			
TKN	ND		0.500	mg/L		,	, ,			

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0106 - W FIA (Continu	ed)									
Blank (BAK0106-BLK2)					Prepared 8	k Analyzed: 1	1/4/2020			
TKN	ND		0.500	mg/L						
Blank (BAK0106-BLK3)					Prepared 8	& Analyzed: 1	1/4/2020			
TKN	ND		0.500	mg/L						
LCS (BAK0106-BS1)					Prepared 8	& Analyzed: 1	1/4/2020			
TKN	2.23		0.500	mg/L	2.00		112	85-115		
LCS (BAK0106-BS2)					Prepared 8	& Analyzed: 1	1/4/2020			
TKN	2.11		0.500	mg/L	2.00		106	85-115		
Matrix Spike (BAK0106-MS1)		Source: W	AJ0674-02		Prepared 8	k Analyzed: 1	1/4/2020			
TKN	3.35		0.500	mg/L	2.00	1.03	116	80-120		
Matrix Spike Dup (BAK0106-MSD1)		Source: W	AJ0674-02		Prepared 8	& Analyzed: 1	1/4/2020			
TKN	2.95		0.500	mg/L	2.00	1.03	96.2	80-120	12.5	20

Quality Control Data

(Continued)

Metals by ICP-MS

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·		<u> </u>								
Batch: BAJ0641 - W 3010 Digest				_		/aaaa . /				
Blank (BAJ0641-BLK1)					pared: 10/23	/2020 Analyze	d: 10/29/20	20		
Iron	ND		0.0100	mg/L						
Copper	ND		0.00100	mg/L						
Zinc	ND		0.00100	mg/L						
LCS (BAJ0641-BS1)				Pre	pared: 10/23	/2020 Analyze	d: 10/29/20	20		
Zinc	0.0520		0.00100	mg/L	0.0500		104	85-115		
Iron	0.108		0.0100	mg/L	0.100		108	85-115		
Copper	0.0507		0.00100	mg/L	0.0500		101	85-115		
Matrix Spike (BAJ0641-MS1)		Source: W	/AJ0488-02	Pre	pared: 10/23	/2020 Analyze	d: 10/29/20	20		
Copper	0.0554		0.00100	mg/L	0.0500	0.00931	92.1	70-130		
Iron	0.782		0.0100	mg/L	0.100	0.676	106	70-130		
Zinc	0.0570		0.00100	mg/L	0.0500	0.00841	97.2	70-130		
Matrix Spike (BAJ0641-MS2)		Source: W	AJ0539-03	Pre	pared: 10/23	/2020 Analyze	d: 10/29/20	20		
Copper	0.0505		0.00100	mg/L	0.0500	0.00476	91.6	70-130		
Zinc	0.0540		0.00100	mg/L	0.0500	0.00625	95.5	70-130		
Iron	2.79	M2	0.0100	mg/L	0.100	2.77	16.0	70-130		
Matrix Spike Dup (BAJ0641-MSD1)		Source: W	/AJ0488-02	Pre	pared: 10/23	/2020 Analyze	d: 10/29/20	20		
Copper	0.0569		0.00100	mg/L	0.0500	0.00931	95.1	70-130	2.68	20
Iron	0.798		0.0100	mg/L	0.100	0.676	122	70-130	1.97	20
Zinc	0.0581		0.00100	mg/L	0.0500	0.00841	99.4	70-130	1.95	20
Matrix Spike Dup (BAJ0641-MSD2)		Source: W	/AJ0539-03	Pre	pared: 10/23	/2020 Analyze	d: 10/29/20	20		
Iron	2.62		0.0100	mg/L	0.100	2.77	NR	70-130	6.30	20

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAJ0641 - W 3010 Digest	(Continue	ed)								
Matrix Spike Dup (BAJ0641-MSD2)	-	Source: W	/AJ0539-03	Pre	pared: 10/23	/2020 Analyze	ed: 10/29/20	20		
Zinc	0.0534		0.00100	mg/L	0.0500	0.00625	94.3	70-130	1.13	20
Copper	0.0504		0.00100	mg/L	0.0500	0.00476	91.2	70-130	0.349	20
Batch: BAJ0787 - W 3010 Digest										
Blank (BAJ0787-BLK1)				Pre	pared: 10/28	/2020 Analyze	ed: 10/29/20	20		
Dissolved Iron	ND		0.0100	mg/L						
Dissolved Copper	ND		0.00100	mg/L						
Dissolved Zinc	ND		0.00100	mg/L						
LCS (BAJ0787-BS1)				Pre	pared: 10/28	/2020 Analyze	ed: 10/29/20	20		
Dissolved Copper	0.0467		0.00100	mg/L	0.0500		93.4	85-115		
Dissolved Iron	0.104		0.0100	mg/L	0.100		104	85-115		
Dissolved Zinc	0.0491		0.00100	mg/L	0.0500		98.2	85-115		
Matrix Spike (BAJ0787-MS1)		Source: W	/AJ0488-02	Pre	pared: 10/28	/2020 Analyze	ed: 10/29/20	20		
Dissolved Iron	0.695		0.0500	mg/L	0.500	0.0798	123	70-130		
Dissolved Zinc	0.268		0.00500	mg/L	0.250	0.0208	99.0	70-130		
Dissolved Copper	0.250		0.00500	mg/L	0.250	0.00762	96.9	70-130		
Matrix Spike Dup (BAJ0787-MSD1)		Source: W	/AJ0488-02	Pre	pared: 10/28	/2020 Analyze	ed: 10/29/20	20		
Dissolved Iron	0.706		0.0500	mg/L	0.500	0.0798	125	70-130	1.68	20
Dissolved Copper	0.253		0.00500	mg/L	0.250	0.00762	98.1	70-130	1.22	20
Dissolved Zinc	0.270		0.00500	mg/L	0.250	0.0208	99.6	70-130	0.492	20

Quality Control Data

(Continued)

Hydrocarbons

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0511 - W TPH-Dx									
Blank (BAJ0511-BLK1)				Prepared 8	Analyzed: 10	/21/2020			
Diesel	ND	0.160	mg/L						
Lube Oil	ND	0.400	mg/L						
Mineral Oil	ND	0.160	mg/L						
Surrogate: n-Hexacosane		45.9	ррт	50.1		91.6	50-150		
LCS (BAJ0511-BS1)				Prepared 8	Analyzed: 10	/21/2020			
Diesel	0.986	0.160	mg/L	1.01		97.7	70-130		
Lube Oil	ND	0.400	mg/L				70-130		
Surrogate: n-Hexacosane		45.0	ррт	50.1		89.9	50-150		
Duplicate (BAJ0511-DUP1)	Sourc	e: WAJ0488-02	Pre	epared: 10/21	/2020 Analyze	ed: 10/22/20	20		
Diesel	ND	0.160	mg/L		ND				20
Lube Oil	0.193	0.400	mg/L		0.202			4.58	20
Mineral Oil	ND	0.160	mg/L		ND				20
Surrogate: n-Hexacosane		45.6	ррт	50.1		91.1	50-150		

Matrix Spike (BAJ0511-MS1) Source: WAJ0380-03 Prepared: 10/21/2020 Analyzed: 10/22/2020

Quality Control Data (Continued)

Hydrocarbons (Continued)

		Reporting		Spike	Source	0/ 850	%REC		RPD
Analyte	Result Q	ual Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAJ0511 - W TPH-Dx (Con	tinued)								
Matrix Spike (BAJ0511-MS1)	So	urce: WAJ0380-03	Pre	pared: 10/21	/2020 Analyze	ed: 10/22/20	20		
Diesel	0.832	0.160	mg/L	1.01	ND	82.4	70-130		
Lube Oil	0.173	0.400	mg/L		0.174		70-130		
Surrogate: n-Hexacosane		42.1	ppm	50.1		84.0	50-150		
Matrix Spike Dup (BAJ0511-MSD1)	So	urce: WAJ0380-03	Pre	pared: 10/21	/2020 Analyze	ed: 10/22/20	20		
Diesel	0.862	0.160	mg/L	1.01	ND	85.4	70-130	3.54	20
Lube Oil	0.192	0.400	mg/L		0.174		70-130	10.2	20
Surrogate: n-Hexacosane		44.4	ppm	50.1		88.5	50-150		

Anatek
Labs,
Inc.

Chain of Custody Record 1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246

Anatek Log-In#

V	Aυ	U4	45	88	
				Ш	111
		Ш			II
				Ш	111

	Inc.	504 E Sp	rague Ste D,				202	(509)	838	3999	FA	X 83	8-443	3 🔾	Due: 10/28/20
Compar	ny Name:	Spokane County	y	Proje	ct Man	ager:			1	Etha	n Mu	ırnin			
Address	s: 1026 V	V. Broadway Aver	nue	Proje	ct Nan	ne & #	# :	Go	onza	ga E	ioRe	etent	ion (Cell	http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	State: WA Zip:	99260	Emai	Addre	ess :	E	MUF	RNIN	@sp	okaı	neco	unty	.org	Normal *All rush orderPhone Next Day* requests must beMail
Phone:	((509) 477-7420		Purch	nase O	rder #	:								2nd Day* prior approvedFax
Fax:				Samp	oler Na	me &	phone	∋:		(5	09)99	95-05	557		Other* Email
	Provide S	ample Description	1				List	Ana	lyse	s Re	ques	sted			Note Special Instructions/Comments
	stormwate	r influent and effluent		Containers	Sample Volume	TSS SM 2540D	Cu Zn Fe Total EPA 200.8 ICP/MS	Cu Zn Fe Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	PSD ASTM D3977-97		Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of	San	TS	Cu Zr 20	Cu Zr EPA	H 20	Tota	\$2	Ortho	а-		
	INF101220	10/12/20 2:30	water			X	X	X	X	X	X				
	EFF12101220	10/12/20 2:30	water			X	X	X	X	X	X				K I I O I D A II D
	EFF18101220	10/12/20 2:30	water			X	X	X	X	X	X				I metals tield tilleved
	INF101220-DI			1		<u> </u>		×							
	EFF12101220-DI			_				X							
	EFF18101220-DI			_		ļ		X							
				+											Inspection Checklist
				+	 	\vdash	 	 							Received Intact? (Y) N
					<u> </u>										Labels & Chains Agree? (Y) N
				1		<u> </u>									Containers Sealed? Y N
				†		t					İ				VOC Head Space? Y N
				1	0	1									1 Maki
	Prin	ited Name	Signature					Com	pany			Date		Time	noc Chi,
Doline	quished by Ke	vin Flanagan	Kino	FI	MM.	<i>e</i> ₁ /		00	DEIN	1 44 44	L)	int	2/20	13:00	Temperature (°C): 5.3/4,8' / 18#1
	ived by	Swiff	A C	A.	- July			Âs	ral	eti	J		3/202		Preservative: H2SO4 2002883 HCI 200274
	quished by	U .	l											,	1 1 1 1 103 - 2000994 HNO3 2002280 pH - 2
Rece	ived by														Date & Time: 10-14-2020 1318
Relin	quished by														Inspected By: KAS
Rece	eived by														

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAK0231

Project: Gonzaga BioRetention Cell

Reported: 11/25/2020 16:50

Analytical Results Report

Sample Location: INF11052020

Lab/Sample Number: WAK0231-01 Collect Date: 11/06/20 10:00

Date Received: 11/06/20 12:46 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	18.8	mg CaCO3/L	3.00	11/11/20 14:00	ARY	SM 2340 C	
Phosphate/P	0.204	mg/L	0.0180	11/6/20 15:15	SAG	SM 4500-P G	
Total P	0.600	mg/L	0.200	11/24/20 15:26	SAG	SM 4500-P H	M1
TSS	54.0	mg/L	1.00	11/9/20 10:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00551	mg/L	0.00100	11/20/20 16:18	TRC	EPA 200.8	
Dissolved Copper	0.00293	mg/L	0.00100	11/11/20 15:23	TRC	EPA 200.8	
Iron	1.35	mg/L	0.0100	11/20/20 16:18	TRC	EPA 200.8	M2
Dissolved Iron	0.114	mg/L	0.0100	11/11/20 15:23	TRC	EPA 200.8	
Zinc	0.0343	mg/L	0.00100	11/20/20 16:18	TRC	EPA 200.8	
Dissolved Zinc	0.0167	mg/L	0.00100	11/11/20 15:23	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/18/20 23:29	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/18/20 23:29	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/18/20 23:29	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92.9%		50-150	11/18/20 23:29	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF1211052020

Lab/Sample Number: WAK0231-02 Collect Date: 11/06/20 10:00

Date Received: Collected By: 11/06/20 12:46

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	135	mg CaCO3/L	6.00	11/11/20 14:00	ARY	SM 2340 C	
Phosphate/P	0.290	mg/L	0.0180	11/6/20 15:16	SAG	SM 4500-P G	
Total P	0.232	mg/L	0.200	11/24/20 15:24	SAG	SM 4500-P H	M1
TSS	12.0	mg/L	1.00	11/9/20 10:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00487	mg/L	0.00100	11/20/20 16:20	TRC	EPA 200.8	
Dissolved Copper	0.00395	mg/L	0.00100	11/11/20 15:38	TRC	EPA 200.8	
Iron	0.431	mg/L	0.0100	11/20/20 16:20	TRC	EPA 200.8	M2
Dissolved Iron	0.0591	mg/L	0.0100	11/11/20 15:38	TRC	EPA 200.8	
Zinc	0.00380	mg/L	0.00100	11/20/20 16:20	TRC	EPA 200.8	
Dissolved Zinc	0.00883	mg/L	0.00100	11/11/20 15:38	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/19/20 0:24	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/19/20 0:24	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/19/20 0:24	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	95.2%		50-150	11/19/20 0:24	ARC	NWTPH-Dx	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1811052020

Lab/Sample Number: WAK0231-03 Collect Date: 11/06/20 10:00

Date Received: 11/06/20 12:46 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	135	mg CaCO3/L	6.00	11/11/20 14:00	ARY	SM 2340 C	
Phosphate/P	0.454	mg/L	0.0180	11/6/20 15:17	SAG	SM 4500-P G	
Total P	1.92	mg/L	0.200	11/24/20 15:31	SAG	SM 4500-P H	M1
TSS	9.00	mg/L	1.00	11/9/20 10:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00412	mg/L	0.00100	11/20/20 16:23	TRC	EPA 200.8	
Dissolved Copper	0.00341	mg/L	0.00100	11/11/20 15:40	TRC	EPA 200.8	
Iron	0.352	mg/L	0.0100	11/20/20 16:23	TRC	EPA 200.8	M2
Dissolved Iron	0.0730	mg/L	0.0100	11/11/20 15:40	TRC	EPA 200.8	
Zinc	0.00688	mg/L	0.00100	11/20/20 16:23	TRC	EPA 200.8	
Dissolved Zinc	0.00906	mg/L	0.00100	11/11/20 15:40	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/19/20 1:19	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/19/20 1:19	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/19/20 1:19	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	88.2%		50-150	11/19/20 1:19	ARC	NWTPH-Dx	

Authorized Signature,

Brock Gerger For Kathleen Sattler, Laboratory Manager

M1 Matrix spike recovery was high; the associated blank spike recovery was acceptable. Potential matrix effect

Book Dog

M2 Matrix spike recovery was low; the associated blank spike recovery was acceptable. Potential matrix effect.

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a certified analyteRPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory

The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0200 - W FIA										
Blank (BAK0200-BLK1)					Prepared 8	& Analyzed: 11	1/6/2020			
Phosphate/P	ND		0.0180	mg/L						
LCS (BAK0200-BS1)					Prepared 8	& Analyzed: 11	1/6/2020			
Phosphate/P	0.103		0.0180	mg/L	0.100		103	85-115		
Matrix Spike (BAK0200-MS1)	Source: WAK0231-03				Prepared 8	& Analyzed: 11	1/6/2020			
Phosphate/P	0.563		0.0180	mg/L	0.100	0.454	109	80-120		
Matrix Spike Dup (BAK0200-MSD1)		Source: W	VAK0231-03		Prepared 8	& Analyzed: 11	1/6/2020			
Phosphate/P	0.565		0.0180	mg/L	0.100	0.454	112	80-120	0.390	20
Batch: BAK0269 - W Filtration Blank (BAK0269-BLK1) TSS	ND		1.00	mg/L	Prepared 8	& Analyzed: 11	1/9/2020			
Blank (BAK0269-BLK2)					Prepared 8	& Analyzed: 11	1/9/2020			
TSS	ND		1.00	mg/L						
Blank (BAK0269-BLK3)					Prepared 8	& Analyzed: 11	1/9/2020			
TSS	ND		1.00	mg/L		-				
Blank (BAK0269-BLK4)					Prepared 8	& Analyzed: 11	1/9/2020			
TSS	ND		1.00	mg/L	· ·	· 				
Blank (BAK0269-BLK5)					Prepared 8	& Analyzed: 11	1/9/2020			
TSS	ND		1.00	mg/L	•					

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
D-1-1- D11/03/0 11/5": "	(C1'1'	-								
Batch: BAK0269 - W Filtration	(Continued)	'								
LCS (BAK0269-BS1)						& Analyzed: 1				
TSS	94.0			mg/L	100		94.0	90-110		
LCS (BAK0269-BS2)					Prepared 8	& Analyzed: 1	1/9/2020			
TSS	96.0			mg/L	100		96.0	90-110		
LCS (BAK0269-BS3)					Prepared 8	& Analyzed: 1	1/9/2020			
TSS	93.0			mg/L	100		93.0	90-110		
LCS Dup (BAK0269-BSD1)					Prepared 8	& Analyzed: 1	1/9/2020			
TSS	96.0			mg/L	100	,	96.0	90-110	2.11	10
LCS Dup (BAK0269-BSD2)					Prepared 8	& Analyzed: 1	1/9/2020			
TSS	98.0			mg/L	100		98.0	90-110	2.06	10
LCS Dup (BAK0269-BSD3)					Prepared 8	& Analyzed: 1	1/9/2020			
TSS	101			mg/L	100		101	90-110	8.25	10
Duplicate (BAK0269-DUP1)		Source: W	/AK0063-02		Prepared 8	& Analyzed: 1	1/9/2020			
TSS	14.0		1.00	mg/L		15.0			6.90	20
Duplicate (BAK0269-DUP2)		Source: W	/AK0167-02		Prepared 8	& Analyzed: 1	1/9/2020			
TSS	19.0		1.00	mg/L		19.0			0.00	20
Duplicate (BAK0269-DUP3)		Source: V	/AK0229-01		Prepared 8	& Analyzed: 1	1/9/2020			
TSS	45.0		1.00	mg/L		43.0			4.55	20
Matrix Spike (BAK0269-MS1)		Source: V	/AK0114-01		Prepared 8	& Analyzed: 1	1/9/2020			
TSS	106		2.00	mg/L	100	3.00	103	80-120		

Quality Control Data (Continued)

Analyte	Result (Reporting Qual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0269 - W Filtration (Co	ntinued)								_
Matrix Spike (BAK0269-MS2)	Sc	ource: WAK0171-01		Prepared 8	& Analyzed: 1	1/9/2020			
TSS	124	2.00	mg/L	100	26.0	98.0	80-120		
Matrix Spike (BAK0269-MS3)	Sc	ource: WAK0111-01		Prepared 8	& Analyzed: 1	1/9/2020			
TSS	214	2.00	mg/L	100	118	96.0	80-120		
Matrix Spike Dup (BAK0269-MSD1)	So	Source: WAK0114-01			& Analyzed: 1	1/9/2020			
TSS	106	2.00	mg/L	100	3.00	103	80-120	0.00	20
Matrix Spike Dup (BAK0269-MSD2)	So	ource: WAK0171-01		Prepared 8	& Analyzed: 1	1/9/2020			
TSS	118	2.00	mg/L	100	26.0	92.0	80-120	4.96	20
Matrix Spike Dup (BAK0269-MSD3)	So		Prepared 8	& Analyzed: 1	1/9/2020				
TSS	214	2.00	mg/L	100	118	96.0	80-120	0.00	20
Batch: BAK0289 - W Wet Chem									
Blank (BAK0289-BLK1)			Prep	oared: 11/10	/2020 Analyze	ed: 11/11/20	20		
Hardness	ND	3.00	mg CaCO3/L						
LCS (BAK0289-BS1)			Prep	pared: 11/10	/2020 Analyze	ed: 11/11/20	20		
Hardness	102		mg CaCO3/L	100		102	90-110		
LCS Dup (BAK0289-BSD1)			Prep	pared: 11/10)/2020 Analyze	ed: 11/11/20	20		
Hardness	100		mg CaCO3/L	100		100	90-110	1.96	20
Duplicate (BAK0289-DUP1)	So	Prep	Prepared: 11/10/2020 Analyzed: 11/11/2020						
Hardness	19.8	3.00	mg CaCO3/L		18.8			5.13	20

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0289 - W Wet Chem (Continue	1)								
Matrix Spike (BAK0289-MS1)		Source: \	VAK0229-01	Prep	ared: 11/10	/2020 Analyze	ed: 11/11/20	20		
Hardness	139		6.00 n	ng CaCO3/L	100	40.6	98.0	80-120		
Matrix Spike Dup (BAK0289-MSD1)		Source: \	VAK0229-01	Prep	pared: 11/10	/2020 Analyze	ed: 11/11/20	20		
Hardness	143		6.00 n	ng CaCO3/L	100	40.6	102	80-120	2.82	20
Batch: BAK0782 - W FIA										
Blank (BAK0782-BLK1)					Prepared 8	Analyzed: 11	/24/2020			
Total P	ND		0.00500	mg/L						
Blank (BAK0782-BLK2)					Prepared 8	Analyzed: 11	/24/2020			
Total P	ND		0.00500	mg/L						
LCS (BAK0782-BS1)					Prepared 8	Analyzed: 11	/24/2020			
Total P	0.108	M1	0.00500	mg/L	0.100		108	90-110		
Matrix Spike (BAK0782-MS1)		Source: WAK0257-02			Prepared 8	Analyzed: 11	/24/2020			
Total P	0.206	M1	0.00500	mg/L	0.100	0.0703	136	80-120		
Matrix Spike Dup (BAK0782-MSD1)	Source: WAK0257-02				Prepared 8	Analyzed: 11	/24/2020			
Total P	0.210	M1	0.00500	mg/L	0.100	0.0703	139	80-120	1.59	20

Quality Control Data (Continued)

Metals by ICP-MS

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0257 - W 3010 Digest										
Blank (BAK0257-BLK1)				Pre	pared: 11/10	/2020 Analyzed	d: 11/11/20	20		
Dissolved Copper	ND		0.00100	mg/L		•				
Dissolved Iron	ND		0.0100	mg/L						
Dissolved Zinc	ND		0.00100	mg/L						
LCS (BAK0257-BS1)				Pre	pared: 11/10	/2020 Analyze	d: 11/11/20	20		
Dissolved Iron	0.106		0.0100	mg/L	0.100		106	85-115		
Dissolved Copper	0.0432		0.00100	mg/L	0.0500		86.3	85-115		
Dissolved Zinc	0.0435		0.00100	mg/L	0.0500		87.0	85-115		
Matrix Spike (BAK0257-MS1)		Source: W	/AK0150-01	Pre	pared: 11/10	/2020 Analyze	d: 11/11/20	20		
Dissolved Zinc	0.235		0.00500	mg/L	0.250	0.00285	93.0	70-130		
Dissolved Iron	0.481		0.0500	mg/L	0.500	ND	96.2	70-130		
Dissolved Copper	0.232		0.00500	mg/L	0.250	0.000562	92.5	70-130		
Matrix Spike (BAK0257-MS2)		Source: W	/AK0150-10	Pre	pared: 11/10	/2020 Analyze	d: 11/11/20	20		
Dissolved Zinc	0.228		0.00500	mg/L	0.250	0.00341	89.8	70-130		
Dissolved Copper	0.227		0.00500	mg/L	0.250	0.000585	90.4	70-130		
Dissolved Iron	0.500		0.0500	mg/L	0.500	ND	100	70-130		
Matrix Spike Dup (BAK0257-MSD1)	Source: WAK0150-01			Prepared: 11/10/2020 Analyzed: 11/11/2020						
Dissolved Zinc	0.224		0.00500	mg/L	0.250	0.00285	88.5	70-130	4.90	20

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·			2				70.120		2	210
Batch: BAK0257 - W 3010 Digest	(Continu	ed)								
Matrix Spike Dup (BAK0257-MSD1)		Source: V	VAK0150-01	Pre	pared: 11/10	/2020 Analyze	d: 11/11/20	20		
Dissolved Iron	0.496		0.0500	mg/L	0.500	ND	99.2	70-130	3.05	20
Dissolved Copper	0.225		0.00500	mg/L	0.250	0.000562	89.9	70-130	2.82	20
Matrix Spike Dup (BAK0257-MSD2)		Source: WAK0150-10			pared: 11/10	/2020 Analyze	d: 11/11/20	20		
Dissolved Iron	0.491		0.0500	mg/L	0.500	ND	98.2	70-130	1.81	20
Dissolved Copper	0.229		0.00500	mg/L	0.250	0.000585	91.4	70-130	1.11	20
Dissolved Zinc	0.232		0.00500	mg/L	0.250	0.00341	91.3	70-130	1.54	20
Databa DAVODOO W 2010 Biraa	_									
Batch: BAK0509 - W 3010 Digest	•			_		/aaaa				
Blank (BAK0509-BLK1)					pared: 11/18	/2020 Analyze	d: 11/20/20	20		
Copper	ND		0.00100	mg/L						
Iron	ND		0.0100	mg/L						
Zinc	ND		0.00100	mg/L						
LCS (BAK0509-BS1)				Pre	pared: 11/18	/2020 Analyze	d: 11/20/20	20		
Copper	0.0517		0.00100	mg/L	0.0500		103	85-115		
Zinc	0.0506		0.00100	mg/L	0.0500		101	85-115		
Iron	0.0943		0.0100	mg/L	0.100		94.3	85-115		
Matrix Spike (BAK0509-MS1)		Source: V	VAK0214-03	Pre	pared: 11/18	/2020 Analyze	d: 11/20/20	20		
Iron	0.981	M2	0.0100	mg/L	0.100	1.06	NR	70-130		
Zinc	0.0542		0.00100	mg/L	0.0500	0.00719	94.1	70-130		
Copper	0.0450		0.00100	mg/L	0.0500	ND	90.0	70-130		
Matrix Spike (BAK0509-MS2)		Source: V	VAK0214-14	Prepared: 11/18/2020 Analyze			d: 11/20/20	20		
Iron	0.960	M2	0.0100	mg/L	0.100	1.01	NR	70-130		
Copper	0.0483		0.00100	mg/L	0.0500	ND	96.6	70-130		
Zinc	0.0522		0.00100	mg/L	0.0500	0.00648	91.5	70-130		

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0509 - W 3010 Digest	(Continu	ed)								
Matrix Spike Dup (BAK0509-MSD1)		Source: V	/AK0214-03	Pre	pared: 11/18	/2020 Analyze	d: 11/20/20	20		
Iron	0.899	M2	0.0100	mg/L	0.100	1.06	NR	70-130	8.81	20
Zinc	0.0503		0.00100	mg/L	0.0500	0.00719	86.3	70-130	7.49	20
Copper	0.0435		0.00100	mg/L	0.0500	ND	87.1	70-130	3.35	20
Matrix Spike Dup (BAK0509-MSD2)		Source: WAK0214-14			Prepared: 11/18/2020 Analyzed: 11/20/2020			20		
Iron	0.946	M2	0.0100	mg/L	0.100	1.01	NR	70-130	1.55	20
Copper	0.0479		0.00100	mg/L	0.0500	ND	95.8	70-130	0.800	20
Zinc	0.0520		0.00100	mg/L	0.0500	0.00648	91.1	70-130	0.349	20

Quality Control Data (Continued)

Hydrocarbons

Analyte	Result	Oual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	Quai	Limit	UIIILS	Level	RESUIL	70REC	LIIIIICS	- KFD	LIIIIL
Batch: BAK0508 - W TPH-Dx										
Blank (BAK0508-BLK1)					Prepared &	Analyzed: 11	1/18/2020			
Diesel	ND		0.160	mg/L						
Lube Oil	ND		0.400	mg/L						
Mineral Oil	ND		0.160	mg/L						
Surrogate: n-Hexacosane			42.2	ррт	50.1		84.2	50-150		
LCS (BAK0508-BS1)					Prepared &	Analyzed: 11	1/18/2020			
Diesel	0.971		0.160	mg/L	1.01		96.1	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			47.0	ррт	50.1		93.9	50-150		
Duplicate (BAK0508-DUP1)	-	Source: WAK0416-02			epared: 11/18,	/2020 Analyze	ed: 11/19/20	20		
Diesel	ND		0.160	mg/L		ND				20
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20
Surrogate: n-Hexacosane			46.6	ррт	50.1		92.9	50-150		
Matrix Spike (BAK0508-MS1)	:	Source: W	VAK0416-01	Pre	epared: 11/18,	/2020 Analyze	ed: 11/19/20	20		
Diesel	0.876		0.160	mg/L	1.01	ND	86.7	70-130		
Lube Oil	ND		0.400	mg/L		ND		70-130		
Surrogate: n-Hexacosane			46.0	ррт	50.1		91.8	50-150		
Matrix Spike Dup (BAK0508-MSD1)	:	Source: WAK0416-01		Pre	epared: 11/18,	/2020 Analyze	ed: 11/19/20	20		
Diesel	0.854		0.160	mg/L	1.01	ND	84.6	70-130	2.48	20
Lube Oil	ND		0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane			44.2	ррт	50.1		88.2	50-150		

	Anatek
	Labs,
A971	Inc.

Chain of Custody Record

Anatek Log-In #

WAK	.0231

Due: 11/20/20

Q	1282 Alturas	Drive, Moscow	ID 83843 (208) 883-2839	FAX 882-9246	
	504 E Sprague	Ste D, Spokane	e WA 99202	(509) 838-3999	FAX 838-4433	(

Turn Arou Company Name: Project Manager: **Ethan Murnin Spokane County** Please refer to our manual annual annual annual annual Project Name & #: Address: 1026 W. Broadway Avenue Gonzaga BioRetention Cell http://www.anateklabs.com/services/quidelines/reporting.asp City: Email Address: Normal Phone WΔ **Spokane** 99260 EMURNIN@spokanecounty.org *All rush order Next Dav* Mail requests must be Purchase Order #: Phone: (509) 477-7420 Fax 2nd Day* prior approved. * Email Other* Fax: Sampler Name & phone: (509)995-0557 **List Analyses Requested Note Special Instructions/Comments Provide Sample Description** Preservative: stormwater influent and effluent Please email results to both Sample Volume # of Containers Cu Zn Fe Total EPA 200.8 ICP/MS Cu Zn Fe Dissolved EPA 200.8 ICP/MS Total Phosphorus, SM4500-PF NWTPH, Ecology NWTPH Dx Ortho Phosphate SM 4500-PG Hardness, SM 2340B (ICP) **TSS SM 2540D** EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com Lab ID Sample Identification Sampling Date/Time Matrix INF11052020 11/06/20 10:00 AM X X X X X water X EFF1211052020 X X X X X water 11/06/20 10:00 AM X X X X X EFF1811052020 11/06/20 10:00 AM water X Inspection Checklist Received Intact? Labels & Chains Agree? N Containers Sealed? VOC Head Space? **Printed Name** Company Date Time Signature Temperature (°C): 6.5°/6.3°DET

Preservative #C1 2001139^{C2} HN03·2000904^{C2} Kevin Flangaan 1V6/2020 12:31 Relinquished by Received by Relinguished by Date & Time: //-/0-20 Received by Inspected By: //w Relinquished by Received by

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAK0521

Project: Gonzaga BioRetention Cell

Reported: 11/30/2020 14:43

Analytical Results Report

Sample Location: INF11132020

Lab/Sample Number: WAK0521-01 Collect Date: 11/13/20 17:30

Date Received: 11/16/20 16:02 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	36.6	mg CaCO3/L	3.00	11/23/20 10:00	ARY	SM 2340 C	
Total P	0.392	mg/L	0.200	11/25/20 10:50	SAG	SM 4500-P H	
TSS	15.0	mg/L	1.00	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00286	mg/L	0.00100	11/24/20 14:27	TRC	EPA 200.8	
Dissolved Copper	0.00198	mg/L	0.00100	11/30/20 11:31	TRC	EPA 200.8	
Zinc	0.0192	mg/L	0.00100	11/24/20 14:27	TRC	EPA 200.8	
Dissolved Zinc	0.0238	mg/L	0.00100	11/30/20 11:31	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/19/20 10:34	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/19/20 10:34	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/19/20 10:34	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	71.9%		50-150	11/19/20 10:34	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF1211132020

Lab/Sample Number: WAK0521-02 Collect Date: 11/13/20 17:30

Date Received: Collected By: 11/16/20 16:02

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	117	mg CaCO3/L	6.00	11/23/20 10:00	ARY	SM 2340 C	
Total P	0.268	mg/L	0.200	11/25/20 10:53	SAG	SM 4500-P H	
TSS	3.67	mg/L	0.333	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00306	mg/L	0.00100	11/24/20 14:30	TRC	EPA 200.8	
Dissolved Copper	0.00255	mg/L	0.00100	11/30/20 11:34	TRC	EPA 200.8	
Zinc	0.00329	mg/L	0.00100	11/24/20 14:30	TRC	EPA 200.8	
Dissolved Zinc	0.0125	mg/L	0.00100	11/30/20 11:34	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/19/20 11:30	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/19/20 11:30	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/19/20 11:30	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92.3%		50-150	11/19/20 11:30	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF1811132020

Lab/Sample Number: WAK0521-03 Collect Date: 11/13/20 17:30

Date Received: Collected By: 11/16/20 16:02

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	200	mg CaCO3/L	6.00	11/23/20 10:00	ARY	SM 2340 C	
Total P	0.300	mg/L	0.200	11/25/20 10:55	SAG	SM 4500-P H	
TSS	4.00	mg/L	0.333	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00227	mg/L	0.00100	11/24/20 14:32	TRC	EPA 200.8	
Dissolved Copper	0.00178	mg/L	0.00100	11/30/20 11:49	TRC	EPA 200.8	
Zinc	0.00264	mg/L	0.00100	11/24/20 14:32	TRC	EPA 200.8	
Dissolved Zinc	0.00956	mg/L	0.00100	11/30/20 11:49	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/25/20 23:45	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/25/20 23:45	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/25/20 23:45	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	88.9%		50-150	11/25/20 23:45	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

INF-DI Sample Location:

Lab/Sample Number: WAK0521-04 Collect Date: 11/13/20 17:30

Date Received:

11/16/20 16:02

Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	ND	mg/L	0.00100	11/30/20 11:51	TRC	EPA 200.8	_
Dissolved Zinc	0.0153	mg/L	0.00100	11/30/20 11:51	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF12-DI

WAK0521-05

Collect Date: 11/13/20 17:30

Date Received:

Lab/Sample Number:

11/16/20 16:02

Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	<0.00003	mg/L	0.00100	11/30/20 11:53	TRC	EPA 200.8	
Dissolved Zinc	0.0167	mg/L	0.00100	11/30/20 11:53	TRC	EPA 200.8	

Analytical Results Report

(Continued)

11/13/20 17:30

Sample Location:

EFF18-DI

Lab/Sample Number:

WAK0521-06

Collect Date:

Date Received:

11/16/20 16:02

Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	<0.00003	mg/L	0.00100	11/30/20 11:56	TRC	EPA 200.8	
Dissolved Zinc	0.0141	mg/L	0.00100	11/30/20 11:56	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: INF11132020-2

Lab/Sample Number: WAK0521-07 Collect Date: 11/13/20 17:30

Date Received: Collected By: 11/16/20 16:02

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	40.6	mg CaCO3/L	3.00	11/23/20 10:00	ARY	SM 2340 C	
Total P	1.16	mg/L	0.200	11/25/20 11:10	SAG	SM 4500-P H	
TSS	13.0	mg/L	1.00	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00285	mg/L	0.00100	11/24/20 14:34	TRC	EPA 200.8	
Zinc	0.0201	mg/L	0.00100	11/24/20 14:34	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF1211132020-2

Lab/Sample Number: WAK0521-08 Collect Date: 11/13/20 17:30

Date Received: Collected By: 11/16/20 16:02

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	119	mg CaCO3/L	6.00	11/23/20 10:00	ARY	SM 2340 C	
Total P	0.792	mg/L	0.200	11/25/20 11:12	SAG	SM 4500-P H	
TSS	5.67	mg/L	0.333	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00311	mg/L	0.00100	11/24/20 14:37	TRC	EPA 200.8	
Zinc	0.00320	mg/L	0.00100	11/24/20 14:37	TRC	EPA 200.8	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1811132020-2

Lab/Sample Number: WAK0521-09 Collect Date: 11/13/20 17:30

Date Received: 11/16/20 16:02 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	204	mg CaCO3/L	6.00	11/23/20 10:00	ARY	SM 2340 C	
Total P	0.720	mg/L	0.200	11/25/20 11:15	SAG	SM 4500-P H	
TSS	3.75	mg/L	0.250	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00235	mg/L	0.00100	11/24/20 14:39	TRC	EPA 200.8	
Zinc	0.00365	mg/L	0.00100	11/24/20 14:39	TRC	EPA 200.8	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0655 - W Wet Chem		•		•						
Blank (BAK0655-BLK1)					Prepared &	Analyzed: 1	1/23/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
Blank (BAK0655-BLK2)					Prepared &	Analyzed: 1	1/23/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
LCS (BAK0655-BS1)					Prepared &	Analyzed: 1	1/23/2020			
Hardness	101		n	ng CaCO3/L	100	•	101	90-110		
LCS Dup (BAK0655-BSD1)					Prepared &	Analyzed: 1	1/23/2020			
Hardness	102		n	ng CaCO3/L	100		102	90-110	1.01	20
Duplicate (BAK0655-DUP1)		Source: V	VAK0519-03		Prepared &	Analyzed: 1	1/23/2020			
Hardness	158		6.00 n	ng CaCO3/L	-	152			3.82	20
Matrix Spike (BAK0655-MS1)		Source: V	VAK0521-09		Prepared &	Analyzed: 1	1/23/2020			
Hardness	297		6.00 n	ng CaCO3/L	100	204	93.1	80-120		
Matrix Spike Dup (BAK0655-MSD1)		Source: V	VAK0521-09		Prepared &	Analyzed: 1	1/23/2020			
Hardness	295		6.00 n	ng CaCO3/L	100	204	91.1	80-120	0.676	20
D. / D. // D										
Batch: BAK0734 - W Filtration										
Blank (BAK0734-BLK1)			4.00	,,	Prepared &	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L						
Blank (BAK0734-BLK2)					Prepared &	Analyzed: 1	1/20/2020			
TSS	ND		1.00	mg/L						

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0734 - W Filtratio	n (Continued)									
Blank (BAK0734-BLK3)	(Prepared 8	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L		,				
Blank (BAK0734-BLK4)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L	·	·				
Blank (BAK0734-BLK5)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L	·	,				
Blank (BAK0734-BLK6)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L		,	•			
Blank (BAK0734-BLK7)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L	·	,				
LCS (BAK0734-BS1)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	97.0			mg/L	100		97.0	90-110		
LCS (BAK0734-BS2)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	96.0			mg/L	100	,	96.0	90-110		
LCS (BAK0734-BS3)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	96.0			mg/L	100	,	96.0	90-110		
LCS (BAK0734-BS4)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	98.0			mg/L	100	, 	98.0	90-110		
LCS Dup (BAK0734-BSD1)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	106			mg/L	100	,	106	90-110	8.87	10

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Nesuit	- Quui			FCACI	- ACSUIT				
Batch: BAK0734 - W Filtration	(Continued)									
LCS Dup (BAK0734-BSD2)					Prepared &	Analyzed: 11	1/20/2020			
TSS	101			mg/L	100		101	90-110	5.08	10
LCS Dup (BAK0734-BSD3)					Prepared &	Analyzed: 11	1/20/2020			
TSS	103			mg/L	100		103	90-110	7.04	10
LCS Dup (BAK0734-BSD4)					Prepared &	Analyzed: 11	1/20/2020			
TSS	97.0			mg/L	100	-	97.0	90-110	1.03	10
Duplicate (BAK0734-DUP1)		Source: W	VAK0519-03		Prepared &	Analyzed: 11	1/20/2020			
TSS	22.0		1.00	mg/L	·	23.0			4.44	20
Duplicate (BAK0734-DUP2)	9	Source: W	VAK0545-02		Prepared &	Analyzed: 11	1/20/2020			
TSS	24.0		1.00	mg/L	·	25.0			4.08	20
Duplicate (BAK0734-DUP3)	9	Source: W	VAK0677-01		Prepared &	Analyzed: 11	1/20/2020			
TSS	1.00		1.00	mg/L		1.00			0.00	20
Duplicate (BAK0734-DUP4)	9	Source: W	VAK0682-02		Prepared &	Analyzed: 11	1/20/2020			
TSS	9.00		1.00	mg/L	· 	9.00			0.00	20
Matrix Spike (BAK0734-MS1)		Source: M	IAK0523-01		Prepared &	Analyzed: 11	./20/2020			
TSS	158		2.00	mg/L	100	66.0	92.0	80-120		
Matrix Spike (BAK0734-MS2)	_	Source: W	VAK0567-01		Prepared &	Analyzed: 11	1/20/2020			
TSS	112		2.00	mg/L	100	17.0	95.0	80-120		
Matrix Spike (BAK0734-MS3)	9	Source: W	VAK0649-01		Prepared &	Analyzed: 11	1/20/2020			
TSS	114		2.00	mg/L	100	15.0	99.0	80-120		

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch: BAK0734 - W Filtration (C	ontinued)										
Matrix Spike (BAK0734-MS4)	9	Source: V	VAK0681-01		Prepared & Analyzed: 11/20/2020						
TSS	108		2.00	mg/L	100	9.00	99.0	80-120			
Matrix Spike Dup (BAK0734-MSD1)	5	Source: M	IAK0523-01		Prepared 8	Analyzed: 1	1/20/2020				
TSS	148		2.00	mg/L	100	66.0	82.0	80-120	6.54	20	
Matrix Spike Dup (BAK0734-MSD2)	9	Source: V	VAK0567-01		Prepared 8	Analyzed: 1	1/20/2020				
TSS	110		2.00	mg/L	100	17.0	93.0	80-120	1.80	20	
Matrix Spike Dup (BAK0734-MSD3)	9	Source: V	VAK0649-01		Prepared 8	Analyzed: 1	1/20/2020				
TSS	126		2.00	mg/L	100	15.0	111	80-120	10.0	20	
Matrix Spike Dup (BAK0734-MSD4)	9	Source: V	VAK0681-01		Prepared 8	Analyzed: 1	1/20/2020				
TSS	112		2.00	mg/L	100	9.00	103	80-120	3.64	20	
Batch: BAK0798 - W FIA											
Blank (BAK0798-BLK1)					Prepared 8	Analyzed: 1	1/25/2020				
Total P	ND		0.00500	mg/L							
Blank (BAK0798-BLK2)					Prepared 8	Analyzed: 1	1/25/2020				
Total P	ND		0.00500	mg/L							
Blank (BAK0798-BLK3)					Prepared 8	Analyzed: 1	1/25/2020				
Total P	ND		0.00500	mg/L							
Blank (BAK0798-BLK4)					Prepared 8	Analyzed: 1	1/25/2020				
Total P	ND		0.00500	mg/L							

Quality Control Data (Continued)

Inorganics (Continued)

Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ed)								
			Prepared &	Analyzed: 11	/25/2020			
0.0967	0.00500	mg/L	0.100		96.7	90-110		
			Prepared &	Analyzed: 11	/25/2020			
0.0931	0.00500	mg/L	0.100	•	93.1	90-110		
Source:	WAK0489-02		Prepared &	Analyzed: 11				
0.185	0.00500	mg/L	0.100	0.0731	112	80-120		
Source:	WAK0495-02		Prepared &	Analyzed: 11	/25/2020			
0.184	0.00500	mg/L	0.100	0.0681	116	80-120		
Source:	WAK0489-02		Prepared &	Analyzed: 11	/25/2020			
0.187	0.00500	mg/L	0.100	0.0731	114	80-120	1.34	20
Source:	WAK0495-02		Prepared &	Analyzed: 11	/25/2020			
0.188	0.00500	mg/L	0.100	0.0681	120	80-120	2.16	20
	0.0967 0.0931 Source: 0.185 Source: 0.184 Source: 0.187 Source:	Result Qual Limit ed) 0.0967 0.00500 0.0931 0.00500 Source: WAK0489-02 0.185 0.00500 Source: WAK0495-02 0.184 0.00500 Source: WAK0489-02 0.187 0.00500 Source: WAK0489-02 0.187 0.00500	Result Qual Limit Units ed)	Result Qual Limit Units Level ed) Prepared & Prepared & 0.0967 0.00500 mg/L 0.100 Prepared & 0.0931 0.00500 mg/L 0.100 Source: WAK0489-02 prepared & 0.185 0.00500 mg/L 0.100 Source: WAK0495-02 prepared & 0.184 0.00500 mg/L 0.100 Source: WAK0489-02 prepared & 0.187 0.00500 mg/L 0.100 Source: WAK0489-02 prepared & 0.187 0.00500 mg/L 0.100 Source: WAK0495-02 prepared & 0.187 0.00500 mg/L 0.100	Result Qual Limit Units Level Result ed) Prepared & Analyzed: 11 0.0967 0.00500 mg/L 0.100 Prepared & Analyzed: 11 0.0931 0.00500 mg/L 0.100 Source: WAK0489-02 Prepared & Analyzed: 11 0.185 0.00500 mg/L 0.100 0.0731 Source: WAK0495-02 Prepared & Analyzed: 11 0.184 0.00500 mg/L 0.100 0.0681 Source: WAK0489-02 Prepared & Analyzed: 11 0.187 0.00500 mg/L 0.100 0.0731 Source: WAK0495-02 Prepared & Analyzed: 11 0.187 0.00500 mg/L 0.100 0.0731	Result Qual Limit Units Level Result %REC ed) Prepared & Analyzed: 11/25/2020 0.0967 0.00500 mg/L 0.100 96.7 Prepared & Analyzed: 11/25/2020 0.0931 0.00500 mg/L 0.100 93.1 Source: WAK0489-02 Prepared & Analyzed: 11/25/2020 0.185 0.00500 mg/L 0.100 0.0731 112 Source: WAK0495-02 Prepared & Analyzed: 11/25/2020 0.184 0.00500 mg/L 0.100 0.0681 116 Source: WAK0489-02 Prepared & Analyzed: 11/25/2020 0.187 0.00500 mg/L 0.100 0.0731 114 Source: WAK0495-02 Prepared & Analyzed: 11/25/2020	Result Qual Limit Units Level Result %REC Limits Prepared & Analyzed: 11/25/2020 0.0967 0.00500 mg/L 0.100 96.7 90-110 Prepared & Analyzed: 11/25/2020 0.0931 0.00500 mg/L 0.100 93.1 90-110 Source: WAK0489-02 Prepared & Analyzed: 11/25/2020 0.185 0.00500 mg/L 0.100 0.0731 112 80-120 Source: WAK0495-02 Prepared & Analyzed: 11/25/2020 0.184 0.00500 mg/L 0.100 0.0681 116 80-120 Source: WAK0489-02 Prepared & Analyzed: 11/25/2020 0.187 0.00500 mg/L 0.100 0.0731 114 80-120 Source: WAK0495-02 Prepared & Analyzed: 11/25/2020 0.187 0.00500 mg/L 0.100 0.0731 114 80-120	Result Qual Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 11/25/2020 0.0967 0.00500 mg/L 0.100 96.7 90-110 Prepared & Analyzed: 11/25/2020 0.0931 0.00500 mg/L 0.100 93.1 90-110 Source: WAK0489-02 Prepared & Analyzed: 11/25/2020 0.185 0.00500 mg/L 0.100 0.0731 112 80-120 Source: WAK0495-02 Prepared & Analyzed: 11/25/2020 0.184 0.00500 mg/L 0.100 0.0681 116 80-120 Source: WAK0489-02 Prepared & Analyzed: 11/25/2020 0.187 0.00500 mg/L 0.100 0.0731 114 80-120 1.34 Source: WAK0495-02 Prepared & Analyzed: 11/25/2020

Quality Control Data

(Continued)

Metals by ICP-MS

		_	Reporting		Spike	Source		%REC	_	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0657 - W 3010 Digest										
Blank (BAK0657-BLK1)				Pre	pared: 11/23,	/2020 Analyze	d: 11/24/20	20		
Copper	ND		0.00100	mg/L						
Zinc	ND		0.00100	mg/L						
LCS (BAK0657-BS1)				Pre	pared: 11/23,	/2020 Analyze	d: 11/24/20	20		
Copper	0.0498		0.00100	mg/L	0.0500		99.7	85-115		
Zinc	0.0490		0.00100	mg/L	0.0500		97.9	85-115		
Matrix Spike (BAK0657-MS1)		Source: W	/AK0519-01	Pre	pared: 11/23,	/2020 Analyze	d: 11/24/20	20		
Copper	0.0584		0.00100	mg/L	0.0500	0.0103	96.3	70-130		
Zinc	0.123		0.00100	mg/L	0.0500	0.0739	98.0	70-130		
Matrix Spike (BAK0657-MS2)		Source: W	/AK0588-01	Pre	pared: 11/23,	/2020 Analyze	d: 11/24/20	20		
Copper	0.0583		0.00100	mg/L	0.0500	0.0132	90.3	70-130		
Zinc	0.0597		0.00100	mg/L	0.0500	0.0144	90.6	70-130		
Matrix Spike Dup (BAK0657-MSD1)		Source: W	/AK0519-01	Pre	pared: 11/23,	/2020 Analyze	d: 11/24/20	20		
Copper	0.0586		0.00100	mg/L	0.0500	0.0103	96.5	70-130	0.176	20
Zinc	0.123		0.00100	mg/L	0.0500	0.0739	98.4	70-130	0.154	20
Matrix Spike Dup (BAK0657-MSD2)		Source: W	/AK0588-01	Pre	pared: 11/23,	/2020 Analyze	d: 11/24/20	20		
Zinc	0.0617		0.00100	mg/L	0.0500	0.0144	94.5	70-130	3.16	20
Copper	0.0605		0.00100	mg/L	0.0500	0.0132	94.6	70-130	3.57	20

Prepared: 11/25/2020 Analyzed: 11/30/2020

Batch: BAK0775 - W 3010 Digest

Blank (BAK0775-BLK1)

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0775 - W 3010 Digest	(Continued)								
Blank (BAK0775-BLK1)			Pre	pared: 11/25,	/2020 Analyze	d: 11/30/20	20		
Dissolved Zinc	ND	0.00100	mg/L						
Dissolved Copper	ND	0.00100	mg/L						
LCS (BAK0775-BS1)			Pre	pared: 11/25,	/2020 Analyze	d: 11/30/20	20		
Dissolved Zinc	0.0508	0.00100	mg/L	0.0500		102	85-115		
Dissolved Copper	0.0517	0.00100	mg/L	0.0500		103	85-115		
Matrix Spike (BAK0775-MS1)	Source: \	WAK0567-02	Pre	pared: 11/25,	/2020 Analyze	d: 11/30/20	20		
Dissolved Copper	0.0526	0.00100	mg/L	0.0500	0.00313	99.0	70-130		
Dissolved Zinc	0.0539	0.00100	mg/L	0.0500	0.00684	94.1	70-130		
Matrix Spike Dup (BAK0775-MSD1)	Source: \	WAK0567-02	Pre	pared: 11/25,	/2020 Analyze	d: 11/30/20	20		
Dissolved Zinc	0.0540	0.00100	mg/L	0.0500	0.00684	94.3	70-130	0.213	20
Dissolved Copper	0.0522	0.00100	mg/L	0.0500	0.00313	98.1	70-130	0.843	20

Quality Control Data

(Continued)

Hydrocarbons

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result		Lime	01110		resure	701120	Liiiilo	1412	
Batch: BAK0508 - W TPH-Dx										
Blank (BAK0508-BLK1)					Prepared 8	Analyzed: 11	./18/2020			
Diesel	ND		0.160	mg/L						
Lube Oil	ND		0.400	mg/L						
Mineral Oil	ND		0.160	mg/L						
Surrogate: n-Hexacosane			42.2	ppm	50.1		84.2	50-150		
LCS (BAK0508-BS1)					Prepared 8	Analyzed: 11	/18/2020			
Diesel	0.971		0.160	mg/L	1.01		96.1	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			47.0	ррт	50.1		93.9	50-150		
Duplicate (BAK0508-DUP1)		Source: V	VAK0416-02	Pre	pared: 11/18	/2020 Analyze	ed: 11/19/20	20		
Diesel	ND		0.160	mg/L		ND				20
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20
Surrogate: n-Hexacosane			46.6	ppm	50.1		92.9	50-150		
Matrix Spike (BAK0508-MS1)		Source: V	VAK0416-01	Pre	pared: 11/18	/2020 Analyze	ed: 11/19/20	20		
Diesel	0.876		0.160	mg/L	1.01	ND	86.7	70-130		
Lube Oil	ND		0.400	mg/L		ND		70-130		
Surrogate: n-Hexacosane			46.0	ррт	50.1		91.8	50-150		
Matrix Spike Dup (BAK0508-MSD1)		Source: V	VAK0416-01	Pre	Prepared: 11/18/2020 Analyzed: 11/19/2020					
Diesel	0.854		0.160	mg/L	1.01	ND	84.6	70-130	2.48	20
Lube Oil	ND		0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane			44.2	ррт	50.1		88.2	50-150		

Quality Control Data (Continued)

Hydrocarbons (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ruidijee	ixesuit	Quui	Little	Office	LCVCI	Nesure	/UINEC	LIIIIG	Nib	Liiille
Batch: BAK0676 - W TPH-Dx										
Blank (BAK0676-BLK1)					Prepared 8	Analyzed: 11	./25/2020			
Diesel	ND		0.160	mg/L						
Lube Oil	ND		0.400	mg/L						
Mineral Oil	ND		0.160	mg/L						
Surrogate: n-Hexacosane			48.0	ppm	50.1		95.7	50-150		
LCS (BAK0676-BS1)					Prepared 8	Analyzed: 11	/25/2020			
Diesel	0.988		0.160	mg/L	1.01		97.8	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			46.5	ppm	50.1		92.9	50-150		
Duplicate (BAK0676-DUP1)		Source: W	/AK0521-03	Pre	epared: 11/25	/2020 Analyze	ed: 11/26/20	20		
Diesel	ND		0.160	mg/L		ND				20
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20
Surrogate: n-Hexacosane			46.6	ppm	50.1		93.1	50-150		
Matrix Spike (BAK0676-MS1)		Source: W	/AK0567-01	Pre	epared: 11/25	/2020 Analyze	ed: 11/26/20	20		
Diesel	0.992		0.160	mg/L	1.01	ND	98.3	70-130		
Lube Oil	ND		0.400	mg/L		ND		70-130		
Surrogate: n-Hexacosane			37.8	ppm	50.1		75.5	50-150		
Matrix Spike Dup (BAK0676-MSD1)		Source: W	/AK0567-01	Pre	epared: 11/25	/2020 Analyze	ed: 11/26/20	20		
Diesel	1.00		0.160	mg/L	1.01	ND	99.3	70-130	1.04	20
Lube Oil	ND		0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane			36.6	ppm	50.1		73.1	50-150		

Anatek
Labs,
Inc.

Chain of Custody Record

Anatek Log-in# WAK0521

	Labs, Inc.	1282 Alt	turas Drive, rague Ste D,	Mosco Spoka	w ID ne W	8384 A 992	3 (2 202 (08) 8 (509)	83-28 838-	839 1 3999	FAX FA	882- X 83	9246 8-443	30	Turn Arc Dury 10 (92 (92
ipan	y Name:	Spokane County		Projec						Ethar					Please refer to
ess		/. Broadway Aven		Projec	ct Nam	ne & #	ŧ :	Go	nza	ga B	ioRe	tent	ion C	ell	http://www.anateklabs.com/socressessassassassassassassassassassassassa
		State: WA Zip:	99260	Email	Addre	ess:	Е	MUF	RNIN	@sp	okar	neco	unty	.org	Normal *All rush orderPhone Next Day* requests must beMail
		509) 477-7420		Purch	ase O	rder #	:								2nd Day* prior approvedFax
	(,	303) 477 7120		Samp	oler Na	me &	phone	ə:		(50	9)99	95-0	557		Other* <u>*_Email</u>
				10 500000000			Liet	Ana	lvsa	s Re					Note Special Instructions/Comments
		ample Description		Prese	rvative:	1	LIST	Alla	ly 3C	3 110	quo	, cou			Please email results to both
	stormwater	influent and effluent		Containers	Sample Volume	TSS SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Cu Zn Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	PSD ASTM D3977-97		EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
T	Sample Identification	Sampling Date/Time	Matrix	# of	San	TS	-	-	_	-		ę o			+ confer + 2 5.8%5.6° I Per
	INF11132020	11/13/20 5:30 PM	water	5		X	×	×	×	X	X		-		* (coler + 2 5.8/5.6° 1/29
	EFF1211132020	11/13/20 5:30 PM	water	5		X	X	X	X	X	X	_	-		
	EFF1811132020	11/13/20 5:30 PM	water	5		×	X	X	X	X	X	-			
	INF-DI	11/13/20 5:30 PM	water	1		_	<u> </u>	×	-	├	_	-	_		
	EFF12-DI	11/13/20 5:30 PM	water	1			-	X	-	-	-	-	-		
	EFF18-DI	11/13/20 5:30 PM	water	1	_	_	<u> </u>	X	 	-		₩	-		
	INF11132020-2	11/13/20 5:30 PM	water	13	_	X	X	-	X	X	-	-	+-		Inspection Checklist
	EFF1211132020-2	11/13/20 5:30 PM	water	3	_	X	X		X	X	-	┼	+-		Received Intact?
	EFF1811132020-2	11/13/20 5:30 PM	water	3	-	×	×	+-	×	×		\vdash	+-		Labels & Chains Agree?
				+	+-	+	+	+	1		T	T	1		Containers Sealed? (Y) N
				+	+-	+-	+	+	+	+	T	1			VOC Head Space? Y N
				+	+-	+-	+	1	T	1					NC.
	Drin	Inted Name	Signature					Cor	npany	y		Dat	е	Time	
		gan Ehlebracht	mu !	FILL	UH	-			QC	I		11/1	6/20	4:00	Temperature (°C): 4-79/4-5° TP1
lir	quished by	7)	1	21			_	+	-	Jek		11-	16-2	160	
ece	eived by	Brock Geger	1/100	1	\rightarrow	A STATE OF THE PARTY OF		+-4	The	JUK.	036,	+	- 0	100	
alie	nquished by		11/					_				+		-	
	eived by											\perp			Date & Time: - 670 710 R386
	nguished by											-			Inspected By: 1/1/2 200288
ec	eived by														12 2001015 Page 1 of 1

Form COC01.00 - Eff 1 Mar 2015

Samples submitted to Anatek Labs may be subcontracted to other accredited labs if necessary. This message serves as notice of this possibility. Sub-contracted analyses will be clearly noted on the analytical report.

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAK0567

Project: Gonzaga BioRetention Cell

Reported: 11/30/2020 14:46

Analytical Results Report

Sample Location: INF11172020

Lab/Sample Number: WAK0567-01 Collect Date: 11/17/20 10:00

Date Received: 11/17/20 15:54 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Total P	0.552	mg/L	0.200	11/25/20 11:58	SAG	SM 4500-P H	
TSS	17.0	mg/L	1.00	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00308	mg/L	0.00100	11/24/20 14:41	TRC	EPA 200.8	
Dissolved Copper	0.00337	mg/L	0.00100	11/30/20 11:58	TRC	EPA 200.8	
Zinc	0.0175	mg/L	0.00100	11/24/20 14:41	TRC	EPA 200.8	
Dissolved Zinc	0.0248	mg/L	0.00100	11/30/20 11:58	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/26/20 3:25	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/26/20 3:25	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/26/20 3:25	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	65.1%		50-150	11/26/20 3:25	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF1211172020

Lab/Sample Number: WAK0567-02 Collect Date: 11/17/20 10:00

Date Received: Collected By: 11/17/20 15:54

Analyte	Result	Units PQL		Analyzed	Analyst	Method	Qualifier
Inorganics							
Total P	0.264	mg/L	0.200	11/25/20 11:28	SAG	SM 4500-P H	
TSS	2.25	mg/L	0.250	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00289	mg/L	0.00100	11/24/20 14:44	TRC	EPA 200.8	
Dissolved Copper	0.00313	mg/L	0.00100	11/30/20 12:00	TRC	EPA 200.8	
Zinc	0.00187	mg/L	0.00100	11/24/20 14:44	TRC	EPA 200.8	
Dissolved Zinc	0.00684	mg/L	0.00100	11/30/20 12:00	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/26/20 6:10	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/26/20 6:10	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/26/20 6:10	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	80.8%		50-150	11/26/20 6:10	ARC	NWTPH-Dx	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1811172020

Lab/Sample Number: WAK0567-03

Collect Date: 11/17/20 10:00

Collected By:

Date Received: 11/17/20 15:54

Matrix: Water

Analyte	Result Units		PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Total P	0.664	mg/L	0.200	11/25/20 11:30	SAG	SM 4500-P H	
TSS	2.50	mg/L	0.250	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00243	mg/L	0.00100	11/24/20 14:46	TRC	EPA 200.8	
Dissolved Copper	0.00243	mg/L	0.00100	11/30/20 12:48	TRC	EPA 200.8	
Zinc	0.00255	mg/L	0.00100	11/24/20 14:46	TRC	EPA 200.8	
Dissolved Zinc	0.00727	mg/L	0.00100	11/30/20 12:48	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/26/20 7:05	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/26/20 7:05	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/26/20 7:05	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	82.6%		50-150	11/26/20 7:05	ARC	NWTPH-Dx	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Rep Qual	orting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Allalyte	Result	Quai	LIIIIL	UIIILS	Levei	Result	70KEC	LIIIIIUS	KPD	LIIIIL
Batch: BAK0734 - W Filtration										
Blank (BAK0734-BLK1)					Prepared &	Analyzed:	11/20/2020			
TSS	ND		1.00	mg/L						
Blank (BAK0734-BLK2)					Prepared &	Analyzed:	11/20/2020			
TSS	ND		1.00	mg/L	-	-				
Blank (BAK0734-BLK3)					Prepared &	Analyzed:	11/20/2020			
TSS	ND		1.00	mg/L	,	,				
Blank (BAK0734-BLK4)					Prepared &	Analyzed:	11/20/2020			
TSS	ND		1.00	mg/L	•	•	•			
Blank (BAK0734-BLK5)					Prepared &	Analyzed:	11/20/2020			
TSS	ND		1.00	mg/L	-	•				
Blank (BAK0734-BLK6)					Prepared &	Analyzed:	11/20/2020			
TSS	ND		1.00	mg/L						
Blank (BAK0734-BLK7)					Prepared &	Analyzed:	11/20/2020			
TSS	ND		1.00	mg/L						
LCS (BAK0734-BS1)					Prepared &	Analyzed:	11/20/2020			
TSS	97.0			mg/L	100	-	97.0	90-110		
LCS (BAK0734-BS2)					Prepared &	Analyzed:	11/20/2020			
TSS	96.0			mg/L	100	-	96.0	90-110		
LCS (BAK0734-BS3)					Prepared &	Analyzed:	11/20/2020			
TSS	96.0			mg/L	100	•	96.0	90-110		

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0734 - W Filtration	(Continued)									
LCS (BAK0734-BS4)	•				Prepared &	Analyzed: 11	/20/2020			
TSS	98.0			mg/L	100		98.0	90-110		
LCS Dup (BAK0734-BSD1)					Prepared &	Analyzed: 11				
TSS	106			mg/L	100		106	90-110	8.87	10
LCS Dup (BAK0734-BSD2)					Prepared &	Analyzed: 11	/20/2020			
TSS	101			mg/L	100		101	90-110	5.08	10
LCS Dup (BAK0734-BSD3)					Prepared &	Analyzed: 11	/20/2020			
TSS	103			mg/L	100		103	90-110	7.04	10
LCS Dup (BAK0734-BSD4)		Prepared & Analyzed: 11/20/2020					/20/2020			
TSS	97.0			mg/L	100		97.0	90-110	1.03	10
Duplicate (BAK0734-DUP1)	9	Source: W	AK0519-03		Prepared &	Analyzed: 11				
TSS	22.0		1.00	mg/L		23.0			4.44	20
Duplicate (BAK0734-DUP2)	9	Source: W	AK0545-02		Prepared &	Analyzed: 11	/20/2020			
TSS	24.0		1.00	mg/L		25.0			4.08	20
Duplicate (BAK0734-DUP3)	9	Source: W	AK0677-01		Prepared &	Analyzed: 11	/20/2020			
TSS	1.00		1.00	mg/L		1.00			0.00	20
Duplicate (BAK0734-DUP4)	9	Source: W	AK0682-02		Prepared & Analyzed: 11/20/2020					
TSS	9.00		1.00	mg/L		9.00			0.00	20
Matrix Spike (BAK0734-MS1)	9	Source: M	AK0523-01		Prepared & Analyzed: 11/20/2020					
TSS	158		2.00	mg/L	100	66.0	92.0	80-120		

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0734 - W Filtration (C	ontinued)								
Matrix Spike (BAK0734-MS2)	_		VAK0567-01		Prepared 8	k Analyzed: 11	1/20/2020			
TSS	112		2.00	mg/L	100	17.0	95.0	80-120		
Matrix Spike (BAK0734-MS3)		Source: V	VAK0649-01		Prepared 8	k Analyzed: 11	1/20/2020			
TSS	114		2.00	mg/L	100	15.0	99.0	80-120		
Matrix Spike (BAK0734-MS4)		Source: V	VAK0681-01		Prepared 8	k Analyzed: 11	1/20/2020			
TSS	108		2.00	mg/L	100	9.00	99.0	80-120		
Matrix Spike Dup (BAK0734-MSD1)		Source: N	1AK0523-01		Prepared 8	k Analyzed: 11				
TSS	148		2.00	mg/L	100	66.0	82.0	80-120	6.54	20
Matrix Spike Dup (BAK0734-MSD2)	Source: WAK0567-01			Prepared 8	k Analyzed: 11	1/20/2020				
TSS	110		2.00	mg/L	100	17.0	93.0	80-120	1.80	20
Matrix Spike Dup (BAK0734-MSD3)		Source: V	VAK0649-01		Prepared 8	k Analyzed: 11	1/20/2020			
TSS	126		2.00	mg/L	100	15.0	111	80-120	10.0	20
Matrix Spike Dup (BAK0734-MSD4)		Source: V	VAK0681-01		Prepared 8	k Analyzed: 11	1/20/2020			
TSS	112		2.00	mg/L	100	9.00	103	80-120	3.64	20
Batch: BAK0798 - W FIA										
Blank (BAK0798-BLK1)					Prepared 8	k Analyzed: 11	1/25/2020			
Total P	ND		0.00500	mg/L						
Blank (BAK0798-BLK2)					Prepared & Analyzed: 11/25/2020					
Total P	ND		0.00500	mg/L						

Quality Control Data (Continued)

Inorganics (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0798 - W FIA (Continu	ued)								
Blank (BAK0798-BLK3)				Prepared 8	k Analyzed: 11	/25/2020			
Total P	ND	0.00500	mg/L						
Blank (BAK0798-BLK4)				Prepared 8	k Analyzed: 11	./25/2020			
Total P	ND	0.00500	mg/L						
LCS (BAK0798-BS1)				Prepared 8	k Analyzed: 11	./25/2020			
Total P	0.0967	0.00500	mg/L	0.100		96.7	90-110		
LCS (BAK0798-BS2)				Prepared 8	k Analyzed: 11	/25/2020			
Total P	0.0931	0.00500	mg/L	0.100		93.1	90-110		
Matrix Spike (BAK0798-MS1)	Source:	WAK0489-02		Prepared 8	k Analyzed: 11	/25/2020			
Total P	0.185	0.00500	mg/L	0.100	0.0731	112	80-120		
Matrix Spike (BAK0798-MS2)	Source:	WAK0495-02		Prepared 8	k Analyzed: 11	/25/2020			
Total P	0.184	0.00500	mg/L	0.100	0.0681	116	80-120		
Matrix Spike Dup (BAK0798-MSD1)	Source:	WAK0489-02		Prepared 8	k Analyzed: 11	/25/2020			
Total P	0.187	0.00500	mg/L	0.100	0.0731	114	80-120	1.34	20
Matrix Spike Dup (BAK0798-MSD2)	Source:	WAK0495-02		Prepared 8	k Analyzed: 11	./25/2020			
Total P	0.188	0.00500	mg/L	0.100	0.0681	120	80-120	2.16	20

Quality Control Data (Continued)

Metals by ICP-MS

Matrix Spike Dup (BAK0657-MSD2)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
,,		- Quu.			2010.		70.120	2		
Batch: BAK0657 - W 3010 Digest										
Blank (BAK0657-BLK1)				Pre	pared: 11/23,	/2020 Analyze	ed: 11/24/20	20		
Zinc	ND		0.00100	mg/L						
Copper	ND		0.00100	mg/L						
LCS (BAK0657-BS1)				Pre	pared: 11/23,	/2020 Analyze	ed: 11/24/20	20		
Copper	0.0498		0.00100	mg/L	0.0500		99.7	85-115		
Zinc	0.0490		0.00100	mg/L	0.0500		97.9	85-115		
Matrix Spike (BAK0657-MS1)		Source: WAK0519-01 Prepared: 11/23/2020 Analyzed: 11/24/2020								
Zinc	0.123		0.00100	mg/L	0.0500	0.0739	98.0	70-130		
Copper	0.0584		0.00100	mg/L	0.0500	0.0103	96.3	70-130		
Matrix Spike (BAK0657-MS2)		Source: W	/AK0588-01	Pre	pared: 11/23,	/2020 Analyze	ed: 11/24/20	20		
Zinc	0.0597		0.00100	mg/L	0.0500	0.0144	90.6	70-130		
Copper	0.0583		0.00100	mg/L	0.0500	0.0132	90.3	70-130		
Matrix Spike Dup (BAK0657-MSD1)		Source: W	/AK0519-01	Pre	pared: 11/23,	/2020 Analyze	ed: 11/24/20	20		
Copper	0.0586		0.00100	mg/L	0.0500	0.0103	96.5	70-130	0.176	20
Zinc	0.123		0.00100	mg/L	0.0500	0.0739	98.4	70-130	0.154	20

Source: WAK0588-01

Prepared: 11/23/2020 Analyzed: 11/24/2020

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0657 - W 3010 Digest	(Continued)								
Matrix Spike Dup (BAK0657-MSD2)	Source: V	VAK0588-01	Pre	pared: 11/23	/2020 Analyze	d: 11/24/20	20		
Zinc	0.0617	0.00100	mg/L	0.0500	0.0144	94.5	70-130	3.16	20
Copper	0.0605	0.00100	mg/L	0.0500	0.0132	94.6	70-130	3.57	20
Batch: BAK0775 - W 3010 Digest									
Blank (BAK0775-BLK1)			Pre	pared: 11/25	/2020 Analyze	d: 11/30/20	20		
Dissolved Zinc	ND	0.00100	mg/L						
Dissolved Copper	ND	0.00100	mg/L						
LCS (BAK0775-BS1)			Pre	pared: 11/25	/2020 Analyze	d: 11/30/20	20		
Dissolved Zinc	0.0508	0.00100	mg/L	0.0500		102	85-115		
Dissolved Copper	0.0517	0.00100	mg/L	0.0500		103	85-115		
Matrix Spike (BAK0775-MS1)	Source: V	VAK0567-02	Pre	pared: 11/25	/2020 Analyze	d: 11/30/20	20		
Dissolved Zinc	0.0539	0.00100	mg/L	0.0500	0.00684	94.1	70-130		
Dissolved Copper	0.0526	0.00100	mg/L	0.0500	0.00313	99.0	70-130		
Matrix Spike Dup (BAK0775-MSD1)	Source: V	VAK0567-02	Prepared: 11/25/2020 Analyzed: 11/30/2020						
Dissolved Zinc	0.0540	0.00100	mg/L	0.0500	0.00684	94.3	70-130	0.213	20
Dissolved Copper	0.0522	0.00100	mg/L	0.0500	0.00313	98.1	70-130	0.843	20

Quality Control Data

(Continued)

Hydrocarbons

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0676 - W TPH-Dx										
Blank (BAK0676-BLK1)					Prepared &	Analyzed: 11	/25/2020			
Diesel	ND		0.160	mg/L						
Lube Oil	ND		0.400	mg/L						
Mineral Oil	ND		0.160	mg/L						
Surrogate: n-Hexacosane			48.0	ррт	50.1		95.7	50-150		
LCS (BAK0676-BS1)					Prepared &					
Diesel	0.988		0.160	mg/L	1.01		97.8	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			46.5	ррт	50.1		92.9	50-150		
Duplicate (BAK0676-DUP1)		Source: W	/AK0521-03	Pre	epared: 11/25	/2020 Analyze	ed: 11/26/20	20		
Diesel	ND		0.160	mg/L		ND				20
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20
Surrogate: n-Hexacosane			46.6	ррт	50.1		93.1	50-150		
Matrix Spike (BAK0676-MS1)		Source: W	/AK0567-01	Prepared: 11/25/2020 Analyzed: 11/26/2020						
Diesel	0.992		0.160	mg/L	1.01	ND	98.3	70-130		
Lube Oil	ND		0.400	mg/L		ND		70-130		
Surrogate: n-Hexacosane			37.8	ррт	50.1		75.5	50-150		

Quality Control Data (Continued)

Hydrocarbons (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0676 - W TPH-Dx (Con	tinued)									
Matrix Spike Dup (BAK0676-MSD1)		Source: W	AK0567-01	Prep	pared: 11/25	/2020 Analyze	d: 11/26/20	20		
Diesel	1.00		0.160	mg/L	1.01	ND	99.3	70-130	1.04	20
Lube Oil	ND		0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane			36.6	ррт	50.1		73.1	50-150		

Anatek Labs,
Inc.

Chain of Custody Record

Anatek Log-In #

VVAK	UD6	1

Due: 12/04/20

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433

ompa	ny Name:	5	Spokane	Count	y		ct Mar				1	Etha	n Mu	urnin	1			Please refer to our normal turn around since at.
ddres	ss: 1020	6 W.	Broadwa	y Aver	nue	Proje	ct Nan	ne &	#:	G	onza	ga B	BioRe	etent	tion (Cell		http://www.anateklabs.com/services/guidelines/reporting.asp
ity:	Spokane	Sta	ate: WA	Zip:	99260	Emai	l Addre	ess:	Ε	MUF	RNIN	@sp	oka	neco	unty	org/.org		Normal *All rush orderPhone Next Day* requests must beMail
hone	•	(50	9) 477-74	120		Purc	nase C	order #	t :									Next Day* requests must beMail2nd Day* prior approvedFax Other*Email
ax:						Sam	oler Na	ame &	phone	э:		(5	09)9	95-0	557			Other
	Provide	Sam	ple Desc	ription	1				List	Ana	lyse	s Re	que	sted				Note Special Instructions/Comments
	stormw	ater in	fluent and e	ffluent		Containers	Sample Volumes	TSS SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Cu Zn Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	PSD ASTM D3977-97			Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identificat	ion S	Sampling Da	te/Time	Matrix	# of (Sam	TSS	Cu Zn 200.	Cu Zi EPA 2	Hare 234	Total I SN	E S	Ortho	S G			
	INF11172020		11/17/20 10	:00 AM	water			×	X	X		X	X					,
	EFF1211172020		11/17/20 10	:00 AM	water			X	X	X		X	X	<u> </u>				
	EFF1811172020		11/17/20 10	:00 AM	water	<u> </u>		X	X	X		X	X	_	_	-		
		_				1	_	-	 	_			-	-	-	-		
		\dashv				┼	-	+	├─	+	-	-	├-	┼	\vdash	├	\vdash	
	*	+				+-	<u> </u>	+-	\vdash		-	-	\vdash	\vdash	\vdash	\vdash		
		\dashv				t^-	<u> </u>	T	\vdash							<u> </u>		Inspection Checklist
		\top				1		T		1			T					Received Intact? (Y), N
																		Labels & Chains Agree? N
																	-	Containers Sealed?
						_												VOC Head Space?
					C:					Com	2001			Date		Time		halli
		1.2	Name		Signature				_	_	pany			SI STORY CONTRACTOR		a succession		- 100° C 8/11° (PH)
Relir	nquished by	Key	in Flor	agan	Brusto	H	1996	4/		060	Me	GOSL	altin	WI				Temperature (°C): 6.8/6.6 (R#1)
Rece	eived by	T.	560	U	15	XI				U	Ita	teh	/ \	14	17/2	0 15	54	Preservative: <u>41604 2007 883 22</u>
Relir	nquished by				1									1	,			m-HN03 20072957 HC1 2002747
Rece	eived by																	Date & Time: 11/17/20 17:00
Reli	nquished by																	Inspected By:
Rec	eived by																	

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAK0682

Project: Gonzaga BioRetention Cell

Reported: 12/9/2020 07:35

Analytical Results Report

Sample Location: INF11192020

Lab/Sample Number: WAK0682-01 Collect Date: 11/19/20 09:30

Date Received: 11/19/20 15:40 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	28.7	mg CaCO3/L	3.00	11/23/20 10:00	ARY	SM 2340 C	
Phosphate/P	0.113	mg/L	0.0180	11/23/20 9:28	SAG	SM 4500-P G	H2
Total P	0.170	mg/L	0.00500	12/7/20 14:33	SAG	SM 4500-P H	
TSS	21.0	mg/L	1.00	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00443	mg/L	0.00100	12/2/20 15:03	TRC	EPA 200.8	
Dissolved Copper	0.00330	mg/L	0.00100	12/1/20 12:45	TRC	EPA 200.8	
Zinc	0.0240	mg/L	0.00100	12/2/20 15:03	TRC	EPA 200.8	
Dissolved Zinc	0.0151	mg/L	0.00100	12/1/20 12:45	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/26/20 8:00	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/26/20 8:00	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/26/20 8:00	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	85.4%		50-150	11/26/20 8:00	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF1211192020

Lab/Sample Number: WAK0682-02 Collect Date: 11/19/20 09:30

Date Received: Collected By: 11/19/20 15:40

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	103	mg CaCO3/L	6.00	11/23/20 10:00	ARY	SM 2340 C	
Phosphate/P	0.378	mg/L	0.0180	11/23/20 9:29	SAG	SM 4500-P G	H2
Total P	0.656	mg/L	0.200	12/7/20 14:25	SAG	SM 4500-P H	
TSS	9.00	mg/L	1.00	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00430	mg/L	0.00100	12/2/20 15:06	TRC	EPA 200.8	
Dissolved Copper	0.00337	mg/L	0.00100	12/1/20 12:48	TRC	EPA 200.8	
Zinc	0.00281	mg/L	0.00100	12/2/20 15:06	TRC	EPA 200.8	
Dissolved Zinc	0.00484	mg/L	0.00100	12/1/20 12:48	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/26/20 8:56	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/26/20 8:56	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/26/20 8:56	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	89.7%		50-150	11/26/20 8:56	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF1811192020

Lab/Sample Number: WAK0682-03 Collect Date: 11/19/20 09:30

Date Received: Collected By: 11/19/20 15:40

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	109	mg CaCO3/L	6.00	11/23/20 10:00	ARY	SM 2340 C	
Phosphate/P	0.494	mg/L	0.0180	11/23/20 9:30	SAG	SM 4500-P G	H2
Total P	0.720	mg/L	0.200	12/7/20 14:32	SAG	SM 4500-P H	
TSS	8.00	mg/L	1.00	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00318	mg/L	0.00100	12/2/20 15:10	TRC	EPA 200.8	
Dissolved Copper	0.00326	mg/L	0.00100	12/1/20 12:50	TRC	EPA 200.8	
Zinc	0.00320	mg/L	0.00100	12/2/20 15:10	TRC	EPA 200.8	
Dissolved Zinc	0.00532	mg/L	0.00100	12/1/20 12:50	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/26/20 9:51	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/26/20 9:51	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/26/20 9:51	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	88.6%		50-150	11/26/20 9:51	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: INF11192020-02

Lab/Sample Number: WAK0682-04 Collect Date: 11/19/20 09:30

Date Received: Collected By: 11/19/20 15:40

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	30.7	mg CaCO3/L	3.00	11/23/20 10:00	ARY	SM 2340 C	
Phosphate/P	0.0988	mg/L	0.0180	11/23/20 9:31	SAG	SM 4500-P G	H2
Total P	0.432	mg/L	0.200	12/7/20 14:35	SAG	SM 4500-P H	
TSS	25.0	mg/L	1.00	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00436	mg/L	0.00100	12/2/20 15:13	TRC	EPA 200.8	
Dissolved Copper	0.00309	mg/L	0.00100	12/1/20 12:52	TRC	EPA 200.8	
Zinc	0.0248	mg/L	0.00100	12/2/20 15:13	TRC	EPA 200.8	
Dissolved Zinc	0.0147	mg/L	0.00100	12/1/20 12:52	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/26/20 10:47	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/26/20 10:47	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/26/20 10:47	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	74.8%		50-150	11/26/20 10:47	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF1211192020-02

Lab/Sample Number: WAK0682-05 Collect Date: 11/19/20 09:30

Date Received: Collected By: 11/19/20 15:40

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	109	mg CaCO3/L	6.00	11/23/20 10:00	ARY	SM 2340 C	
Phosphate/P	0.383	mg/L	0.0180	11/23/20 9:32	SAG	SM 4500-P G	H2
Total P	0.592	mg/L	0.200	12/7/20 14:38	SAG	SM 4500-P H	
TSS	11.0	mg/L	1.00	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00375	mg/L	0.00100	12/2/20 15:29	TRC	EPA 200.8	
Dissolved Copper	0.00353	mg/L	0.00100	12/1/20 12:55	TRC	EPA 200.8	
Zinc	0.00328	mg/L	0.00100	12/2/20 15:29	TRC	EPA 200.8	
Dissolved Zinc	0.00483	mg/L	0.00100	12/1/20 12:55	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/26/20 11:42	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/26/20 11:42	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/26/20 11:42	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	91.5%		50-150	11/26/20 11:42	ARC	NWTPH-Dx	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1811192020-02

Lab/Sample Number: WAK0682-06 Collect Date: 11/19/20 09:30

Date Received: 11/19/20 15:40 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	117	mg CaCO3/L	6.00	11/23/20 10:00	ARY	SM 2340 C	
Phosphate/P	0.504	mg/L	0.0180	11/23/20 9:33	SAG	SM 4500-P G	H2
Total P	0.856	mg/L	0.200	12/7/20 14:41	SAG	SM 4500-P H	
TSS	11.0	mg/L	1.00	11/20/20 14:00	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00321	mg/L	0.00100	12/2/20 15:32	TRC	EPA 200.8	
Dissolved Copper	0.00339	mg/L	0.00100	12/1/20 12:57	TRC	EPA 200.8	
Zinc	0.00324	mg/L	0.00100	12/2/20 15:32	TRC	EPA 200.8	
Dissolved Zinc	0.00550	mg/L	0.00100	12/1/20 12:57	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	11/26/20 12:38	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	11/26/20 12:38	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	11/26/20 12:38	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	87.0%		50-150	11/26/20 12:38	ARC	NWTPH-Dx	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

H2

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a certified analyte RPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory

Initial analysis within holding time, Reanalysis for the required dilution was past holding time.

The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·	Result	Quui	Linic		LCVCI	resuit	JUNEC	LiiiliG	10.0	Little
Batch: BAK0618 - W FIA										
Blank (BAK0618-BLK1)					Prepared 8	Analyzed: 1	1/20/2020			
Phosphate/P	ND		0.0180	mg/L						
Matrix Spike (BAK0618-MS1)		Source: V	/AK0682-02		Prepared 8	Analyzed: 1	1/20/2020			
Phosphate/P	0.460		0.0180	mg/L	0.100	0.378	81.6	80-120		
Batch: BAK0655 - W Wet Chem										
Blank (BAK0655-BLK1)					Prepared 8	Analyzed: 1	1/23/2020			
Hardness	ND		3.00 n	ng CaCO3/L	•	,	, -, -			
Blank (BAK0655-BLK2)					Prepared 8	Analyzed: 1	1/23/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
LCS (BAK0655-BS1)					Prepared 8	Analyzed: 1	1/23/2020			
Hardness	101		n	ng CaCO3/L	100		101	90-110		
LCS Dup (BAK0655-BSD1)					Prepared 8	Analyzed: 11	1/23/2020			
Hardness	102		n	ng CaCO3/L	100		102	90-110	1.01	20
Duplicate (BAK0655-DUP1)		Source: V	/AK0519-03		Prepared 8	Analyzed: 11	1/23/2020			
Hardness	158		6.00 n	ng CaCO3/L		152			3.82	20
Matrix Spike (BAK0655-MS1)		Source: V	/AK0521-09		Prepared 8	Analyzed: 1	1/23/2020			
Hardness	297		6.00 n	ng CaCO3/L	100	204	93.1	80-120		
Matrix Spike Dup (BAK0655-MSD1)		Source: V	/AK0521-09		Prepared 8	Analyzed: 1	1/23/2020			
Hardness	295		6.00 n	ng CaCO3/L	100	204	91.1	80-120	0.676	20

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0668 - W FIA										
Blank (BAK0668-BLK1)					Prepared 8	Analyzed: 11	1/23/2020			
Phosphate/P	ND		0.0180	mg/L						
LCS (BAK0668-BS1)					Prepared 8	Analyzed: 11	1/23/2020			
Phosphate/P	0.107		0.0180	mg/L	0.100		107	85-115		
Matrix Spike (BAK0668-MS1)		Source: V	VAK0682-06		Prepared 8	Analyzed: 11	1/23/2020			
Phosphate/P	0.615		0.0180	mg/L	0.100	0.504	111	80-120		
Matrix Spike Dup (BAK0668-MSD1)		Source: V	VAK0682-06		Prepared 8	Analyzed: 11	1/23/2020			
Phosphate/P	0.613		0.0180	mg/L	0.100	0.504	110	80-120	0.195	20
Batch: BAK0734 - W Filtration Blank (BAK0734-BLK1) TSS	ND		1.00	mg/L	Prepared 8	ι Analyzed: 11	1/20/2020			
Blank (BAK0734-BLK2)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L		-				
Blank (BAK0734-BLK3)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L						
Blank (BAK0734-BLK4)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L						
Blank (BAK0734-BLK5)					Prepared 8	Analyzed: 11	1/20/2020			
TSS	ND		1.00	mg/L						

Quality Control Data (Continued)

Analyte	Result	Rep Qual	oorting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Allalyte	Result	Quai	LITTIC	Offics	Level	Result	70KLC	Limits	KFD	LIIIIC
Batch: BAK0734 - W Filtration	n (Continued)									
Blank (BAK0734-BLK6)					Prepared 8	Analyzed: 11	/20/2020			
TSS	ND		1.00	mg/L						
Blank (BAK0734-BLK7)					Prepared 8	Analyzed: 11	/20/2020			
TSS	ND		1.00	mg/L						
LCS (BAK0734-BS1)					Prepared 8	Analyzed: 11	/20/2020			
TSS	97.0			mg/L	100	•	97.0	90-110		
LCS (BAK0734-BS2)					Prepared 8	Analyzed: 11	/20/2020			
TSS	96.0			mg/L	100	,	96.0	90-110		
LCS (BAK0734-BS3)					Prepared 8	Analyzed: 11	/20/2020			
TSS	96.0			mg/L	100	,	96.0	90-110		
LCS (BAK0734-BS4)					Prepared 8	Analyzed: 11	/20/2020			
TSS	98.0			mg/L	100	,	98.0	90-110		
LCS Dup (BAK0734-BSD1)					Prepared 8	Analyzed: 11	/20/2020			
TSS	106			mg/L	100	,	106	90-110	8.87	10
LCS Dup (BAK0734-BSD2)					Prepared 8	Analyzed: 11	/20/2020			
TSS	101			mg/L	100	,	101	90-110	5.08	10
LCS Dup (BAK0734-BSD3)					Prepared 8	Analyzed: 11	/20/2020			
TSS	103			mg/L	100	,	103	90-110	7.04	10
LCS Dup (BAK0734-BSD4)					Prepared 8	Analyzed: 11	/20/2020			
TSS	97.0			mg/L	100	, Lear II	97.0	90-110	1.03	10

Quality Control Data (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0734 - W Filtration (Co	ntinued)								
Duplicate (BAK0734-DUP1)	-	Source: V	VAK0519-03		Prepared &	Analyzed: 11	1/20/2020			
TSS	22.0		1.00	mg/L		23.0			4.44	20
Duplicate (BAK0734-DUP2)		Source: V	VAK0545-02		Prepared &	Analyzed: 11	/20/2020			
TSS	24.0		1.00	mg/L		25.0			4.08	20
Duplicate (BAK0734-DUP3)		Source: V	VAK0677-01		Prepared &	Analyzed: 11	./20/2020			
TSS	1.00		1.00	mg/L		1.00			0.00	20
Duplicate (BAK0734-DUP4)		Source: V	VAK0682-02		Prepared &	Analyzed: 11	./20/2020			
TSS	9.00		1.00	mg/L		9.00			0.00	20
Matrix Spike (BAK0734-MS1)		Source: M	1AK0523-01		Prepared &	Analyzed: 11	./20/2020			
TSS	158		2.00	mg/L	100	66.0	92.0	80-120		
Matrix Spike (BAK0734-MS2)		Source: V	VAK0567-01		Prepared &	Analyzed: 11	./20/2020			
TSS	112		2.00	mg/L	100	17.0	95.0	80-120		
Matrix Spike (BAK0734-MS3)		Source: V	VAK0649-01		Prepared &	Analyzed: 11	./20/2020			
TSS	114		2.00	mg/L	100	15.0	99.0	80-120		
Matrix Spike (BAK0734-MS4)		Source: V	VAK0681-01		Prepared &	Analyzed: 11	./20/2020			
TSS	108		2.00	mg/L	100	9.00	99.0	80-120		
Matrix Spike Dup (BAK0734-MSD1)		Source: M	1AK0523-01		Prepared &	Analyzed: 11	./20/2020			
TSS	148		2.00	mg/L	100	66.0	82.0	80-120	6.54	20
Matrix Spike Dup (BAK0734-MSD2)		Source: V	VAK0567-01		Prepared &	Analyzed: 11	./20/2020			
TSS	110		2.00	mg/L	100	17.0	93.0	80-120	1.80	20

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0734 - W Filtration (C										
Matrix Spike Dup (BAK0734-MSD3)	-	Source: V	VAK0649-01		Prepared &	Analyzed: 11	/20/2020			
TSS	126		2.00	mg/L	100	15.0	111	80-120	10.0	20
Matrix Spike Dup (BAK0734-MSD4)	S	Source: V	VAK0681-01		Prepared 8	Analyzed: 11	/20/2020			
TSS	112		2.00	mg/L	100	9.00	103	80-120	3.64	20
Batch: BAL0238 - W FIA										
Blank (BAL0238-BLK1)					Prepared 8	& Analyzed: 12	2/7/2020			
Total P	ND		0.00500	mg/L	•	-				
Blank (BAL0238-BLK2)					Prepared 8	& Analyzed: 12	2/7/2020			
Total P	ND		0.00500	mg/L						
LCS (BAL0238-BS1)					Prepared 8	& Analyzed: 12	2/7/2020			
Total P	0.105		0.00500	mg/L	0.100		105	90-110		
Matrix Spike (BAL0238-MS1)	S	Source: V	VAK0848-02		Prepared 8	& Analyzed: 12	2/7/2020			
Total P	0.248		0.00500	mg/L	0.100	0.128	120	80-120		
Matrix Spike Dup (BAL0238-MSD1)	S	Source: V	VAK0848-02		Prepared 8	& Analyzed: 12	2/7/2020			
Total P	0.237		0.00500	mg/L	0.100	0.128	109	80-120	4.45	20

Quality Control Data (Continued)

Metals by ICP-MS

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0827 - W 3010 Digest										
Blank (BAK0827-BLK1)				Pre	epared: 11/30	0/2020 Analyze	ed: 12/1/202	20		
Dissolved Zinc	ND		0.00100	mg/L						
Dissolved Copper	ND		0.00100	mg/L						
LCS (BAK0827-BS1)				Pre	epared: 11/30	0/2020 Analyze	ed: 12/1/202	20		
Dissolved Copper	0.0496		0.00100	mg/L	0.0500		99.3	85-115		
Dissolved Zinc	0.0489		0.00100	mg/L	0.0500		97.9	85-115		
Matrix Spike (BAK0827-MS1)		Source: W	/AK0605-02	Pre	epared: 11/30	0/2020 Analyze	ed: 12/1/202	20		
Dissolved Zinc	0.0508		0.00100	mg/L	0.0500	0.00214	97.3	70-130		
Dissolved Copper	0.0495		0.00100	mg/L	0.0500	0.000217	98.5	70-130		
Matrix Spike (BAK0827-MS2)		Source: W	/AK0605-05	Pre	epared: 11/30	0/2020 Analyze	ed: 12/1/202	20		
Dissolved Zinc	0.253		0.00500	mg/L	0.250	0.00346	99.9	70-130		
Dissolved Copper	0.252		0.00500	mg/L	0.250	0.000194	101	70-130		
Matrix Spike Dup (BAK0827-MSD1)		Source: W	/AK0605-02	Pre	epared: 11/30	0/2020 Analyze	ed: 12/1/202	20		
Dissolved Zinc	0.0511		0.00100	mg/L	0.0500	0.00214	97.9	70-130	0.522	20
Dissolved Copper	0.0491		0.00100	mg/L	0.0500	0.000217	97.8	70-130	0.679	20
Matrix Spike Dup (BAK0827-MSD2)		Source: W	/AK0605-05	Pre	epared: 11/30	0/2020 Analyze	ed: 12/1/202	20		
Dissolved Zinc	0.252		0.00500	mg/L	0.250	0.00346	99.4	70-130	0.491	20

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0827 - W 3010 Digest (Continu	ed)								
Matrix Spike Dup (BAK0827-MSD2)		Source: V	VAK0605-05	Pr	epared: 11/30	0/2020 Analyze	ed: 12/1/202	.0		
Dissolved Copper	0.266		0.00500	mg/L	0.250	0.000194	106	70-130	5.36	20
Batch: BAL0001 - W 3010 Digest										
Blank (BAL0001-BLK1)				Pi	epared: 12/1	/2020 Analyze	d: 12/2/2020)		
Copper	ND		0.00100	mg/L						
Zinc	ND		0.00100	mg/L						
LCS (BAL0001-BS1)				Pi	repared: 12/1	/2020 Analyze	d: 12/2/2020)		
Zinc	0.0508		0.00100	mg/L	0.0500		102	85-115		
Copper	0.0501		0.00100	mg/L	0.0500		100	85-115		
Matrix Spike (BAL0001-MS1)		Source: V	VAK0605-02	Pi	repared: 12/1	/2020 Analyze	d: 12/2/2020)		
Zinc	0.0476		0.00100	mg/L	0.0500	ND	95.1	70-130		
Copper	0.0475		0.00100	mg/L	0.0500	0.000369	94.3	70-130		
Matrix Spike (BAL0001-MS2)		Source: V	VAK0608-01	Pi	repared: 12/1	/2020 Analyze	d: 12/2/2020)		
Copper	0.0483		0.00100	mg/L	0.0500	0.000491	95.7	70-130		
Zinc	0.0498		0.00100	mg/L	0.0500	0.000714	98.3	70-130		
Matrix Spike Dup (BAL0001-MSD1)		Source: V	VAK0605-02	Pi	repared: 12/1	/2020 Analyze	d: 12/2/2020)		
Zinc	0.0480		0.00100	mg/L	0.0500	ND	96.0	70-130	0.925	20
Copper	0.0483		0.00100	mg/L	0.0500	0.000369	95.9	70-130	1.62	20
Matrix Spike Dup (BAL0001-MSD2)		Source: V	VAK0608-01	Pi	repared: 12/1	/2020 Analyze	d: 12/2/2020)		
Zinc	0.0496		0.00100	mg/L	0.0500	0.000714	97.7	70-130	0.583	20
Copper	0.0487		0.00100	mg/L	0.0500	0.000491	96.4	70-130	0.703	20

Quality Control Data

(Continued)

Hydrocarbons

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0676 - W TPH-Dx										
Blank (BAK0676-BLK1)					Prepared &	Analyzed: 11	/25/2020			
Diesel	ND		0.160	mg/L						
Lube Oil	ND		0.400	mg/L						
Mineral Oil	ND		0.160	mg/L						
Surrogate: n-Hexacosane			48.0	ppm	50.1		95.7	50-150		
LCS (BAK0676-BS1)					Prepared &	Analyzed: 11	/25/2020			
Diesel	0.988		0.160	mg/L	1.01		97.8	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			46.5	ppm	50.1		92.9	50-150		
Duplicate (BAK0676-DUP1)		Source: W	AK0521-03	Pre	epared: 11/25,	/2020 Analyze	ed: 11/26/20	20		
Diesel	ND		0.160	mg/L		ND				20
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20

Quality Control Data (Continued)

Hydrocarbons (Continued)

Analyte	Result Qu	Reporting ual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0676 - W TPH-Dx (Cor	ntinued)							•	
Duplicate (BAK0676-DUP1)	Sou	ırce: WAK0521-03	Pre	pared: 11/25,	/2020 Analyz	ed: 11/26/20	20		
Surrogate: n-Hexacosane		46.6	ppm	50.1		93.1	50-150		
Matrix Spike (BAK0676-MS1)	Sou	ırce: WAK0567-01	Pre	pared: 11/25,	/2020 Analyz	ed: 11/26/20	20		
Diesel	0.992	0.160	mg/L	1.01	ND	98.3	70-130		
Lube Oil	ND	0.400	mg/L		ND		70-130		
Surrogate: n-Hexacosane		37.8	ppm	50.1		75.5	50-150		
Matrix Spike Dup (BAK0676-MSD1)	Sou	ırce: WAK0567-01	Pre	pared: 11/25,	/2020 Analyz	ed: 11/26/20	20		
Diesel	1.00	0.160	mg/L	1.01	ND	99.3	70-130	1.04	20
Lube Oil	ND	0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane		36.6	ррт	50.1		73.1	50-150		

A	Anatek Labs, Inc.
	1110.

Spokane County

1026 W. Broadway Avenue

Company Name:

Address:

Chain of Custody Record

Project Manager:

Project Name & #:

Anatek Log-In#

Turn Arou

W	ΑK	(06	82	

Due: 12/08/20

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 ○ 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433 ○

> http://www.anateklabs.com/services/guidelines/reporting.asp

															4
City:	Spokane	State: WA Zip:	99260	Ema	il Addr	ess:	E	MUF	RNIN	@sp	oka	neco	unty	.org	Normal *All rush orderPhone Next Day* requests must beMail
Phone:		(509) 477-7420		Purc	hase C	order #	# :								2nd Day* prior approvedFax
Fax:				Sam	pler Na	ame &	phone	ə:		(5	nala	95-0	557		Other*
	Provide 9	Sample Description					Liet	Ana	lyeo		ques		J		Note Special Instructions/Comments
			1	Bross	ervative:	T	LIST	Alla	lyse	SING	que	Steu	I		
	stormwat	er influent and effluent		Containers	Sample Volume	TSS SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Cu Zn Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	PSD ASTM D3977-97		Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identification		Matrix	# of (Sam	TSS	-	Cu Z EPA 2	, Har	-			8.0		SWIBS
	INF11192020	11/19/20 9:30 AM	water			×	X	×	×	X	>x	>X			
	EFF1211192020	11/19/20 9:30 AM	water			X	X	X	X	X	X	X) (oder 3.5/3.3° 18
	EFF1811192020	11/19/20 9:30 AM	water			X	X	X	X	X	X	X			
	INF11192020-02	11/19/20 9:30 AM	water			×	X	X	X	X	X	X			
	EFF1211192020-02	11/19/20 9:30 AM	water			X	X	X	X	X	X	X			> (ouler 2 3.4/3.201
	EFF1811192020-02	11/19/20 9:30 AM	water	-		X	X	X	X	X	X	X			
				1	+						\vdash	\vdash	 		Inspection Checklist
						T									Received Intact? (Y) N
				1		1									Labels & Chains Agree? M
						T									Containers Sealed?
						1									VOC Head Space?
															11111 2 1 0
		ited Name	Signature	A 1 4	0 1 A			Com	npany			Date		Time	na c/1 2 coolers
Relinq	uished by	regan Ehlebrauht	nw, 4	U	W			(JC]	4		11/1	9/20	3:40	Temperature (°C):
Receiv	ved by	KS uff	Her	H				1	tral	la	_	11/2	9/20	1540	Preservative: 1/2804 2001181<2, 2001883<2
Relinq	uished by	1	(-					<u> </u>			HC1 2002747-2, 2003857-2
Receiv	ved by							_				_			Date & Time: 11-19-20 1650
Relinq	uished by											-			Inspected By: Wy
Receiv	ved by														PH 2001015

Ethan Murnin

Gonzaga BioRetention Cell

Form COC01.00 - Eff 1 Mar 2015

HN03 200228042 Page 1 of 1

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAL0676

Project: Gonzaga BioRetention Cell

Reported: 1/6/2021 13:35

Analytical Results Report

Sample Location: INF12192020

Lab/Sample Number: WAL0676-01 Collect Date: 12/20/20 12:30

Date Received: 12/21/20 14:30 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	10.9	mg CaCO3/L	3.00	12/22/20 13:30	ARY	SM 2340 C	
Phosphate/P	0.0476	mg/L	0.0180	12/22/20 11:42	SAG	SM 4500-P G	
Total P	<0.005	mg/L	0.200	12/28/20 13:06	SAG	SM 4500-P H	
TSS	10.5	mg/L	0.500	12/23/20 9:15	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00262	mg/L	0.00100	1/5/21 13:05	TRC	EPA 200.8	
Dissolved Copper	ND	mg/L	0.00100	1/4/21 11:51	TRC	EPA 200.8	
Zinc	0.0122	mg/L	0.00100	1/5/21 13:05	TRC	EPA 200.8	
Dissolved Zinc	0.0152	mg/L	0.00100	1/4/21 11:51	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/29/20 23:16	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/29/20 23:16	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/29/20 23:16	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92.3%		50-150	12/29/20 23:16	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF1212192020

Lab/Sample Number: WAL0676-02 Collect Date: 12/20/20 12:30

Date Received: Collected By: 12/21/20 14:30

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	111	mg CaCO3/L	12.0	12/22/20 13:30	ARY	SM 2340 C	
Phosphate/P	0.257	mg/L	0.0180	12/22/20 11:42	SAG	SM 4500-P G	
Total P	0.872	mg/L	0.200	12/28/20 13:13	SAG	SM 4500-P H	
TSS	2.12	mg/L	0.125	12/23/20 9:15	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00364	mg/L	0.00100	1/5/21 13:22	TRC	EPA 200.8	
Dissolved Copper	0.00280	mg/L	0.00100	1/4/21 11:53	TRC	EPA 200.8	
Zinc	0.00246	mg/L	0.00100	1/5/21 13:22	TRC	EPA 200.8	
Dissolved Zinc	0.0170	mg/L	0.00100	1/4/21 11:53	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 1:59	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 1:59	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 1:59	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	91.6%		50-150	12/30/20 1:59	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: EFF1812192020

Lab/Sample Number: WAL0676-03 Collect Date: 12/20/20 12:30

Date Received: Collected By: 12/21/20 14:30

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	150	mg CaCO3/L	12.0	12/22/20 13:30	ARY	SM 2340 C	
Phosphate/P	0.373	mg/L	0.0180	12/22/20 11:43	SAG	SM 4500-P G	
Total P	0.292	mg/L	0.200	12/28/20 13:16	SAG	SM 4500-P H	
TSS	1.43	mg/L	0.143	12/23/20 9:15	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00391	mg/L	0.00100	1/5/21 13:29	TRC	EPA 200.8	
Dissolved Copper	0.00330	mg/L	0.00100	1/4/21 11:55	TRC	EPA 200.8	
Zinc	0.00363	mg/L	0.00100	1/5/21 13:29	TRC	EPA 200.8	
Dissolved Zinc	0.0170	mg/L	0.00100	1/4/21 11:55	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 2:54	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 2:54	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 2:54	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	91.3%		50-150	12/30/20 2:54	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

Sample Location: INF12192020-DI

WAL0676-04

Collect Date:

12/20/20 12:30

Date Received:

Lab/Sample Number:

12/21/20 14:30

Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	ND	mg/L	0.00100	1/4/21 11:58	TRC	EPA 200.8	
Dissolved Zinc	0.0178	mg/L	0.00100	1/4/21 11:58	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF1212192020-DI

Lab/Sample Number: WAL0676-05 Collect Date: 12/20/20 12:30

Date Received:

12/21/20 14:30

Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	ND	mg/L	0.00100	1/4/21 12:10	TRC	EPA 200.8	
Dissolved Zinc	0.0253	mg/L	0.00100	1/4/21 12:10	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF1812192020-DI

Lab/Sample Number: WAL0676-06 Collect Date: 12/20/20 12:30

Collected By:

Date Received: 12/21/20 14:30

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	ND	mg/L	0.00100	1/4/21 12:12	TRC	EPA 200.8	_
Dissolved Zinc	0.0307	mg/L	0.00100	1/4/21 12:12	TRC	EPA 200.8	

Analytical Results Report (Continued)

Sample Location: INF12192020-02

Lab/Sample Number: WAL0676-07 Collect Date: 12/20/20 12:30

Date Received: Collected By: 12/21/20 14:30

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
TSS	9.75	mg/L	0.250	12/23/20 9:15	BAS	SM 2540 D	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 3:48	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 3:48	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 3:48	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	86.5%		50-150	12/30/20 3:48	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

12/20/20 12:30

Sample Location:

EFF1212192020-02

Lab/Sample Number:

WAL0676-08

Collect Date:

Date Received:

12/21/20 14:30

Collected By:

Matrix:	Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
TSS	2.00	mg/L	0.143	12/23/20 9:15	BAS	SM 2540 D	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 4:43	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 4:43	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 4:43	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92.4%		50-150	12/30/20 4:43	ARC	NWTPH-Dx	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1812192020-02

Lab/Sample Number: WAL0676-09 Collect Date: 12/20/20 12:30

Date Received: 12/21/20 14:30 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
TSS	<2	mg/L	0.143	12/23/20 9:15	BAS	SM 2540 D	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 6:33	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 6:33	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 6:33	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	96.3%		50-150	12/30/20 6:33	ARC	NWTPH-Dx	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0688 - W Wet Chem										
Blank (BAL0688-BLK1)					Prepared &	Analyzed: 12	1/22/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
Blank (BAL0688-BLK2)					Prepared &	Analyzed: 12	:/22/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
LCS (BAL0688-BS1)					Prepared &	Analyzed: 12	:/22/2020			
Hardness	103		3.00 n	ng CaCO3/L	100		103	90-110		
LCS Dup (BAL0688-BSD1)					Prepared &	Analyzed: 12	:/22/2020			
Hardness	101		3.00 n	ng CaCO3/L	100		101	90-110	1.94	20
Duplicate (BAL0688-DUP1)		Source: W	/AL0676-03		Prepared &	Analyzed: 12	1/22/2020			
Hardness	147		12.0 n	ng CaCO3/L		150			2.67	20
Matrix Spike (BAL0688-MS1)		Source: W	/AL0676-02		Prepared &	Analyzed: 12	:/22/2020			
Hardness	313		12.0 n	ng CaCO3/L	200	111	101	80-120		
Matrix Spike Dup (BAL0688-MSD1)		Source: W	/AL0676-02		Prepared &	Analyzed: 12	1/22/2020			
Hardness	313		12.0 m	ng CaCO3/L	200	111	101	80-120	0.00	20
Batch: BAL0716 - W FIA										
Blank (BALO716-BLK1)					Prenared &	Analyzed: 12	1/22/2020			
Phosphate/P	ND		0.0180	mg/L	r repared &	Andiyacu. 12	-, 22, 2020			
LCS (BAL0716-BS1)					Prepared &	Analyzed: 12	:/22/2020			
Phosphate/P	0.106		0.0180	mg/L	0.100	.,	106	85-115		

Quality Control Data (Continued)

Inorganics (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAL0716 - W FIA (Contin	ued)									
LCS Dup (BAL0716-BSD1)	-				Prepared &	Analyzed: 12	/22/2020			
Phosphate/P	0.107		0.0180	mg/L	0.100		107	85-115	1.03	20
Batch: BAL0795 - W FIA										
Blank (BAL0795-BLK1)					Prepared &	Analyzed: 12	/28/2020			
Total P	ND		0.00500	mg/L	•	•				
Blank (BAL0795-BLK2)					Prepared &	Analyzed: 12	/28/2020			
Total P	ND		0.00500	mg/L						
Blank (BAL0795-BLK3)					Prepared &	Analyzed: 12	/28/2020			
Total P	ND		0.00500	mg/L						
LCS (BAL0795-BS1)					Prepared &	Analyzed: 12	/28/2020			
Total P	0.104		0.00500	mg/L	0.100		104	90-110		
LCS (BAL0795-BS2)					Prepared &	Analyzed: 12	/28/2020			
Total P	0.102		0.00500	mg/L	0.100		102	90-110		
Matrix Spike (BAL0795-MS1)		Source: W	AL0578-02		Prepared &	Analyzed: 12	/28/2020			
Total P	0.248		0.0500	mg/L	0.100	0.151	96.8	80-120		
Matrix Spike (BAL0795-MS2)		Source: W	/AL0640-02		Prepared &	Analyzed: 12	/28/2020			
Total P	0.245		0.0500	mg/L	0.100	0.159	86.4	80-120		
Matrix Spike Dup (BAL0795-MSD1)		Source: W	AL0578-02		Prepared &	Analyzed: 12	/28/2020			
Total P	0.247		0.0500	mg/L	0.100	0.151	95.8	80-120	0.404	20

Quality Control Data (Continued)

Inorganics (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAL0795 - W FIA (Continu	ied)									
Matrix Spike Dup (BAL0795-MSD2)		Source: V	VAL0640-02		Prepared &	Analyzed: 12	2/28/2020			
Total P	0.251		0.00500	mg/L	0.100	0.159	92.5	80-120	2.46	20
Batch: BAL0804 - W Filtration										
Blank (BAL0804-BLK1)					Prepared &	Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L						
Blank (BAL0804-BLK2)					Prepared &	Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L						
Blank (BAL0804-BLK3)					Prepared &	Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L						
Blank (BAL0804-BLK4)					Prepared &	Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L						
LCS (BAL0804-BS1)					Prepared &	Analyzed: 12	2/23/2020			
TSS	91.0			mg/L	100		91.0	90-110		
LCS (BAL0804-BS2)					Prepared &	Analyzed: 12	2/23/2020			
TSS	97.0			mg/L	100		97.0	90-110		
LCS Dup (BAL0804-BSD1)					Prepared &	Analyzed: 12	2/23/2020			
TSS	94.0			mg/L	100		94.0	90-110	3.24	10
LCS Dup (BAL0804-BSD2)					Prepared &	Analyzed: 12	2/23/2020			
TSS	98.0			mg/L	100	•	98.0	90-110	1.03	10

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0804 - W Filtration (Co	ontinued)	ı								
Duplicate (BAL0804-DUP1)	_	Source: V	/AL0661-02		Prepared &	Analyzed: 12	2/23/2020			
TSS	9.00		1.00	mg/L		9.00			0.00	20
Duplicate (BAL0804-DUP2)		Source: M	IAL0669-01		Prepared &	Analyzed: 12	2/23/2020			
TSS	84.0		1.00	mg/L		88.0			4.65	20
Matrix Spike (BAL0804-MS1)		Source: M	IAL0634-01		Prepared &	Analyzed: 12	2/23/2020			
TSS	396		2.00	mg/L	100	314	82.0	80-120		
Matrix Spike (BAL0804-MS2)		Source: M	IAL0646-01		Prepared &	Analyzed: 12	2/23/2020			
TSS	204		2.00	mg/L	100	108	96.0	80-120		
Matrix Spike Dup (BAL0804-MSD1)		Source: M	IAL0634-01		Prepared &	Analyzed: 12	2/23/2020			
TSS	404		2.00	mg/L	100	314	90.0	80-120	2.00	20
Matrix Spike Dup (BAL0804-MSD2)		Source: M	IAL0646-01		Prepared &	Analyzed: 12	2/23/2020			
TSS	200		2.00	mg/L	100	108	92.0	80-120	1.98	20

Quality Control Data (Continued)

Metals by ICP-MS

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0811 - W 3010 Digest										
Blank (BAL0811-BLK1)				Pt	epared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Zinc	ND		0.00100	mg/L						
Dissolved Copper	ND		0.00100	mg/L						
LCS (BAL0811-BS1)				Pr	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Copper	0.0558		0.00100	mg/L	0.0500		112	85-115		
Dissolved Zinc	0.0548		0.00100	mg/L	0.0500		110	85-115		
Matrix Spike (BAL0811-MS1)		Source: W	AL0675-02	Pr	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Zinc	0.0575		0.00100	mg/L	0.0500	0.0178	79.3	70-130		
Dissolved Copper	0.0559		0.00100	mg/L	0.0500	0.00607	99.6	70-130		
Matrix Spike (BAL0811-MS2)		Source: W	AL0675-06	Pr	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Zinc	0.0559		0.00100	mg/L	0.0500	0.0168	78.1	70-130		
Dissolved Copper	0.0546		0.00100	mg/L	0.0500	0.00734	94.5	70-130		
Matrix Spike Dup (BAL0811-MSD1)		Source: W	AL0675-02	Pr	epared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Zinc	0.0562		0.00100	mg/L	0.0500	0.0178	76.7	70-130	2.32	20
Dissolved Copper	0.0561		0.00100	mg/L	0.0500	0.00607	100	70-130	0.404	20
Matrix Spike Dup (BAL0811-MSD2)		Source: W	AL0675-06	Pr	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Copper	0.0526		0.00100	mg/L	0.0500	0.00734	90.5	70-130	3.68	20
Dissolved Zinc	0.0532		0.00100	mg/L	0.0500	0.0168	72.9	70-130	4.82	20

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0005 - W 3010 Digest										
Blank (BBA0005-BLK1)					Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	ND		0.00100	mg/L						
Copper	ND		0.00100	mg/L						
LCS (BBA0005-BS1)					Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Copper	0.0495		0.00100	mg/L	0.0500		99.0	85-115		
Zinc	0.0485		0.00100	mg/L	0.0500		97.1	85-115		
Matrix Spike (BBA0005-MS1)		Source: W	AL0605-01		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.231		0.00100	mg/L	0.0500	0.182	97.4	70-130		
Copper	0.0714		0.00100	mg/L	0.0500	0.0237	95.5	70-130		
Matrix Spike (BBA0005-MS2)		Source: W	AL0676-02		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.0510		0.00100	mg/L	0.0500	0.00246	97.1	70-130		
Copper	0.0536		0.00100	mg/L	0.0500	0.00364	100	70-130		
Matrix Spike Dup (BBA0005-MSD1)		Source: W	AL0605-01		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.231		0.00100	mg/L	0.0500	0.182	96.8	70-130	0.128	20
Copper	0.0723		0.00100	mg/L	0.0500	0.0237	97.4	70-130	1.28	20
Matrix Spike Dup (BBA0005-MSD2)		Source: W	/AL0676-02		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Copper	0.0525		0.00100	mg/L	0.0500	0.00364	97.6	70-130	2.23	20
Zinc	0.0500		0.00100	mg/L	0.0500	0.00246	95.2	70-130	1.95	20

Quality Control Data (Continued)

Hydrocarbons

Tyur ocur boris									
		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAL0710 - W TPH-Dx									
Blank (BAL0710-BLK1)				Prepared 8	Analyzed: 12	2/29/2020			
Diesel	ND	0.160	mg/L						
Lube Oil	ND	0.400	mg/L						
Mineral Oil	ND	0.160	mg/L						
Surrogate: n-Hexacosane		47.3	ррт	50.1		94.4	50-150		
LCS (BAL0710-BS1)				Prepared 8	Analyzed: 12	2/29/2020			
Diesel	1.09	0.160	mg/L	1.00		109	70-130		
Lube Oil	ND	0.400	mg/L				70-130		
Surrogate: n-Hexacosane		47.3	ррт	50.1		94.4	50-150		
Duplicate (BAL0710-DUP1)	Source:	WAL0676-08	Pre	epared: 12/29	/2020 Analyze	ed: 12/30/20	20		
Diesel	ND	0.160	mg/L		ND				20
Lube Oil	ND	0.400	mg/L		ND				20
Mineral Oil	ND	0.160	mg/L		ND				20
Surrogate: n-Hexacosane		47.1	ррт	50.1		94.1	50-150		

Quality Control Data (Continued)

Hydrocarbons (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0710 - W TPH-Dx (Con	tinued)								
Matrix Spike (BAL0710-MS1)	Sourc	e: WAL0676-01	Pre	pared: 12/29	/2020 Analyze	ed: 12/30/20	20		
Diesel	1.05	0.160	mg/L	1.00	ND	105	70-130		
Lube Oil	ND	0.400	mg/L		ND		70-130		
Surrogate: n-Hexacosane		47.2	ррт	50.1		94.1	50-150		
Matrix Spike Dup (BAL0710-MSD1)	Sourc	e: WAL0676-01	Pre	pared: 12/29	/2020 Analyze	ed: 12/30/20	20		
Diesel	0.931	0.160	mg/L	1.00	ND	92.7	70-130	12.2	20
Lube Oil	ND	0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane		38.3	ррт	50.1		76.5	50-150		

Chain of Custody Record 1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246

504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433

Anatek Log-In#

V	/AL	.06	76

Compa	any Name:	Sp	okane (County	/	Projec		_			-	Etha	n Mu	ırnin	1			Turn Arot Due: 01/11/21 Please refer to our normal turn alound since as:
Addres	ss: 102	26 W. B	roadway	/ Aver	iue	Proje	ct Nar	ne &	#:	G	onza	ga E	ioRe	etent	tion (Cell		http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	State	e: WA	Zip:	99260	Email	Addr	ess:	E	MUF	RNIN	@sp	oka	neco	unty	.org		Normal *All rush orderPhone Next Day* requests must beMail
Phone	:	(509)) 477-74:	20		Purch	ase C	order #	‡ :									reducts must beFaxPax Other*Fax*_Email
ax:						Samp	ler Na	ame &	phone	e:		(5	09)9	95-0	557			
	Provid	e Samp	le Desci	ription	1			,	List	Ana	lyse	s Re	que	sted				Note Special Instructions/Comments
	storm	water influ	ent and ef	fluent		Containers	Sample Volumes	TSS SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Cu Zn Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	PSD ASTM D3977-97			Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identifica	tion Sar	mpling Date	e/Time	Matrix	# of	Sarr	TSS	Cu Z 200	CuZ	표 82	Total	§ z	Ortho	4			
	INF12192020	12	/20/20 12:3	30 PM	water	6		X	X	X	X	X	X	X			0	* one metale bottle (0250)
	★ EFF1212192020	12	/20/20 12:3	30 PM	water	6		X	X	X	X	X	X	X			a	3 marked as EFF18 but
	EFF1812192020	12	/20/20 12:3	30 PM	water	6		X	X	X	X	X	X	X			2	3 with and come out of EFF12 bag
	INF12192020-DI	12	/20/20 12:3	30 PM	water	1				x							(1)	Ma
	EFF1212192020-D	12	/20/20 12:3	30 PM	water	1				X							8	3 11
	EFF1812192020-D	12	2/20/20 12:	30 PM	water	ı				X							0	3
	INF12192020-02	12	/20/20 12:	30 PM	water	2		X					X				0	
	EFF1212192020-0	2 12	2/20/20 12:	30 PM	water	2		X				<u> </u>	X				00	(3) Inspection Checklist
	EFF1812192020-0	2 12	/20/20 12:3	30 PM	water	2		X					×			3	0	Received Intact?
																		Labels & Chains Agree?
																		Containers Sealed?
																		VOC Head Space?
																		Coolar Ital Hand
		Printed N	lame		Signature					Con	npany			Date		Time		Cooler [Iee] Hand 105 CZ 0.7/0.5
Relin	nquished by	Kevir	Flana	400	Kun Kla	HAN)	2/			Osb	osa L	0054	Lina	12/	Z 1/00	2:3	OPM	Temperature (°C): Cooler *1 0.7 C3 1.4 1.2 II
	eived by		Sattler]	Kathy Soll	77				. A	atele	1 1	1	1	1-2020	1		Preservative: HN03 2002280 < 2 pH 2001015
Relir	nquished by				10													HC1 2003851 <2 H2804 2002883 <2
Rece	eived by									_				_				Date & Time: 12-21-20 1720
Relin	nquished by								<u> </u>	├-				-				Inspected By: W/n
Rece	eived by											*	_					

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAL0675

Project: Gonzaga BioRentention Cell

Reported: 1/6/2021 13:32

Analytical Results Report

Sample Location: INF12202020

Should be 12212020 - storm started early morning on 12/21

Lab/Sample Number: WAL0675-01

Collect Date: 12/21/20 13:00

Date Received: 12/21/20 14:30 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	8.91	mg CaCO3/L	3.00	12/22/20 13:30	ARY	SM 2340 C	
TSS	9.00	mg/L	0.500	12/23/20 9:15	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00274	mg/L	0.00100	1/5/21 12:58	TRC	EPA 200.8	
Dissolved Copper	0.00232	mg/L	0.00100	1/4/21 11:28	TRC	EPA 200.8	
Zinc	0.0125	mg/L	0.00100	1/5/21 12:58	TRC	EPA 200.8	
Dissolved Zinc	0.0646	mg/L	0.00100	1/4/21 11:28	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 7:28	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 7:28	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 7:28	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92.2%		50-150	12/30/20 7:28	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

12/21/20 13:00

EFF1212202020 Sample Location:

Should be 12212020 - storm started early morning on 12/21

Lab/Sample Number:

WAL0675-02

Collect Date:

Date Received:

12/21/20 14:30

Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	145	mg CaCO3/L	6.00	12/22/20 13:30	ARY	SM 2340 C	
TSS	1.80	mg/L	0.100	12/23/20 9:15	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00611	mg/L	0.00100	1/5/21 13:01	TRC	EPA 200.8	
Dissolved Copper	0.00607	mg/L	0.00100	1/4/21 11:30	TRC	EPA 200.8	
Zinc	0.00518	mg/L	0.00100	1/5/21 13:01	TRC	EPA 200.8	
Dissolved Zinc	0.0178	mg/L	0.00100	1/4/21 11:30	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 8:23	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 8:23	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 8:23	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	95.2%		50-150	12/30/20 8:23	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

12/21/20 13:00

EFF1812202020 Sample Location:

Should be 12212020 - storm started early morning on 12/21

Lab/Sample Number:

WAL0675-03

Collect Date:

12/21/20 14:30

Collected By:

Date Received:

Matrix:

Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	115	mg CaCO3/L	6.00	12/22/20 13:30	ARY	SM 2340 C	
TSS	1.90	mg/L	0.100	12/23/20 9:15	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00747	mg/L	0.00100	1/5/21 13:03	TRC	EPA 200.8	
Dissolved Copper	0.00743	mg/L	0.00100	1/4/21 11:37	TRC	EPA 200.8	
Zinc	0.00639	mg/L	0.00100	1/5/21 13:03	TRC	EPA 200.8	
Dissolved Zinc	0.0150	mg/L	0.00100	1/4/21 11:37	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 9:18	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 9:18	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 9:18	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	88.5%		50-150	12/30/20 9:18	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

12/21/20 13:00

Sample Location: INF12202020-2

Lab/Sample Number: WAL0675-04 Collect Date:

Date Received: Collected By: 12/21/20 14:30

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00167	mg/L	0.00100	1/4/21 11:39	TRC	EPA 200.8	
Dissolved Zinc	0.0223	mg/L	0.00100	1/4/21 11:39	TRC	EPA 200.8	

Analytical Results Report

(Continued)

Sample Location: EFF1212202020-2

Lab/Sample Number: WAL0675-05 Collect Date: 12/21/20 13:00

Date Received:

12/21/20 14:30

Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00576	mg/L	0.00100	1/4/21 11:42	TRC	EPA 200.8	
Dissolved Zinc	0.0138	mg/L	0.00100	1/4/21 11:42	TRC	EPA 200.8	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1812202020-2

Lab/Sample Number: WAL0675-06 Collect Date: 12/21/20 13:00

Date Received: 12/21/20 14:30 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Metals by ICP-MS							
Dissolved Copper	0.00734	mg/L	0.00100	1/4/21 11:44	TRC	EPA 200.8	
Dissolved Zinc	0.0168	mg/L	0.00100	1/4/21 11:44	TRC	EPA 200.8	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory

The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0688 - W Wet Chem										
Blank (BAL0688-BLK1)					Prepared &	Analyzed: 12	2/22/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
Blank (BAL0688-BLK2)					Prepared &	Analyzed: 12	2/22/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
LCS (BAL0688-BS1)					Prepared &	Analyzed: 12	2/22/2020			
Hardness	103		3.00 n	ng CaCO3/L	100		103	90-110		
LCS Dup (BAL0688-BSD1)					Prepared &	Analyzed: 12	2/22/2020			
Hardness	101		3.00 n	ng CaCO3/L	100	•	101	90-110	1.94	20
Duplicate (BAL0688-DUP1)		Source: W	/AL0676-03		Prepared &	Analyzed: 12	2/22/2020			
Hardness	147		12.0 n	ng CaCO3/L	•	150			2.67	20
Matrix Spike (BAL0688-MS1)		Source: W	/AL0676-02		Prepared &	Analyzed: 12	2/22/2020			
Hardness	313		12.0 n	ng CaCO3/L	200	111	101	80-120		
Matrix Spike Dup (BAL0688-MSD1)		Source: W	/AL0676-02		Prepared &	Analyzed: 12	2/22/2020			
Hardness	313		12.0 n	ng CaCO3/L	200	111	101	80-120	0.00	20
Batch: BAL0804 - W Filtration										
					Droporod 0	Analyzad: 17	1/22/2020			
Blank (BAL0804-BLK1)	NID.		1.00		Prepared &	Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L						
Blank (BAL0804-BLK2)					Prepared &	Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L						

Quality Control Data (Continued)

Inorganics (Continued)

Analista	Db	Ousl	Reporting		Spike	Source	0/ DEC	%REC	DDD	RPD Limit
Analyte	Result	Quai	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAL0804 - W Filtration (Continued)									
Blank (BAL0804-BLK3)					Prepared &	Analyzed: 12	/23/2020			
TSS	ND		1.00	mg/L						
Blank (BAL0804-BLK4)					Prepared &	Analyzed: 12	/23/2020			
TSS	ND		1.00	mg/L						
LCS (BAL0804-BS1)					Prepared &	Analyzed: 12	/23/2020			
TSS	91.0			mg/L	100		91.0	90-110		
LCS (BAL0804-BS2)					Prepared &	Analyzed: 12	/23/2020			
TSS	97.0			mg/L	100		97.0	90-110		
LCS Dup (BAL0804-BSD1)					Prepared &	Analyzed: 12				
TSS	94.0			mg/L	100		94.0	90-110	3.24	10
LCS Dup (BAL0804-BSD2)					Prepared &	Analyzed: 12	/23/2020			
TSS	98.0			mg/L	100		98.0	90-110	1.03	10
Duplicate (BAL0804-DUP1)		Source: W	/AL0661-02		Prepared &	Analyzed: 12	/23/2020			
TSS	9.00		1.00	mg/L		9.00			0.00	20
Duplicate (BAL0804-DUP2)		Source: M	AL0669-01		Prepared &	Analyzed: 12	/23/2020			
TSS	84.0		1.00	mg/L		88.0			4.65	20
Matrix Spike (BAL0804-MS1)		Source: M	AL0634-01		Prepared &	Analyzed: 12	/23/2020			
TSS	396		2.00	mg/L	100	314	82.0	80-120		
Matrix Spike (BAL0804-MS2)		Source: M	AL0646-01		Prepared &	Analyzed: 12	/23/2020			
TSS	204		2.00	mg/L	100	108	96.0	80-120		

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0804 - W Filtration (Co.	ntinued)									
Matrix Spike Dup (BAL0804-MSD1)		Source: MA	AL0634-01		Prepared &	Analyzed: 12	/23/2020			
TSS	404		2.00	mg/L	100	314	90.0	80-120	2.00	20
Matrix Spike Dup (BAL0804-MSD2)		Source: MA	AL0646-01		Prepared &	Analyzed: 12	/23/2020			
TSS	200		2.00	mg/L	100	108	92.0	80-120	1.98	20

Quality Control Data (Continued)

Metals by ICP-MS

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Keporting Limit	Units	Spike Level	Result	%REC	%REC Limits	RPD	Limit
Batch: BAL0811 - W 3010 Digest										
Blank (BAL0811-BLK1)				Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Zinc	ND		0.00100	mg/L		•				
Dissolved Copper	ND		0.00100	mg/L						
LCS (BAL0811-BS1)				Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Zinc	0.0548		0.00100	mg/L	0.0500		110	85-115		
Dissolved Copper	0.0558		0.00100	mg/L	0.0500		112	85-115		
Matrix Spike (BAL0811-MS1)		Source: W	/AL0675-02	Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Zinc	0.0575		0.00100	mg/L	0.0500	0.0178	79.3	70-130		
Dissolved Copper	0.0559		0.00100	mg/L	0.0500	0.00607	99.6	70-130		
Matrix Spike (BAL0811-MS2)		Source: W	/AL0675-06	Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Zinc	0.0559		0.00100	mg/L	0.0500	0.0168	78.1	70-130		
Dissolved Copper	0.0546		0.00100	mg/L	0.0500	0.00734	94.5	70-130		
Matrix Spike Dup (BAL0811-MSD1)		Source: W	/AL0675-02	Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Copper	0.0561		0.00100	mg/L	0.0500	0.00607	100	70-130	0.404	20
Dissolved Zinc	0.0562		0.00100	mg/L	0.0500	0.0178	76.7	70-130	2.32	20
Matrix Spike Dup (BAL0811-MSD2)		Source: W	/AL0675-06	Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1		
Dissolved Copper	0.0526		0.00100	mg/L	0.0500	0.00734	90.5	70-130	3.68	20
Dissolved Zinc	0.0532		0.00100	mg/L	0.0500	0.0168	72.9	70-130	4.82	20
Ratalia BRADOOF IW 2010 Plant										
Batch: BBA0005 - W 3010 Digest					Droporodi 1/4	/2021 Anal:	d. 1/E/2021			
Blank (BBA0005-BLK1) Zinc	ND		0.00100		rrepared: 1/4	/2021 Analyze	u: 1/5/2021			
				mg/L						
Copper	ND		0.00100	mg/L						

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

			D		Cailea	C		0/ DEC		DDD
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	Quai	Lillic	Ullits	Level	Result	70KLC	LIIIIICS	KFD	LIIIII
Batch: BBA0005 - W 3010 Digest	(Continu	ed)								
LCS (BBA0005-BS1)					Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.0485		0.00100	mg/L	0.0500		97.1	85-115		
Copper	0.0495		0.00100	mg/L	0.0500		99.0	85-115		
Matrix Spike (BBA0005-MS1)		Source: W	/AL0605-01		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.231		0.00100	mg/L	0.0500	0.182	97.4	70-130		
Copper	0.0714		0.00100	mg/L	0.0500	0.0237	95.5	70-130		
Matrix Spike (BBA0005-MS2)		Source: W	/AL0676-02		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.0510		0.00100	mg/L	0.0500	0.00246	97.1	70-130		
Copper	0.0536		0.00100	mg/L	0.0500	0.00364	100	70-130		
Matrix Spike Dup (BBA0005-MSD1)		Source: W	/AL0605-01		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.231		0.00100	mg/L	0.0500	0.182	96.8	70-130	0.128	20
Copper	0.0723		0.00100	mg/L	0.0500	0.0237	97.4	70-130	1.28	20
Matrix Spike Dup (BBA0005-MSD2)		Source: W	/AL0676-02		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.0500		0.00100	mg/L	0.0500	0.00246	95.2	70-130	1.95	20
Copper	0.0525		0.00100	mg/L	0.0500	0.00364	97.6	70-130	2.23	20

Quality Control Data (Continued)

Hydrocarbons

1									
Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0710 - W TPH-Dx									
Blank (BAL0710-BLK1)				Prepared 8	& Analyzed: 12	2/29/2020			
Diesel	ND	0.160	mg/L						
Lube Oil	ND	0.400	mg/L						
Mineral Oil	ND	0.160	mg/L						
Surrogate: n-Hexacosane		47.3	ррт	50.1		94.4	50-150		
LCS (BAL0710-BS1)				Prepared 8	& Analyzed: 12	2/29/2020			
Diesel	1.09	0.160	mg/L	1.00		109	70-130		
Lube Oil	ND	0.400	mg/L				70-130		
Surrogate: n-Hexacosane		47.3	ррт	50.1		94.4	50-150		
Duplicate (BAL0710-DUP1)	Source: \	WAL0676-08	Pre	pared: 12/29	9/2020 Analyze	ed: 12/30/20	20		
Diesel	ND	0.160	mg/L		ND				20
Lube Oil	ND	0.400	mg/L		ND				20
Mineral Oil	ND	0.160	mg/L		ND				20
Surrogate: n-Hexacosane		47.1	ррт	50.1		94.1	50-150		
Matrix Spike (BAL0710-MS1)	Source: \	WAL0676-01	Pre	epared: 12/29	9/2020 Analyze	ed: 12/30/20	20		
Diesel	1.05	0.160	mg/L	1.00	ND	105	70-130		
Lube Oil	ND	0.400	mg/L		ND		70-130		

Quality Control Data (Continued)

Hydrocarbons (Continued)

		Reporting		Spike	Source		%REC		RPD	1
Analyte	Result Qua	l Limit	Units	Level	Result	%REC	Limits	RPD	Limit	1

Ratch:	BAI 0710 -	W TPH-Dx	(Continued)
Dallii.	DALU/10 -	W IFII-DA	I CUIILIIIUCU I

Matrix Spike (BAL0710-MS1)	Source: \	WAL0676-01	Prep	pared: 12/29/	2020 Analyz	ed: 12/30/20	20		
Surrogate: n-Hexacosane		47.2	ppm	50.1		94.1	50-150		
Matrix Spike Dup (BAL0710-MSD1)	Source: \	WAL0676-01	Prep	pared: 12/29/	/2020 Analyz	ed: 12/30/20	20		
Diesel	0.931	0.160	mg/L	1.00	ND	92.7	70-130	12.2	20
Lube Oil	ND	0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane		38.3	ррт	50.1		76.5	50-150		

Anatek
Labs,
Inc.

Chain of Custody Record

Anatek Log-In#

WAL	_0675

	Lab	c.			Ituras Drive, orague Ste D,														
Compa	any Name:		Spokane				ect Mar			(00)				ırnin				Turn Arou i Due: 01/11/21	
Addres	ss: 10)26 W.	Broadwa	y Avei	nue	Proje	ect Nar	ne &	#:	Go	onza	ga B	ioRe	etent	ion (Cell		Please refer to ou. http://www.anateklabs.com/services/guidelines/reporting.asp	
City:	Spokane	St	tate: WA	Zip:	99260	Ema	il Addr	ess:	E	MUF	RNIN	@sp	okaı	neco	unty	.org		Normal *All rush orderPhone Next Day* requests must beMail	
Phone	:	(50	09) 477-74	20		Purc	hase C	order #	t:									2nd Day* prior approvedFax	
=ax:						Sam	pler Na	ame &	phone	э:		(50	09)9	95-05	557			Other* <u>*_</u> Email	
	Provid	de San	nple Desc	riptior	1				List	Ana	lyse	s Re	ques	sted				Note Special Instructions/Comments	
	storn	nwater ir	nfluent and ef	fluent		Containers	Sample Volume	TSS SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Cu Zn Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG	PSD ASTM D3977-97			Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com	
Lab ID	Sample Identific	ation S	Sampling Date	e/Time	Matrix	# of C	Samp	TSS	Cu Zn 200.	Cu Zr EPA 20	Harc 234	Total F SM	N N	Ortho F	S S			<i>S</i> wbs	
	INF12202020		12/21/20 1:0	0 PM	water	4		×	X	X	X		X				Ø	A .	
	EFF1212202020		12/21/20 1:0	0 PM	water	4		X	X	X	X		X					D Naz	
	EFF1812202020		12/21/20 1:0	0 PM	water	4		X	X	X	X		X				3	2 " 0	
	INF12202020-2		12/21/20 1:0		water	1				×							3	2)	
	EFF1212202020-		12/21/20 1:0		water	ı	<u> </u>	<u> </u>		X							6	D	
	EFF1812202020-	-2	12/21/20 1:0	0 PM	water	1	-	ļ		X							00	0	
		_				╁	-	 										Inspection Checklist	
																		Received Intact? (Y) N	
																		Labels & Chains Agree?	
																		Containers Sealed?	
		2																VOC Head Space?	
																		Cooler IIce/Hand	
		Printed			Signature		, ,			Com	pany			Date)	Time)	0.7105	. 1
Reling	uished by	Kev	_	gan	Kuy)	1	Ma	109	/	Osl	naco	Cons	witin	12/	21/26	3%	30 fl	Temperature (°C): U 0.1/0.5 CZ (3=1	4/1.2
Recei	ved by	Kashy	Sattler	J ,	Kathy Sat	ther	1			Ama	tele	labs	,	12-21	-2020	143)	Temperature (°C): C1 = 0.7 0.5 c2 = 0.7 0.5 c3 = 1 Preservative: 12 203851 < 2	J12#
Reling	uished by				1			s										4NO3 2002280 42 DH 2001015	
	ved by																	HN03 2002280 42 PH 2001015 Date & Time: 12-21-20 1720	
Relino	uished by																	Inspected By: ////	
Recei	ved by																		

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WAL0704

Project: Gonzaga BioRetention Cell

Reported: 1/8/2021 08:46

Analytical Results Report

Sample Location: INF12212020

Should be 12222020 - storm started early morning on 12/22

Lab/Sample Number: WAL0704-01

Collect Date: 12/22/20 11:30

Date Received: 12/22/20 12:37

12/22/20 12:37 Collected By:

Matrix: Stormwater

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	12.9	mg CaCO3/L	3.00	12/22/20 13:30	ARY	SM 2340 C	
Phosphate/P	0.0305	mg/L	0.0180	12/23/20 13:51	SAG	SM 4500-P G	
Total P	0.0917	mg/L	0.00500	1/7/21 14:14	SAG	SM 4500-P H	
TSS	38.0	mg/L	1.00	12/23/20 9:15	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00269	mg/L	0.00100	1/5/21 13:31	TRC	EPA 200.8	
Dissolved Copper	0.00180	mg/L	0.00100	1/4/21 12:14	TRC	EPA 200.8	
Zinc	0.0118	mg/L	0.00100	1/5/21 13:31	TRC	EPA 200.8	
Dissolved Zinc	0.0114	mg/L	0.00100	1/4/21 12:14	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 15:50	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 15:50	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 15:50	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	88.3%		50-150	12/30/20 15:50	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

EFF1212212020 Sample Location:

Should be 12222020 - storm started early morning on 12/22

Lab/Sample Number:

WAL0704-02

Collect Date:

Collected By:

Date Received:

12/22/20 12:37

12/22/20 11:30

Matrix:

Stormwater

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	107	mg CaCO3/L	12.0	12/22/20 13:30	ARY	SM 2340 C	
Phosphate/P	0.338	mg/L	0.0180	12/23/20 13:52	SAG	SM 4500-P G	
Total P	0.620	mg/L	0.0500	1/7/21 14:41	SAG	SM 4500-P H	
TSS	14.0	mg/L	1.00	12/23/20 9:15	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00623	mg/L	0.00100	1/5/21 13:33	TRC	EPA 200.8	
Dissolved Copper	0.00615	mg/L	0.00100	1/4/21 12:17	TRC	EPA 200.8	
Zinc	0.00476	mg/L	0.00100	1/5/21 13:33	TRC	EPA 200.8	
Dissolved Zinc	0.00927	mg/L	0.00100	1/4/21 12:17	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 16:46	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 16:46	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 16:46	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	89.4%		50-150	12/30/20 16:46	ARC	NWTPH-Dx	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1812212020

Should be 12222020 - storm started early morning on 12/22

Lab/Sample Number: WAL0704-03

Collect Date: 12/22/20 11:30

Date Received:

12/22/20 12:37

Collected By:

Matrix: Stormwater

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	83.2	mg CaCO3/L	12.0	12/22/20 13:30	ARY	SM 2340 C	
Phosphate/P	0.569	mg/L	0.0180	12/23/20 13:52	SAG	SM 4500-P G	
Total P	0.779	mg/L	0.0500	1/7/21 14:43	SAG	SM 4500-P H	
TSS	19.0	mg/L	1.00	12/23/20 9:15	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00799	mg/L	0.00100	1/5/21 13:36	TRC	EPA 200.8	
Dissolved Copper	0.00929	mg/L	0.00100	1/4/21 12:19	TRC	EPA 200.8	
Zinc	0.00660	mg/L	0.00100	1/5/21 13:36	TRC	EPA 200.8	
Dissolved Zinc	0.0123	mg/L	0.00100	1/4/21 12:19	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	12/30/20 17:42	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	12/30/20 17:42	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	12/30/20 17:42	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	94.5%		50-150	12/30/20 17:42	ARC	NWTPH-Dx	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0688 - W Wet Chem										
Blank (BAL0688-BLK1)					Prepared &	Analyzed: 12	2/22/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
Blank (BAL0688-BLK2)					Prepared &	Analyzed: 12	2/22/2020			
Hardness	ND		3.00 n	ng CaCO3/L						
LCS (BAL0688-BS1)					Prepared &	Analyzed: 12	2/22/2020			
Hardness	103		3.00 n	ng CaCO3/L	100		103	90-110		
LCS Dup (BAL0688-BSD1)					Prepared &	Analyzed: 12	2/22/2020			
Hardness	101		3.00 n	ng CaCO3/L	100	· 	101	90-110	1.94	20
Duplicate (BAL0688-DUP1)		Source: W	/AL0676-03		Prepared &	Analyzed: 12	2/22/2020			
Hardness	147		12.0 n	ng CaCO3/L		150			2.67	20
Matrix Spike (BAL0688-MS1)		Source: W	/AL0676-02		Prepared &	Analyzed: 12	?/22/2020			
Hardness	313		12.0 n	ng CaCO3/L	200	111	101	80-120		
Matrix Spike Dup (BAL0688-MSD1)		Source: W	/AL0676-02		Prepared &	Analyzed: 12	2/22/2020			
Hardness	313		12.0 n	ng CaCO3/L	200	111	101	80-120	0.00	20
Batch: BAL0757 - W FIA										
Blank (BAL0757 - W FIA					Prenared &	Analyzed: 12	1/23/2020			
Phosphate/P	ND		0.0180	mg/L	териней в	raidiy2cu. 12	_, _5, _020			
LCS (BAL0757-BS1)					Prepared &	Analyzed: 12	2/23/2020			
Phosphate/P	0.0945		0.0180	mg/L	0.100	,	94.5	85-115		

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
			2				,,,,,		2	
Batch: BAL0757 - W FIA (Continu	ied)									
Matrix Spike (BAL0757-MS1)	!	Source: W	AL0729-02		Prepared 8	k Analyzed: 12	2/23/2020			
Phosphate/P	0.220		0.0180	mg/L	0.100	0.116	104	80-120		
Matrix Spike Dup (BAL0757-MSD1)	:	Source: W	AL0729-02		Prepared 8	k Analyzed: 12	2/23/2020			
Phosphate/P	0.223		0.0180	mg/L	0.100	0.116	106	80-120	1.13	20
Batch: BAL0804 - W Filtration										
Blank (BAL0804-BLK1)					Prepared 8	k Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L	•	•				
Blank (BAL0804-BLK2)					Prepared 8	k Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L						
Blank (BAL0804-BLK3)					Prepared 8	k Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L						
Blank (BAL0804-BLK4)					Prepared 8	k Analyzed: 12	2/23/2020			
TSS	ND		1.00	mg/L						
LCS (BAL0804-BS1)					Prepared 8	k Analyzed: 12	2/23/2020			
TSS	91.0			mg/L	100		91.0	90-110		
LCS (BAL0804-BS2)					Prepared 8	k Analyzed: 12	2/23/2020			
TSS	97.0			mg/L	100		97.0	90-110		
LCS Dup (BAL0804-BSD1)					Prepared 8	k Analyzed: 12	2/23/2020			
TSS	94.0			mg/L	100		94.0	90-110	3.24	10

Quality Control Data (Continued)

Inorganics (Continued)

Re		Reporting		Spike	Source		%REC		RPD
	Result Q	ılt Qual Limit	Units	Level	Result	%REC	Limits	RPD	Limit
	Continued)	d)							
				Prepared 8	k Analyzed: 12	2/23/2020			
	98.0	.0	mg/L	100		98.0	90-110	1.03	10
AL066	So	Source: WAL0661-02		Prepared 8	k Analyzed: 12	2/23/2020			
	9.00	00 1.00	mg/L		9.00			0.00	20
AL0669	So	Source: MAL0669-01		Prepared 8	k Analyzed: 12	2/23/2020			
	84.0	.0 1.00	mg/L		88.0			4.65	20
AL0634	So	Source: MAL0634-01		Prepared 8	k Analyzed: 12	2/23/2020			
	396	96 2.00	mg/L	100	314	82.0	80-120		
AL0646	So	Source: MAL0646-01		Prepared 8	k Analyzed: 12	2/23/2020			
	204	2.00	mg/L	100	108	96.0	80-120		
AL0634	So	Source: MAL0634-01		Prepared 8	k Analyzed: 12				
	404	2.00	mg/L	100	314	90.0	80-120	2.00	20
AL0646	So	Source: MAL0646-01		Prepared 8	k Analyzed: 12	2/23/2020			
	200	2.00	mg/L	100	108	92.0	80-120	1.98	20
				Prepared	& Analyzed: 1	./7/2021			
0	ND	ND 0.00500	mg/L	,	,				
				Prepared	& Analyzed: 1	/7/2021			
0	ND	ND 0.00500	mg/L						
0	ND	ID 0.00500	mg/L						

Quality Control Data (Continued)

Inorganics (Continued)

Analyte	Result Qu	Reporting ual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0143 - W FIA (Continu	red)								
Blank (BBA0143-BLK3)				Prepared	& Analyzed: 1	./7/2021			
Total P	ND	0.00500	mg/L						
LCS (BBA0143-BS1)				Prepared	& Analyzed: 1	./7/2021			
Total P	0.106	0.00500	mg/L	0.100		106	90-110		
LCS (BBA0143-BS2)				Prepared	& Analyzed: 1	./7/2021			
Total P	0.110	0.00500	mg/L	0.100		110	90-110		
Matrix Spike (BBA0143-MS1)	Sou	ırce: WAL0741-02		Prepared					
Total P	0.289	0.00500	mg/L	0.100	0.197	91.9	80-120		
Matrix Spike (BBA0143-MS2)	Sou	ırce: WAL0757-02		Prepared	& Analyzed: 1	./7/2021			
Total P	0.267	0.00500	mg/L	0.100	0.173	93.5	80-120		
Matrix Spike Dup (BBA0143-MSD1)	Sou	ırce: WAL0741-02		Prepared	& Analyzed: 1	./7/2021			
Total P	0.306	0.00500	mg/L	0.100	0.197	109	80-120	5.78	20
Matrix Spike Dup (BBA0143-MSD2)	e Dup (BBA0143-MSD2) Source: WAL0757-02				Prepared & Analyzed: 1/7/2021				
Total P	0.262	0.00500	mg/L	0.100	0.173	88.8	80-120	1.78	20

Quality Control Data (Continued)

Metals by ICP-MS

Matrix Spike Dup (BAL0811-MSD2)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit				
Batch: BAL0811 - W 3010 Digest														
Blank (BAL0811-BLK1)				Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1						
Dissolved Zinc	ND		0.00100	mg/L										
Dissolved Copper	ND		0.00100	mg/L										
LCS (BAL0811-BS1)				Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1						
Dissolved Copper	0.0558		0.00100	mg/L	0.0500		112	85-115						
Dissolved Zinc	0.0548		0.00100	mg/L	0.0500		110	85-115						
Matrix Spike (BAL0811-MS1)		Source: W	/AL0675-02	Prepared: 12/29/2020 Analyzed: 1/4/2021										
Dissolved Copper	0.0559		0.00100	mg/L	0.0500	0.00607	99.6	70-130						
Dissolved Zinc	0.0575		0.00100	mg/L	0.0500	0.0178	79.3	70-130						
Matrix Spike (BAL0811-MS2)		Source: W	/AL0675-06	Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1						
Dissolved Zinc	0.0559		0.00100	mg/L	0.0500	0.0168	78.1	70-130						
Dissolved Copper	0.0546		0.00100	mg/L	0.0500	0.00734	94.5	70-130						
Matrix Spike Dup (BAL0811-MSD1)		Source: W	/AL0675-02	Р	repared: 12/2	9/2020 Analyz	ed: 1/4/202	1						
Dissolved Copper	0.0561		0.00100	mg/L	0.0500	0.00607	100	70-130	0.404	20				
Dissolved Zinc	0.0562		0.00100	mg/L	0.0500	0.0178	76.7	70-130	2.32	20				

Source: WAL0675-06

Prepared: 12/29/2020 Analyzed: 1/4/2021

Quality Control Data (Continued)

Metals by ICP-MS (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAL0811 - W 3010 Digest	(Continue	ed)								
Matrix Spike Dup (BAL0811-MSD2)		Source: V	/AL0675-06		Prepared: 12/2	9/2020 Analyz	ed: 1/4/202	L		
Dissolved Copper	0.0526		0.00100	mg/L	0.0500	0.00734	90.5	70-130	3.68	20
Dissolved Zinc	0.0532		0.00100	mg/L	0.0500	0.0168	72.9	70-130	4.82	20
Batch: BBA0005 - W 3010 Digest										
Blank (BBA0005-BLK1)					Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	ND		0.00100	mg/L		•				
Copper	ND		0.00100	mg/L						
LCS (BBA0005-BS1)					Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.0485		0.00100	mg/L	0.0500		97.1	85-115		
Copper	0.0495		0.00100	mg/L	0.0500		99.0	85-115		
Matrix Spike (BBA0005-MS1)	Source: WAL0605-01				Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Zinc	0.231		0.00100	mg/L	0.0500	0.182	97.4	70-130		
Copper	0.0714		0.00100	mg/L	0.0500	0.0237	95.5	70-130		
Matrix Spike (BBA0005-MS2)		Source: V	/AL0676-02		Prepared: 1/4	/2021 Analyze				
Zinc	0.0510		0.00100	mg/L	0.0500	0.00246	97.1	70-130		
Copper	0.0536		0.00100	mg/L	0.0500	0.00364	100	70-130		
Matrix Spike Dup (BBA0005-MSD1)		Source: V	/AL0605-01		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Copper	0.0723		0.00100	mg/L	0.0500	0.0237	97.4	70-130	1.28	20
Zinc	0.231		0.00100	mg/L	0.0500	0.182	96.8	70-130	0.128	20
Matrix Spike Dup (BBA0005-MSD2)		Source: V	/AL0676-02		Prepared: 1/4	/2021 Analyze	d: 1/5/2021			
Copper	0.0525		0.00100	mg/L	0.0500	0.00364	97.6	70-130	2.23	20
Zinc	0.0500		0.00100	mg/L	0.0500	0.00246	95.2	70-130	1.95	20

Quality Control Data

(Continued)

Hydrocarbons

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0710 - W TPH-Dx									
Blank (BAL0710-BLK1)				Prepared 8	Analyzed: 12	/29/2020			
Diesel	ND	0.160	mg/L		•				
Lube Oil	ND	0.400	mg/L						
Mineral Oil	ND	0.160	mg/L						
Surrogate: n-Hexacosane		47.3	ррт	50.1		94.4	50-150		
LCS (BAL0710-BS1)				Prepared 8	Analyzed: 12	/29/2020			
Diesel	1.09	0.160	mg/L	1.00		109	70-130		
Lube Oil	ND	0.400	mg/L				70-130		
Surrogate: n-Hexacosane		47.3	ррт	50.1		94.4	50-150		

Quality Control Data (Continued)

Hydrocarbons (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAL0710 - W TPH-Dx (Con	tinued)								
Duplicate (BAL0710-DUP1)	Source:	WAL0676-08	Pre	pared: 12/29,	/2020 Analyz	ed: 12/30/20	20		
Diesel	ND	0.160	mg/L		ND				20
Lube Oil	ND	0.400	mg/L		ND				20
Mineral Oil	ND	0.160	mg/L		ND				20
Surrogate: n-Hexacosane		47.1	ppm	50.1		94.1	50-150		
Matrix Spike (BAL0710-MS1)	Source:	Pre	pared: 12/29,						
Diesel	1.05	0.160	mg/L	1.00	ND	105	70-130		
Lube Oil	ND	0.400	mg/L		ND		70-130		
Surrogate: n-Hexacosane		47.2	ppm	50.1		94.1	50-150		
Matrix Spike Dup (BAL0710-MSD1)	Source:	WAL0676-01	Pre	pared: 12/29,	/2020 Analyz	ed: 12/30/20	20		
Diesel	0.931	0.160	mg/L	1.00	ND	92.7	70-130	12.2	20
Lube Oil	ND	0.400	mg/L		ND		70-130		20
Surrogate: n-Hexacosane		38.3	ррт	50.1		76.5	50-150		

Anatek Labs,
Inc.

Chain of Custody Record

Anatek Log-In#

VV.	ΑL	.0	1	U.	4

	Labs, Inc.		lturas Drive,												L	
ompan	ny Name:	Spokane Count	orague Ste D,		ect Ma			(509				urnin		33		Turn Arou
dress	1026 \	W. Broadway Ave	nue	Proje	ect Na	ne &	#:	G	onza	ıga E	BioR	etent	tion	Cell		Please refer to our normal ann around arrive at. http://www.anateklabs.com/services/guidelines/reporting.asp
y:	Spokane	State: WA Zip:	99260	Ema	il Addr	ess :	E	MUF	RNIN	@s _l	oka	neco	ounty	org/		Normal *All rush orderPhone Next Day* requests must beMail
one:		(509) 477-7420		Purc	hase (Order #	# :									2nd Day*Fax
C				Sam	pler Na	ame &	phon	e:		(5	09)9	95-0	557			Other* <u>*_</u> Email
	Provide S	ample Description	1				List	Ana	lyse	s Re	que	sted				Note Special Instructions/Comments
	stormwate	r influent and effluent		Containers	Sample Volume	SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Cu Zn Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG				Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
ab D S	Sample Identification	Sampling Date/Time	Matrix	# of C	Samp	TSS	Cu Zn 200.	Cu Zr EPA 20	Harc 234	Total F	HWN WN	Ortho F				1 NG
	INF12212020	12/22/20 11:30 AM	water			X	X	X	X	X	X	X				
	EFF1212212020	12/22/20 11:30 AM	water			X	X	X	X	X	X	X				/
	EFF1812212020	12/22/20 11:30 AM	water			X	X	X	X	X	X	X				
																Sample EFF 12 122 12020
																016-001-001
																w-orthop porieved
																empty - Pour off from TSS
																Inspection Checklist
	705000 \$ 5 000000 \$ 0.0000000000000000000															Received Intact?
																Labels & Chains Agree? Y N
																Containers Sealed?
																VOC Head Space? Y N

Relinquished by Received by Relinquished by Date & Time: Received by Relinquished by Inspected By

Company

Date

Time

Form COC01.00 - Eff 1 Mar 2015

Received by

Printed Name

Signature

Page 1 of 1

A	Anatek Labs, Inc.
	Labs, Inc.

Chain of Custody Record

Anatek Log-In#

	Labs, Inc.	1282 A	Alturas Drive,	Mosc	ow II	838	43 (2	8 (80	383-2	839	FAX	882-	9246		
	Inc.		prague Ste D,				,	,							Due: 01/11/21
	ny Name:	Spokane Count	ty	Proje	ect Mar	nager:			1	Etha	n Mı	ırnin	1		Turn Arou
Addres	s: 1026 '	W. Broadway Ave	nue	Proje	ect Nar	ne &	#:	Go	onza	ga B	ioRe	etent	ion	Cell	Please refer to our normal and around arros at. http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	State: WA Zip:	99260	Ema	il Addr	ess :	E	MUF	NIN	@sp	okaı	neco	unty	.org	Normal *All rush orderPhone Next Day* requests must beMail
hone:		(509) 477-7420		Purc	hase C	order #	<i>‡</i> :								Next Day* requests must be ^{Mail} 2nd Day* prior approvedFax Other* <u>*_Email</u>
ax:				Sam	pler Na	ame &	phone	e:		(50	09)99	95-05	557		
	Provide S	ample Description	n				List	Ana	lyse	s Re	ques	sted			Note Special Instructions/Comments
	stormwate	er influent and effluent	_	Containers	Sample Volume	TSS SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Cu Zn Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG			Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identification	Sampling Date/Time	Matrix	# of (Sam	TSS	Cu Zr 200	Cu Z EPA 2	Har 23	Total SN	TWN N	Ortho			1 W9
	INF12212020	12/22/20 11:30 AM	water			X	X	X	X	X	X	X			
	EFF1212212020	12/22/20 11:30 AM	water			X	X	X	X	X	X	X			/
	EFF1812212020	12/22/20 11:30 AM	water			X	X	X	X	X	X	X			
															Sample EFF 1212212020
															016-001-001
						ļ									w-orthop recieved
				<u> </u>	<u> </u>	<u> </u>									empty - Pour off from TSS
				<u> </u>		 	_						<u> </u>		Inspection Checklist
				 		-			_				<u> </u>		Received Intact?
				<u> </u>		-	_		_				-		Labels & Chains Agree? Y N
				 	├	-	-					-	-		Containers Sealed?
															VOC Head Space? Y N Solar Sol
		ed Name	Signature					Com	pany			Date)	Time	
elinqu	ished by Ke	vin Flangan	Min J	10	y M	M		Osk	170	Consu	Hina	12/	2-2	12:15	Temperature (°C): 5.3°/\$.19\[\]
eceive	ed by	4lor H-B	Trucker H	Di	10	Al.	6	056	80V-/	^		10/	45	12:15	Preservative: HCI 700395147

Form COC01.00 - Eff 1 Mar 2015

Relinquished by Received by

Relinquished by

Received by

Page 1 of 1

Date & Time:

Inspected By

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Attn: Ethan Murnin

Work Order: WBA0053

Project: Gonzaga BioRentention Cell

Reported: 1/12/2021 09:08

Analytical Results Report

Sample Location: INF01022020

Should be 01022021

Lab/Sample Number: WBA0053-01

Collect Date: 01/03/21 11:50

Date Received: 01/05/21 13:06

Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
TSS	13.0	mg/L	0.333	1/8/21 12:50	BAS	SM 2540 D	

Analytical Results Report

(Continued)

EFF1201022020 Sample Location:

Should be 01022021

Lab/Sample Number:

WBA0053-02

Collect Date: 01/03/21 11:50

Date Received:

01/05/21 13:06

Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
TSS	3.80	mg/L	0.200	1/8/21 12:50	BAS	SM 2540 D	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1801022020

Should be 01022021

Lab/Sample Number:

WBA0053-03

Collect Date: 01/03/21 11:50

Date Received:

01/05/21 13:06

Collected By:

Matrix:

Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
TSS	3.00	mg/L	0.200	1/8/21 12:50	BAS	SM 2540 D	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

QL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0238 - W Filtration		_		_						
Blank (BBA0238-BLK1)					Prepared	& Analyzed: 1	/8/2021			
TSS	ND		1.00	mg/L		-				
Blank (BBA0238-BLK2)					Prepared	& Analyzed: 1	/8/2021			
TSS	ND		1.00	mg/L						
Blank (BBA0238-BLK3)					Prepared	& Analyzed: 1	/8/2021			
TSS	ND		1.00	mg/L						
Blank (BBA0238-BLK4)					Prepared	& Analyzed: 1	/8/2021			
TSS	ND		1.00	mg/L						
LCS (BBA0238-BS1)					Prepared	& Analyzed: 1	/8/2021			
TSS	98.0			mg/L	100		98.0	90-110		
LCS (BBA0238-BS2)					Prepared	& Analyzed: 1	/8/2021			
TSS	98.0			mg/L	100		98.0	90-110		
LCS Dup (BBA0238-BSD1)					Prepared	& Analyzed: 1	/8/2021			
TSS	95.0			mg/L	100		95.0	90-110	3.11	10
LCS Dup (BBA0238-BSD2)					Prepared	& Analyzed: 1	/8/2021			
TSS	96.0			mg/L	100	•	96.0	90-110	2.06	10
Duplicate (BBA0238-DUP1)		Source: I	MBA0152-01		Prepared	& Analyzed: 1	/8/2021			
TSS	25.0		1.00	mg/L		27.0			7.69	20
Duplicate (BBA0238-DUP2)		Source: \	WBA0149-01		Prepared	& Analyzed: 1	./8/2021			
TSS	17.0		1.00	mg/L	•	17.0			0.00	20

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0238 - W Filtration (Co	ontinued)									
Matrix Spike (BBA0238-MS1)	S	Source: M	BA0066-02		Prepared	& Analyzed: 1	/8/2021			
TSS	126		2.00	mg/L	100	27.0	99.0	80-120		
Matrix Spike (BBA0238-MS2)	S	Source: W	/BA0051-01		Prepared	& Analyzed: 1	/8/2021			
TSS	132		2.00	mg/L	100	33.0	99.0	80-120		
Matrix Spike Dup (BBA0238-MSD1)	S	Source: M	BA0066-02		Prepared	& Analyzed: 1	/8/2021			
TSS	120		2.00	mg/L	100	27.0	93.0	80-120	4.88	20
Matrix Spike Dup (BBA0238-MSD2)	9	Source: W	/BA0051-01		Prepared	& Analyzed: 1	/8/2021			
TSS	140		2.00	mg/L	100	33.0	107	80-120	5.88	20

Anatek Labs,
Inc.

Chain of Custody Record

Anatek Log-In#

VVBA	0053

	Labs Labs	s, c.		Alturas Drive,												Log-in #
Comp	pany Name:		Spokane Count	prague Ste D, S		ane W			(509)		-3999 Etha			-443.	3 🔾	Due: 01/19/21
Addre	ess:				Proj	ect Nan	me &	#:								Please refer to our normal.
City:	102		N. Broadway Aver	nue					G	onza	ga B	ioRe	etenti	on C	ell	http://www.anateklabs.com/services/guidelines/reporting.asp
	Spokane		State: WA Zip:	99260	Ema	ail Addre	ess :	E	MUF	RNIN	@sp	oka	necou	ınty	.org	Normal *All rush orderPhone Next Day* requests must beMail
Phone	3 :	((509) 477-7420		Purc	chase O)rder #	‡ :								2nd Day* prior approvedFax
Fax:					Sam	npler Na	ame &	phone	э:		(5)	09)99	95-05	57		Other* <u>*_</u> Email
			ample Description	n				List	Ana	lyse	s Re	ques	sted			Note Special Instructions/Comments
	stormy	water	r influent and effluent		_	ervative:	+-	+'	S	\vdash		_	\vdash	\dashv		Please email results to both
					Containers	Sample Volume	TSS SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Dissolved 00.8 ICP/M	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG			EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identificat	ation	Sampling Date/Time	Matrix] of C	Samp	TSS	Cu Zn 200.	Cu Zr EPA 2(Hard 234	Total F SM	ATWN WN	Ortho F			Sample 1Ds does not match
	INF01022020		01/03/20 11:50 AM	water	T		×	_						\neg		(i)C
	EFF1201022020		01/03/20 11:50 AM	water			X									
	EFF1801022020		01/03/20 11:50 AM	water			X									
		\dashv			\perp				'	'						
		\dashv			ـــــ		—	_ '	<u> </u> '	↓ ′	↓ ′		\sqcup	\dashv		
		\dashv			╀	 	┼	 	 '	├ ─-'	 		\vdash	\dashv		
		\dashv			\vdash	+-	+-	 	 	├ ─′	\vdash	_	\vdash	\dashv	_	Inspection Checklist
		+			+-	\vdash	+-	+	 	 	\vdash		\vdash	\dashv		
		\forall			\vdash	-	+-	+	\vdash	\vdash	\vdash		\vdash	\dashv	_	Received Intact? Labels & Chains Agree? Y N
		\exists			\vdash	_	_	+					\vdash	\neg		Containers Sealed?
													\vdash	\neg		VOC Head Space?
																:0/6/
				Signature					Com	npany			Date		Time	hal ell
		Taylo	or Hoffman-Ballard	leylar Holl	m	Bal	lad		oci	I			1/5/20)2	11:30a	Temperature (°C): 2-3 2-1 1841
≀eceiv	/ed by	Ke	vin Flanagan	Kin F.	Im	m			OC	I			1/5/	121	11:36gm	Preservative:/
≀elinqı	uished by	Ke	vin Flanagan	mune	F	114	M		0	CI			1/5	/21	1 06fm	
Receiv	ed by	K	Scott	de	et.	1			a	Nã	the		1/5/	121	1306	Date & Time: 18:56 1/5/21
Relingu	uished by		U)	/									· ·		,	Inspected By:
eceiv	red by															

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Ethan Murnin Attn:

Work Order: WBA0048

Project: Gonzaga BioRention Cell -1/5/21

Reported: 1/28/2021 09:38

Analytical Results Report

INF01042020 Sample Location:

Should be 01042021

Lab/Sample Number: WBA0048-01 Collect Date: 01/04/21 07:45

Date Received: 01/05/21 10:15

Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	12.1	mg CaCO3/L	6.00	1/14/21 8:55	BAS	SM 2340 C	
Total Nitrate/Nitrite	<0.1	mg/L	0.100	1/12/21 16:40	SAG	SM 4500-NO3 F	
Phosphate/P	0.0384	mg/L	0.0180	1/5/21 14:21	SAG	SM 4500-P G	
TKN	<0.5	mg/L	0.500	1/14/21 17:01	SAG	SM 4500-Norg C	
Total Nitrogen	ND	mg/L	0.600	1/14/21 17:01	SAG	Calculation	*
Total P	0.0539	mg/L	0.00500	1/11/21 17:05	SAG	SM 4500-P H	
TSS	50.0	mg/L	1.00	1/8/21 12:50	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00213	mg/L	0.00100	1/20/21 13:44	Metals	EPA 200.8	
Dissolved Copper	0.00124	mg/L	0.00100	1/20/21 13:41	TRC	EPA 200.8	
Iron	0.496	mg/L	0.0100	1/11/21 13:36	TRC	EPA 200.8	
Dissolved Iron	0.0172	mg/L	0.0100	1/15/21 12:19	TRC	EPA 200.8	
Zinc	0.0147	mg/L	0.00100	1/11/21 13:36	TRC	EPA 200.8	
Dissolved Zinc	0.00540	mg/L	0.00100	1/15/21 12:19	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	1/8/21 23:09	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	1/8/21 23:09	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	1/8/21 23:09	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92.3%		50-150	1/8/21 23:09	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

EFF1201042020 Sample Location:

Should be 01042021

Lab/Sample Number:

WBA0048-02

01/04/21 07:45 Collect Date:

Date Received:

01/05/21 10:15

Collected By:

Matrix:

Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	18.2	mg CaCO3/L	6.00	1/14/21 8:55	BAS	SM 2340 C	
Total Nitrate/Nitrite	<0.1	mg/L	0.100	1/12/21 16:44	SAG	SM 4500-NO3 F	
Phosphate/P	0.348	mg/L	0.0180	1/5/21 14:21	SAG	SM 4500-P G	
TKN	<0.5	mg/L	0.500	1/14/21 17:09	SAG	SM 4500-Norg C	
Total Nitrogen	ND	mg/L	0.600	1/14/21 17:09	SAG	Calculation	*
Total P	0.542	mg/L	0.0250	1/11/21 17:21	SAG	SM 4500-P H	
TSS	5.40	mg/L	0.200	1/8/21 12:50	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00475	mg/L	0.00100	1/11/21 13:48	TRC	EPA 200.8	
Dissolved Copper	0.00395	mg/L	0.00100	1/15/21 12:22	TRC	EPA 200.8	
Iron	0.818	mg/L	0.0100	1/11/21 13:48	TRC	EPA 200.8	
Dissolved Iron	0.105	mg/L	0.0100	1/15/21 12:22	TRC	EPA 200.8	
Zinc	0.00368	mg/L	0.00100	1/11/21 13:48	TRC	EPA 200.8	
Dissolved Zinc	0.00224	mg/L	0.00100	1/15/21 12:22	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	1/9/21 0:58	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	1/9/21 0:58	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	1/9/21 0:58	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	93.2%		<i>50-150</i>	1/9/21 0:58	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

EFF1801042020 Sample Location:

Should be 01042021

Lab/Sample Number:

WBA0048-03

Collect Date: 01/04/21 07:45

Date Received:

01/05/21 10:15

Collected By:

Matrix:

Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	28.3	mg CaCO3/L	3.00	1/14/21 8:55	BAS	SM 2340 C	
Total Nitrate/Nitrite	<0.1	mg/L	0.100	1/12/21 16:45	SAG	SM 4500-NO3 F	
Phosphate/P	0.515	mg/L	0.0180	1/5/21 14:22	SAG	SM 4500-P G	
TKN	<0.5	mg/L	0.500	1/14/21 17:12	SAG	SM 4500-Norg C	
Total Nitrogen	ND	mg/L	0.600	1/14/21 17:12	SAG	Calculation	*
Total P	0.831	mg/L	0.0250	1/11/21 17:23	SAG	SM 4500-P H	
TSS	3.40	mg/L	0.200	1/8/21 12:50	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00564	mg/L	0.00100	1/11/21 13:50	TRC	EPA 200.8	
Dissolved Copper	0.00542	mg/L	0.00100	1/15/21 12:26	TRC	EPA 200.8	
Iron	0.616	mg/L	0.0100	1/11/21 13:50	TRC	EPA 200.8	
Dissolved Iron	0.180	mg/L	0.0100	1/15/21 12:26	TRC	EPA 200.8	
Zinc	0.00434	mg/L	0.00100	1/11/21 13:50	TRC	EPA 200.8	
Dissolved Zinc	0.0116	mg/L	0.00100	1/15/21 12:26	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	1/9/21 1:52	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	1/9/21 1:52	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	1/9/21 1:52	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92.6%		50-150	1/9/21 1:52	ARC	NWTPH-Dx	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL **Practical Quantitation Limit**

ND Not Detected

MCL **EPA's Maximum Contaminant Level**

Sample results reported on a dry weight basis Dry

Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBA0071 - W FIA										
Blank (BBA0071-BLK1)					Prepared	& Analyzed: 1	/5/2021			
Phosphate/P	ND		0.0180	mg/L						
LCS (BBA0071-BS1)					Prepared	& Analyzed: 1	/5/2021			
Phosphate/P	0.103		0.0180	mg/L	0.100		103	85-115		
Matrix Spike (BBA0071-MS1)		Source: W	/BA0014-02		Prepared	& Analyzed: 1	/5/2021			
Phosphate/P	0.610		0.0180	mg/L	0.100	0.513	97.5	80-120		
Matrix Spike Dup (BBA0071-MSD1)		Source: W	/BA0014-02		Prepared	& Analyzed: 1	/5/2021			
	0.613		0.0180	mg/L	0.100	0.513	100	80-120	0.474	20
Phosphate/P Batch: BBA0238 - W Filtration	0.013		0.0180	mg/L	0.100	0.313	100			
Batch: BBA0238 - W Filtration Blank (BBA0238-BLK1) TSS	0.013 ND		1.00	mg/L		& Analyzed: 1		33 123		
Batch: BBA0238 - W Filtration Blank (BBA0238-BLK1) TSS					Prepared	& Analyzed: 1	./8/2021	00 120		
Batch: BBA0238 - W Filtration Blank (BBA0238-BLK1)					Prepared		./8/2021			
Batch: BBA0238 - W Filtration Blank (BBA0238-BLK1) TSS Blank (BBA0238-BLK2)	ND		1.00	mg/L	Prepared Prepared	& Analyzed: 1	./8/2021			
Batch: BBA0238 - W Filtration Blank (BBA0238-BLK1) TSS Blank (BBA0238-BLK2) TSS	ND		1.00	mg/L	Prepared Prepared	& Analyzed: 1	./8/2021			
Batch: BBA0238 - W Filtration Blank (BBA0238-BLK1) TSS Blank (BBA0238-BLK2) TSS Blank (BBA0238-BLK3)	ND ND		1.00	mg/L	Prepared Prepared Prepared	& Analyzed: 1	./8/2021 ./8/2021 ./8/2021			
Batch: BBA0238 - W Filtration Blank (BBA0238-BLK1) TSS Blank (BBA0238-BLK2) TSS Blank (BBA0238-BLK3) TSS	ND ND		1.00	mg/L	Prepared Prepared Prepared	& Analyzed: 1 & Analyzed: 1 & Analyzed: 1	./8/2021 ./8/2021 ./8/2021			
Batch: BBA0238 - W Filtration Blank (BBA0238-BLK1) TSS Blank (BBA0238-BLK2) TSS Blank (BBA0238-BLK3) TSS Blank (BBA0238-BLK4)	ND ND		1.00	mg/L mg/L	Prepared Prepared Prepared	& Analyzed: 1 & Analyzed: 1 & Analyzed: 1	./8/2021 ./8/2021 ./8/2021			

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0238 - W Filtration (Co	ontinued))								
LCS (BBA0238-BS2)					Prepared	& Analyzed: 1	/8/2021			
TSS	98.0			mg/L	100		98.0	90-110		
LCS Dup (BBA0238-BSD1)					Prepared	& Analyzed: 1	/8/2021			
TSS	95.0			mg/L	100		95.0	90-110	3.11	10
LCS Dup (BBA0238-BSD2)					Prepared	& Analyzed: 1	/8/2021			
TSS	96.0			mg/L	100		96.0	90-110	2.06	10
Duplicate (BBA0238-DUP1)		Source: N	1BA0152-01		Prepared	& Analyzed: 1	/8/2021			
TSS	25.0		1.00	mg/L	·	27.0			7.69	20
Duplicate (BBA0238-DUP2)		Source: V	VBA0149-01		Prepared	& Analyzed: 1	/8/2021			
TSS	17.0		1.00	mg/L	•	17.0			0.00	20
Matrix Spike (BBA0238-MS1)		Source: N	1BA0066-02		Prepared	& Analyzed: 1	/8/2021			
TSS	126		2.00	mg/L	100	27.0	99.0	80-120		
Matrix Spike (BBA0238-MS2)		Source: V	VBA0051-01		Prepared	& Analyzed: 1	/8/2021			
TSS	132		2.00	mg/L	100	33.0	99.0	80-120		
Matrix Spike Dup (BBA0238-MSD1)		Source: N	1BA0066-02		Prepared	& Analyzed: 1	/8/2021			
TSS	120		2.00	mg/L	100	27.0	93.0	80-120	4.88	20
Matrix Spike Dup (BBA0238-MSD2)		Source: V	VBA0051-01		Prepared	& Analyzed: 1	/8/2021			
TSS	140		2.00	mg/L	100	33.0	107	80-120	5.88	20
Batch: BBA0244 - W FIA					Propared 9	& Analyzed: 1,	/11/2021			
Blank (BBA0244-BLK1) Total P	ND		0.00500	mg/L	riepaieu (x Analyzed: 1,	111/2021			

Quality Control Data (Continued)

Analyte	Result	Reportin Qual Lin	-	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0244 - W FIA (Continu	ied)								
Blank (BBA0244-BLK2)				Prepared 8	& Analyzed: 1	/11/2021			
Total P	ND	0.005	0 mg/L						
LCS (BBA0244-BS1)				Prepared 8	& Analyzed: 1	/11/2021			
Total P	0.0901	0.005	0 mg/L	0.100		90.1	90-110		
Matrix Spike (BBA0244-MS1)	:	Source: WBA0159-0	!	Prepared 8	& Analyzed: 1	/11/2021			
Total P	0.351	0.010	0 mg/L	0.100	0.232	120	80-120		
Matrix Spike Dup (BBA0244-MSD1)	;	Source: WBA0159-0	<u>!</u>	Prepared 8	& Analyzed: 1	/11/2021			
Total P	0.352	0.01	0 mg/L	0.100	0.232	120	80-120	0.171	20
Ratch: RRA0271 - W FTA									
Batch: BBA0271 - W FIA Blank (BBA0271-BLK1) Total Nitrate/Nitrite	ND	0.10	0 mg/L	Prepared 8	& Analyzed: 1	/12/2021			
Blank (BBA0271-BLK1) Total Nitrate/Nitrite	ND	0.10	0 mg/L						
Blank (BBA0271-BLK1)	ND ND	0.10			& Analyzed: 1				
Blank (BBA0271-BLK1) Total Nitrate/Nitrite Blank (BBA0271-BLK2)				Prepared (/12/2021			
Blank (BBA0271-BLK1) Total Nitrate/Nitrite Blank (BBA0271-BLK2) Total Nitrate/Nitrite			0 mg/L	Prepared (& Analyzed: 1	/12/2021			
Blank (BBA0271-BLK1) Total Nitrate/Nitrite Blank (BBA0271-BLK2) Total Nitrate/Nitrite Blank (BBA0271-BLK3)	ND	0.10	0 mg/L	Prepared 8	& Analyzed: 1	/12/2021			
Blank (BBA0271-BLK1) Total Nitrate/Nitrite Blank (BBA0271-BLK2) Total Nitrate/Nitrite Blank (BBA0271-BLK3) Total Nitrate/Nitrite	ND	0.10	0 mg/L	Prepared 8	& Analyzed: 1 & Analyzed: 1	/12/2021	90-110		
Total Nitrate/Nitrite Blank (BBA0271-BLK2) Total Nitrate/Nitrite Blank (BBA0271-BLK3) Total Nitrate/Nitrite LCS (BBA0271-BS1)	ND ND	0.10	0 mg/L	Prepared 8 Prepared 8 Prepared 8 0.201	& Analyzed: 1 & Analyzed: 1	/12/2021 /12/2021 /12/2021 109	90-110		

Quality Control Data (Continued)

Analyte	Result (Reporting Qual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0271 - W FIA (Continu	ued)								
Matrix Spike (BBA0271-MS1)	So	ource: WBA0017-01		Prepared 8	& Analyzed: 1	/12/2021			
Total Nitrate/Nitrite	0.366	0.100	mg/L	0.201	0.193	85.8	80-120		
Matrix Spike (BBA0271-MS2)	Sc	ource: WBA0109-01		Prepared 8	& Analyzed: 1	/12/2021			
Total Nitrate/Nitrite	1.03	0.100	mg/L	0.201	0.830	101	80-120		
Matrix Spike Dup (BBA0271-MSD1)	So	ource: WBA0017-01		Prepared 8	& Analyzed: 1	/12/2021			
Total Nitrate/Nitrite	0.354	0.100	mg/L	0.201	0.193	80.0	80-120	3.28	20
Matrix Spike Dup (BBA0271-MSD2)	Sc	ource: WBA0109-01		Prepared 8	& Analyzed: 1	/12/2021			
Total Nitrate/Nitrite	1.03	0.100	mg/L	0.201	0.830	101	80-120	0.0194	20
Batch: BBA0294 - W Wet Chem									
	ND	3.00	Pi mg CaCO3/L	repared: 1/13	/2021 Analyzo	ed: 1/14/202	1		
Blank (BBA0294-BLK1) Hardness	ND	3.00	mg CaCO3/l	L					
Blank (BBA0294-BLK1) Hardness	ND 103	3.00	mg CaCO3/l	repared: 1/13					
Blank (BBA0294-BLK1) Hardness LCS (BBA0294-BS1) Hardness		3.00	mg CaCO3/L Pi mg CaCO3/L	repared: 1/13	/2021 Analyzo	ed: 1/14/202	1 90-110		
Blank (BBA0294-BLK1) Hardness LCS (BBA0294-BS1) Hardness		3.00	mg CaCO3/L Pi mg CaCO3/L	repared: 1/13 L 100 repared: 1/13	/2021 Analyzo	ed: 1/14/202	1 90-110	0.985	20
Blank (BBA0294-BLK1) Hardness LCS (BBA0294-BS1) Hardness LCS Dup (BBA0294-BSD1) Hardness	103	3.00 Durce: WBA0341-01	mg CaCO3/L Pi mg CaCO3/L Pi mg CaCO3/L	repared: 1/13 L 100 repared: 1/13	/2021 Analyzo	ed: 1/14/202 103 ed: 1/14/202 102	1 90-110 1 90-110	0.985	20
Blank (BBA0294-BLK1) Hardness LCS (BBA0294-BS1) Hardness LCS Dup (BBA0294-BSD1) Hardness	103	ource: WBA0341-01	mg CaCO3/L Pi mg CaCO3/L Pi mg CaCO3/L	repared: 1/13 _ 100 repared: 1/13 _ 100 repared: 1/13	/2021 Analyzo	ed: 1/14/202 103 ed: 1/14/202 102	1 90-110 1 90-110	0.985	20
LCS (BBA0294-BS1) Hardness LCS Dup (BBA0294-BSD1) Hardness Duplicate (BBA0294-DUP1)	103 102 Sc 4.04	ource: WBA0341-01	mg CaCO3/L Pi mg CaCO3/L Pi mg CaCO3/L Pi mg CaCO3/L	repared: 1/13 _ 100 repared: 1/13 _ 100 repared: 1/13	/2021 Analyzo /2021 Analyzo /2021 Analyzo /2021 Analyzo 4.04	ed: 1/14/202 103 ed: 1/14/202 102 ed: 1/14/202	1 90-110 1 90-110		

Quality Control Data (Continued)

Inorganics (Continue	organics (Continue	ו ם
----------------------	------------	----------	-----

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBA0294 - W Wet Chem (Continued	n)								
Matrix Spike Dup (BBA0294-MSD1)		Source: W	/BA0136-01	Р	repared: 1/13	/2021 Analyze	ed: 1/14/202	1		
Hardness	285		6.00	mg CaCO3/	L 100	181	104	80-120	0.712	20
Batch: BBA0356 - W FIA										
Blank (BBA0356-BLK1)					Prepared 8	& Analyzed: 1	/14/2021			
TKN	ND		0.500	mg/L		,	•			
Blank (BBA0356-BLK2)				Р	repared: 1/14	/2021 Analyze	ed: 1/15/202	1		
TKN	ND		0.500	mg/L						
Blank (BBA0356-BLK3)				P	repared: 1/14	/2021 Analyze	ed: 1/15/202	1		
TKN	ND		0.500	mg/L						
LCS (BBA0356-BS1)					Prepared 8	& Analyzed: 1	/14/2021			
TKN	2.29		0.500	mg/L	2.00		114	85-115		
LCS (BBA0356-BS2)				Р	repared: 1/14	/2021 Analyze	ed: 1/15/202	1		
TKN	2.12		0.500	mg/L	2.00		106	85-115		
Matrix Spike (BBA0356-MS1)		Source: W	/BA0048-02		Prepared 8	& Analyzed: 1	/14/2021			
TKN	1.71		0.500	mg/L	2.00	<0.5	85.7	80-120		
Matrix Spike Dup (BBA0356-MSD1)	Source: WBA0048-02 Prepared & Analyzed: 1/14/2021									
TKN	1.70		0.500	mg/L	2.00	<0.5	85.0	80-120	0.890	20

Quality Control Data (Continued)

Metals by ICP-MS

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBA0114 - W 3010 Digest										
Blank (BBA0114-BLK1)					Prepared: 1/7/	/2021 Analyzed	l: 1/11/2021			
Iron	ND		0.0100	mg/L						
Zinc	ND		0.00100	mg/L						
Copper	ND		0.00100	mg/L						
LCS (BBA0114-BS1)					Prepared: 1/7/	/2021 Analyzed	l: 1/11/2021			
Copper	0.0522		0.00100	mg/L	0.0500		104	85-115		
Iron	0.109		0.0100	mg/L	0.100		109	85-115		
Zinc	0.0497		0.00100	mg/L	0.0500		99.5	85-115		
Matrix Spike (BBA0114-MS1)		Source: W	AL0744-01		Prepared: 1/7/	/2021 Analyzed	l: 1/11/2021			
Iron	1.03		0.0100	mg/L	0.100	0.952	80.9	70-130		
Zinc	0.0663		0.00100	mg/L	0.0500	0.0158	101	70-130		
Copper	0.0521		0.00100	mg/L	0.0500	0.000584	103	70-130		
Matrix Spike (BBA0114-MS2)		Source: W	AL0744-06		Prepared: 1/7/	/2021 Analyzed	l: 1/11/2021			
Zinc	0.0733		0.00100	mg/L	0.0500	0.0240	98.6	70-130		
Iron	0.112		0.0100	mg/L	0.100	0.00955	102	70-130		
Copper	0.0504		0.00100	mg/L	0.0500	0.000528	99.6	70-130		

Matrix Spike Dup (BBA0114-MSD1) Prepared: 1/7/2021 Analyzed: 1/11/2021 Source: WAL0744-01

Quality Control Data (Continued)

rictais by iti itis (continued	Metals b	y ICP-MS ((Continued)
--------------------------------	----------	------------	-------------

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBA0114 - W 3010 Digest	(Continued)								
Matrix Spike Dup (BBA0114-MSD1)	•	WAL0744-01	Р	repared: 1/7,	/2021 Analyzed	i: 1/11/2021			
Iron	1.07	0.0100	mg/L	0.100	0.952	120	70-130	3.74	20
Zinc	0.0644	0.00100	mg/L	0.0500	0.0158	97.2	70-130	2.96	20
Copper	0.0504	0.00100	mg/L	0.0500	0.000584	99.6	70-130	3.35	20
Matrix Spike Dup (BBA0114-MSD2)	Source:	WAL0744-06	Р	repared: 1/7	/2021 Analyzed	i: 1/11/2021			
Copper	0.0470	0.00100	mg/L	0.0500	0.000528	93.0	70-130	6.79	20
Zinc	0.0696	0.00100	mg/L	0.0500	0.0240	91.2	70-130	5.22	20
Iron	0.109	0.0100	mg/L	0.100	0.00955	99.2	70-130	2.76	20
Batch: BBA0322 - W 3010 Digest									
Blank (BBA0322-BLK1)	nk (BBA0322-BLK1)					d: 1/15/202	1		
Dissolved Copper	ND	0.00100	mg/L						
Dissolved Zinc	ND	0.00100	mg/L						
Dissolved Iron	ND	0.0100	mg/L						
LCS (BBA0322-BS1)					l/2021 Analyze	d: 1/15/202	1		
Dissolved Iron	0.107	0.0100	mg/L	0.100		107	85-115		
Dissolved Zinc	0.0486	0.00100	mg/L	0.0500		97.3	85-115		
Dissolved Copper	0.0510	0.00100	mg/L	0.0500		102	85-115		
Matrix Spike (BBA0322-MS1)	Source:	WBA0048-03	Pi	repared: 1/14	l/2021 Analyze	d: 1/15/202	1		
Dissolved Zinc	0.254	0.00500	mg/L	0.250	0.0116	96.8	70-130		
Dissolved Iron	0.712	0.0500	mg/L	0.500	0.180	106	70-130		
Dissolved Copper	0.269	0.00500	mg/L	0.250	0.00542	106	70-130		
Matrix Spike Dup (BBA0322-MSD1)	Source:	WBA0048-03	Pi	repared: 1/14	l/2021 Analyze	d: 1/15/202	1		
Dissolved Zinc	0.261	0.00500	mg/L	0.250	0.0116	99.7	70-130	2.82	20
Dissolved Copper	0.279	0.00500	mg/L	0.250	0.00542	109	70-130	3.49	20
Dissolved Iron	0.725	0.0500	mg/L	0.500	0.180	109	70-130	1.85	20

Quality Control Data (Continued)

Hydrocarbons

Duplicate (BBA0116-DUP1)

Diesel

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0116 - W TPH-Dx										
Blank (BBA0116-BLK1)					Prepared 8	& Analyzed: 1,	/8/2021			
Diesel	ND		0.160	mg/L						
Lube Oil	ND		0.400	mg/L						
Mineral Oil	ND		0.160	mg/L						
Surrogate: n-Hexacosane			48.1	ppm	50.1		96.1	50-150		
LCS (BBA0116-BS1)					Prepared 8	& Analyzed: 1,	/8/2021			
Diesel	1.06		0.160	mg/L	1.00		105	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			47.9	ррт	50.1		95.6	50-150		

Prepared: 1/8/2021 Analyzed: 1/9/2021

ND

Source: WBA0048-01

0.160

mg/L

Page 10 of 12

20

Quality Control Data (Continued)

Hydrocarbons (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBA0116 - W TPH-Dx (Col	ntinued)									
Duplicate (BBA0116-DUP1)	-	Source: V	VBA0048-01		Prepared: 1/8	/2021 Analyze	d: 1/9/2021			
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20
Surrogate: n-Hexacosane			46.8	ррт	50.1		93.3	50-150		
Matrix Spike (BBA0116-MS1)		Source: V	VBA0063-01		Prepared: 1/8	/2021 Analyze	d: 1/9/2021			
Diesel	1.01		0.160	mg/L	1.00		101	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			48.9	ррт	50.1		97.7	50-150		
Matrix Spike Dup (BBA0116-MSD1)		Source: V	VBA0063-01		Prepared: 1/8	/2021 Analyze	d: 1/9/2021			
Diesel	1.10		0.160	mg/L	1.00		110	70-130	8.82	20
Lube Oil	ND		0.400	mg/L				70-130		20
Surrogate: n-Hexacosane			48.4	ppm	50.1		96.6	50-150		

Anatek Labs, Inc.
<i>Inc.</i>

Chain of Custody Record

Anatek Log-In #

WB	AOC)48
111 01 011		

Due: 01/19/21

1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433

	any Name:	S	pokane Coun	ty	Proje	ct Mar	nager:				Etha	n Mı	ırnin	1	,	Turn Arc
Addre	ess: 102	26 W. B	roadway Ave	nue	Proje	ct Nar	ne &	#:	G	onza	ıga E	ioRe	etent	ion (Cell	Please refer to our normal turn around times. http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	Stat	e: WA ^{Zip:}	99260	Emai	l Addr	ess :	E	MUF	RNIN	l@sp	oka	neco	unty	.org	Normal *All rush orderPhone
Phone	e:	(509) 477-7420		Purcl	nase C	order #	:								Next Day* requests must beMailFaxFax
Fax:					Sam	oler Na	ame &	phone	ə:		(5	09)9	95-0	557		Other*Email
	Provide	e Samp	ole Descriptio	n				List	Ana	lyse	s Re	ques	sted			Note Special Instructions/Comments
* -	stormw	vater influ	uent and effluent		Containers	Sample Volume	TSS SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Cu Zn Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG			Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identificat	ion Sar	mpling Date/Time	Matrix	# of (Sam	TSS	Cu Zn 200.	Cu Zr EPA 20	Harc 234	Total F SM	N N	Ortho F			
	INF01042020	01	I/04/20 7:45 AM	water			X	X	X	X		X	X			1/09
	EFF1201042020	01	/04/20 7:45 AM	water			X	X	X	X		X	X			(aln)
	EFF1801042020	01	/04/20 7:45 AM	water			X	X	X	X		X	X			7
																/
							ļ									
							<u> </u>			_						
		_					-				<u> </u>					
		_					-		-	-			-	-	-+	Inspection Checklist
		_			_		-		_	-	-		-		-	Received Intact?
		_			_		 		-	-	-				-	Labels & Chains Agree? Y N Containers Sealed? Ŷ N
		_					 				 					VOC Head Space?
							T									- Wis
	P	rinted Na	ame	Signature					Com	pany			Date		Time	
Relinq	uished by	Kevin	Flanagan	Kui 7	1/10	un	4 _	_	0	Shore	Por	ultin	1/5	/20	10:1	5 Temperature (°C): 5.3° / S. 1° Th 1 8
Receiv	ved by	Bree	1 . 1	A	4					ma to		J	1	-76		Preservative VI / 10 4 / / / / / / / /
Relinq	uished by	1,	9	D/										2.00	10 ()	PH 2001015 200385122
Receiv	ved by															Date & Time: //:25 1/5/2/
Relinq	uished by															Inspected By:
Receiv	ved by															

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Ethan Murnin Attn:

Work Order: WBA0198

Project: Gonzaga BioRetention Cell

Reported: 1/18/2021 09:51

Analytical Results Report

INF01062020 Sample Location:

Should be 01062021

Collected By:

Lab/Sample Number: WBA0198-01 Collect Date: 01/07/21 09:15

Date Received: 01/07/21 16:00

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
TSS	11.0	mg/L	0.500	1/11/21 10:10	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00234	mg/L	0.00100	1/15/21 13:10	TRC	EPA 200.8	
Zinc	0.0127	mg/L	0.00100	1/15/21 13:10	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	1/9/21 7:20	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	1/9/21 7:20	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	1/9/21 7:20	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	84.7%		50-150	1/9/21 7:20	ARC	NWTPH-Dx	

Analytical Results Report

(Continued)

EFF1201062020 Sample Location:

Should be 01062021

Lab/Sample Number:

WBA0198-02

01/07/21 09:15 Collect Date:

Date Received:

01/07/21 16:00

Water

Collected By:

Matrix:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
TSS	4.33	mg/L	0.333	1/11/21 10:10	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00580	mg/L	0.00100	1/15/21 13:13	TRC	EPA 200.8	
Zinc	0.00569	mg/L	0.00100	1/15/21 13:13	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	1/9/21 8:15	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	1/9/21 8:15	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	1/9/21 8:15	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	86.1%		50-150	1/9/21 8:15	ARC	NWTPH-Dx	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: EFF1801062020

Should be 010620<u>21</u>

Lab/Sample Number:

WBA0198-03

Collect Date: 01/07/21 09:15

Date Received:

01/07/21 16:00

Collected By:

Matrix:

Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
TSS	2.75	mg/L	0.250	1/11/21 10:10	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00633	mg/L	0.00100	1/15/21 13:16	TRC	EPA 200.8	
Zinc	0.00545	mg/L	0.00100	1/15/21 13:16	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	1/9/21 9:10	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	1/9/21 9:10	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	1/9/21 9:10	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	89.4%		50-150	1/9/21 9:10	ARC	NWTPH-Dx	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
Batch: BBA0351 - W Filtration									
Blank (BBA0351-BLK1)				Prepared 8	& Analyzed: 1,	/11/2021			
TSS	ND	1.00	mg/L						
Blank (BBA0351-BLK2)				Prepared 8	& Analyzed: 1,	/11/2021			
TSS	ND	1.00	mg/L						
LCS (BBA0351-BS1)				Prepared 8	& Analyzed: 1,	/11/2021			
TSS	101		mg/L	100		101	90-110		
LCS Dup (BBA0351-BSD1)				Prepared 8	& Analyzed: 1,	/11/2021			
TSS	93.0		mg/L	100		93.0	90-110	8.25	10
Duplicate (BBA0351-DUP1)	Source:	WBA0184-01		Prepared 8	& Analyzed: 1,	/11/2021			
TSS	52.0	1.00	mg/L		55.0			5.61	20
Matrix Spike (BBA0351-MS1)	Source:	WBA0184-02		Prepared 8	& Analyzed: 1,	/11/2021			
TSS	128	2.00	mg/L	100	48.0	80.0	80-120		
Matrix Spike Dup (BBA0351-MSD1)	Source:	WBA0184-02		Prepared 8	& Analyzed: 1,	/11/2021			
TSS	140	2.00	mg/L	100	48.0	92.0	80-120	8.96	20

Quality Control Data

Metals by ICP-MS

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBA0321 - W 3010 Digest										
Blank (BBA0321-BLK1)				Pı	epared: 1/14	/2021 Analyze	d: 1/15/202	1		
Copper	ND		0.00100	mg/L						
Zinc	ND		0.00100	mg/L						
LCS (BBA0321-BS1)				Pi	epared: 1/14	/2021 Analyze	d: 1/15/202	1		
Copper	0.0510		0.00100	mg/L	0.0500		102	85-115		
Zinc	0.0483		0.00100	mg/L	0.0500		96.6	85-115		
Matrix Spike (BBA0321-MS1)		Source: W	/BA0105-01	Pi	epared: 1/14	/2021 Analyze	d: 1/15/202	1		
Zinc	0.159		0.00100	mg/L	0.0500	0.110	98.3	70-130		
Copper	0.185		0.00100	mg/L	0.0500	0.133	104	70-130		
Matrix Spike (BBA0321-MS2)		Source: W	/BA0216-01	Pi	epared: 1/14	/2021 Analyze	d: 1/15/202	1		
Zinc	0.124		0.00100	mg/L	0.0500	0.0758	96.5	70-130		
Copper	0.0898		0.00100	mg/L	0.0500	0.0395	101	70-130		
Matrix Spike Dup (BBA0321-MSD1)		Source: W	/BA0105-01	Pi	epared: 1/14	/2021 Analyze	d: 1/15/202	1		
Copper	0.182		0.00100	mg/L	0.0500	0.133	99.6	70-130	1.34	20
Zinc	0.156		0.00100	mg/L	0.0500	0.110	92.6	70-130	1.81	20
Matrix Spike Dup (BBA0321-MSD2)		Source: W	/BA0216-01	Pi	epared: 1/14	/2021 Analyze	d: 1/15/202	1		
Copper	0.0909		0.00100	mg/L	0.0500	0.0395	103	70-130	1.20	20
Zinc	0.125		0.00100	mg/L	0.0500	0.0758	99.1	70-130	1.07	20

Quality Control Data (Continued)

Hydrocarbons

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0116 - W TPH-Dx										
Blank (BBA0116-BLK1)					Prepared	& Analyzed: 1	/8/2021			
Diesel	ND		0.160	mg/L						
Lube Oil	ND		0.400	mg/L						
Mineral Oil	ND		0.160	mg/L						
Surrogate: n-Hexacosane			48.1	ppm	50.1		96.1	50-150		
LCS (BBA0116-BS1)					Prepared	& Analyzed: 1	/8/2021			
Diesel	1.06		0.160	mg/L	1.00		105	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			47.9	ррт	50.1		95.6	50-150		
Duplicate (BBA0116-DUP1)		Source: V	VBA0048-01		Prepared: 1/8	/2021 Analyze	ed: 1/9/2021			
Diesel	ND		0.160	mg/L		ND				20
Lube Oil	ND		0.400	mg/L		ND				20
Mineral Oil	ND		0.160	mg/L		ND				20
Surrogate: n-Hexacosane			46.8	ppm	50.1		93.3	50-150		
Matrix Spike (BBA0116-MS1)		Source: V	VBA0063-01		Prepared: 1/8	/2021 Analyze	ed: 1/9/2021			
Diesel	1.01		0.160	mg/L	1.00		101	70-130		
Lube Oil	ND		0.400	mg/L				70-130		
Surrogate: n-Hexacosane			48.9	ppm	50.1		97.7	50-150		
Matrix Spike Dup (BBA0116-MSD1)		Source: V	VBA0063-01		Prepared: 1/8	/2021 Analyze	ed: 1/9/2021			
Diesel	1.10		0.160	mg/L	1.00		110	70-130	8.82	20
Lube Oil	ND		0.400	mg/L				70-130		20
Surrogate: n-Hexacosane			48.4	ррт	50.1		96.6	50-150		

A	Anatek Labs, Inc.
	Inc.

Chain of Custody Record

Anatek Log-In#

V	VB,	A01	198	

	Labs	, 1282 A	Alturas Drive,	Mosc	ow II	838	43 (2	208) 8	383-2	839	FAX	882-9	9246		
	Inc	_	prague Ste D,				-	,							Due: 01/22/21
Comp	any Name:	Spokane Count			ect Mar			(/				rnin			Turn Ard
Addre	ss: 102	6 W. Broadway Ave	nue	Proje	ect Nan	ne &	#:	G	onza	ga B	ioRe	tenti	ion C	Cell	Please refer to our normal turn around times at. http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Spokane	State: WA Zip:	99260	Ema	il Addre	ess :	E	MUF	RNIN	@sp	okar	neco	unty	.org	Normal *All rush orderPhoneNext Day*Mail
Phone):	(509) 477-7420		Purc	hase C	order #	<u> </u>								2nd Day* prior approvedFax
Fax:				Sam	pler Na	ame &	phone	е:		(50	9)99	95-05	57		Other* <u>*_</u> Email
	Provide	Sample Description	n				List	Ana	lyse	s Re	ques	ted			Note Special Instructions/Comments
	stormw	rater influent and effluent		Containers	Sample Volume	TSS SM 2540D	Cu Zn Total EPA 200.8 ICP/MS	Cu Zn Dissolved EPA 200.8 ICP/MS	Hardness, SM 2340B (ICP)	Total Phosphorus, SM4500-PF	NWTPH, Ecology NWTPH Dx	Ortho Phosphate SM 4500-PG			Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com
Lab ID	Sample Identificati	on Sampling Date/Time	Matrix	# of (Sam	TSS	Cu Zn 200.	Cu Zr EPA 20	Harc 234	Total F SM	W N	Ortho SN			
	INF01062020	01/07/20 9:15 AM	water	3		X	X				X				1,0
	EFF1201062020	01/07/20 9:15 AM	water	3		×	X				X				/ (2 //
	EFF1801062020	01/07/20 9:15 AM	water	3		X	X				X				Q^{V}
				<u> </u>	-	<u> </u>									
															Inspection Checklist
				├	-	-		-					-		Received Intact?
				-	-	-		-					-+		Labels & Chains Agree?
				\vdash	-	\vdash		-					-		Containers Sealed? VOC Head Space?
				\vdash				-					-		Voc Head Space:
	Pr	rinted Name	Signature					Com	pany			Date		Time	raciall,
Reling	uished by	Kevin Flangun	Mun		111	2//	4	0	CI			1/7	/23	3:00	Temperature (°C): 0,4/0,2° 1844
	ved by	KS Coff (150	SA		e c		a	ner	1/2	,	1/7/	7	1500	Preservative: M-HN03 200278062
Relinq	uished by	() N										1 /			HC1200385162 PAZOGOIS
Receiv	ved by														Date & Time: 16 18 1/7/7/
	uished by													The state of the s	Inspected By:
Receiv	red by					-									

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Client: Spokane County

Address: 1026 W. Broadway Ave.

Spokane, WA 99260-0430

Ethan Murnin Attn:

WBA0341 Work Order:

Project: Gonzaga BioRentention Cell

Reported: 1/26/2021 07:59

Analytical Results Report

INF01122021 Sample Location:

Lab/Sample Number: WBA0341-01 Collect Date: 01/13/21 08:00

Date Received: Collected By: 01/13/21 10:30

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	ND	mg CaCO3/L	6.00	1/14/21 8:55	BAS	SM 2340 C	
Phosphate/P	0.0491	mg/L	0.0180	1/14/21 10:16	SAG	SM 4500-P G	
Total P	5.75	mg/L	0.200	1/25/21 15:47	SAG	SM 4500-P H	
TSS	18.0	mg/L	0.333	1/15/21 13:16	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00211	mg/L	0.00100	1/20/21 14:00	TRC	EPA 200.8	
Zinc	0.0143	mg/L	0.00100	1/20/21 14:00	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	1/21/21 13:21	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	1/21/21 13:21	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	1/21/21 13:21	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	72.1%		50-150	1/21/21 13:21	ARC	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: EFF1201122021

Lab/Sample Number: WBA0341-02 Collect Date: 01/13/21 08:00

Date Received: 01/13/21 10:30 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	34.3	mg CaCO3/L	6.00	1/14/21 8:55	BAS	SM 2340 C	
Phosphate/P	0.362	mg/L	0.0180	1/14/21 10:17	SAG	SM 4500-P G	
Total P	0.506	mg/L	0.0250	1/25/21 15:47	SAG	SM 4500-P H	
TSS	2.80	mg/L	0.200	1/15/21 13:16	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00341	mg/L	0.00100	1/20/21 14:09	TRC	EPA 200.8	
Zinc	0.00271	mg/L	0.00100	1/20/21 14:09	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	1/21/21 15:12	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	1/21/21 15:12	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	1/21/21 15:12	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	81.9%		50-150	1/21/21 15:12	ARC	NWTPH-Dx	

Analytical Results Report (Continued)

Sample Location: EFF1801122021

Lab/Sample Number: WBA0341-03 Collect Date:

Date Received: 01/13/21 10:30

Matrix: Water

01/13/21 08:00 Collected By:

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Hardness	44.4	mg CaCO3/L	6.00	1/14/21 8:55	BAS	SM 2340 C	
Phosphate/P	0.503	mg/L	0.0180	1/14/21 10:18	SAG	SM 4500-P G	
Total P	0.701	mg/L	0.0250	1/25/21 15:47	SAG	SM 4500-P H	
TSS	2.33	mg/L	0.167	1/15/21 13:16	BAS	SM 2540 D	
Metals by ICP-MS							
Copper	0.00416	mg/L	0.00100	1/20/21 14:12	TRC	EPA 200.8	
Zinc	0.00367	mg/L	0.00100	1/20/21 14:12	TRC	EPA 200.8	
Hydrocarbons							
Diesel	ND	mg/L	0.160	1/21/21 16:07	ARC	NWTPH-Dx	
Lube Oil	ND	mg/L	0.400	1/21/21 16:07	ARC	NWTPH-Dx	
Mineral Oil	ND	mg/L	0.160	1/21/21 16:07	ARC	NWTPH-Dx	
Surrogate: n-Hexacosane	92.3%		50-150	1/21/21 16:07	ARC	NWTPH-Dx	

Authorized Signature,

Kathleen Sattler, Laboratory Manager

PQL **Practical Quantitation Limit**

ND Not Detected

MCL **EPA's Maximum Contaminant Level**

Sample results reported on a dry weight basis Dry

Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Certifications

Code	Description	Facility	Number
W WA DOE	Washington Department of Ecology	Anatek-Spokane, WA	C585

Quality Control Data

Inorganics

Analyte	Result	Qual	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0294 - W Wet Chem				_			_	_	_	
Blank (BBA0294-BLK1)				Р	repared: 1/13	/2021 Analyze	d: 1/14/202	1		
Hardness	ND		3.00	mg CaCO3/I	=					
LCS (BBA0294-BS1)				Р	repared: 1/13	/2021 Analyze	d: 1/14/202	1		
Hardness	103			mg CaCO3/I	100		103	90-110		
LCS Dup (BBA0294-BSD1)				Р	repared: 1/13	/2021 Analyze	d: 1/14/202	1		
Hardness	102			mg CaCO3/I	100		102	90-110	0.985	20
Duplicate (BBA0294-DUP1)		Source: V	VBA0341-01	P	repared: 1/13	/2021 Analyze	d: 1/14/202	1		
Hardness	4.04		6.00	mg CaCO3/I	-	4.04			0.00	20
Matrix Spike (BBA0294-MS1)		Source: V	VBA0136-01	Р	repared: 1/13	/2021 Analyze	d: 1/14/202	1		
Hardness	283		6.00	mg CaCO3/I	100	181	102	80-120		
Matrix Spike Dup (BBA0294-MSD1)		Source: V	VBA0136-01	P	repared: 1/13	/2021 Analyze	d: 1/14/202	1		
Hardness	285		6.00	mg CaCO3/l	100	181	104	80-120	0.712	20
Batch: BBA0334 - W FIA										
Blank (BBA0334-BLK1)					Dronared S	& Analyzed: 1/	14/2021			
Phosphate/P	ND		0.0180	mg/L	rrepareu	x Analyzeu. 1/	14/2021			
LCS (BBA0334-BS1)					Prepared 8	& Analyzed: 1/	14/2021			
Phosphate/P	0.110		0.0180	mg/L	0.100		110	85-115		
Matrix Spike (BBA0334-MS1)		Source: V	VBA0346-02		Prepared 8	& Analyzed: 1/	14/2021			
Phosphate/P	0.391		0.0180	mg/L	0.100	0.284	107	80-120		

Quality Control Data (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0334 - W FIA (Continu	ied)								
Matrix Spike Dup (BBA0334-MSD1)	Source:	WBA0346-02		Prepared 8	& Analyzed: 1	/14/2021			
Phosphate/P	0.375	0.0180	mg/L	0.100	0.284	91.1	80-120	4.20	20
Batch: BBA0432 - W Filtration									
Blank (BBA0432-BLK1)				Prepared 8	& Analyzed: 1	/15/2021			
TSS	ND	1.00	mg/L	·	,	•			
Blank (BBA0432-BLK2)				Prepared 8	& Analyzed: 1	/15/2021			
TSS	ND	1.00	mg/L						
Blank (BBA0432-BLK3)				Prepared 8	& Analyzed: 1	/15/2021			
TSS	ND	1.00	mg/L						
Blank (BBA0432-BLK4)				Prepared 8	& Analyzed: 1	/15/2021			
TSS	ND	1.00	mg/L						
LCS (BBA0432-BS1)				Prepared 8	& Analyzed: 1	/15/2021			
TSS	95.0		mg/L	100		95.0	90-110		
LCS (BBA0432-BS2)				Prepared 8	& Analyzed: 1	/15/2021			
TSS	91.0		mg/L	100		91.0	90-110		
LCS Dup (BBA0432-BSD1)				Prepared 8	& Analyzed: 1	/15/2021			
TSS	96.0		mg/L	100		96.0	90-110	1.05	10
LCS Dup (BBA0432-BSD2)				Prepared 8	& Analyzed: 1	/15/2021			
TSS	95.0		mg/L	100		95.0	90-110	4.30	10

Quality Control Data (Continued)

Analyte	Result (Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBA0432 - W Filtration (C	ontinued)									
Duplicate (BBA0432-DUP1)	Sc	ource: MBA	A0224-02		Prepared 8	& Analyzed: 1	/15/2021			
TSS	43.0		1.00	mg/L		45.0			4.55	20
Duplicate (BBA0432-DUP2)	So	ource: WB	A0281-01		Prepared 8	& Analyzed: 1	/15/2021			
TSS	7.00		1.00	mg/L		8.00			13.3	20
Matrix Spike (BBA0432-MS1)	Sc	ource: MBA	A0189-01		Prepared 8	& Analyzed: 1	/15/2021			
TSS	226		2.00	mg/L	100	132	94.0	80-120		
Matrix Spike (BBA0432-MS2)	So	ource: WB	A0286-01		Prepared 8	& Analyzed: 1	/15/2021			
TSS	132		2.00	mg/L	100	43.0	89.0	80-120		
Matrix Spike Dup (BBA0432-MSD1)	So	ource: MBA	A0189-01		Prepared & Analyzed: 1/15/2021					
TSS	234		2.00	mg/L	100	132	102	80-120	3.48	20
Matrix Spike Dup (BBA0432-MSD2)	So	ource: WB	A0286-01		Prepared 8	& Analyzed: 1	/15/2021			
TSS	126		2.00	mg/L	100	43.0	83.0	80-120	4.65	20
Batch: BBA0632 - W FIA										
Blank (BBA0632-BLK1)					Prepared 8	& Analyzed: 1	/25/2021			
Total P	ND		0.00500	mg/L						
Blank (BBA0632-BLK2)					Prepared 8	& Analyzed: 1	/25/2021			
Total P	ND		0.00500	mg/L						
Blank (BBA0632-BLK3)					Prepared 8	& Analyzed: 1	/25/2021			
Total P	ND		0.00500	mg/L						

Quality Control Data (Continued)

Inorganics (Continue	organics (Continue	ו ם
----------------------	------------	----------	-----

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result Qual	LIIIIL	UIIILS	Levei	Result	%REC	LIIIILS	KPD	LIIIIIL
Batch: BBA0632 - W FIA (Continu	ied)								
LCS (BBA0632-BS1)	•			Prepared 8	& Analyzed: 1,	/25/2021			
Total P	0.110	0.00500	mg/L	0.100		110	90-110		
LCS (BBA0632-BS2)				Prepared 8	& Analyzed: 1,	/25/2021			
Total P	0.109	0.00500	mg/L	0.100		109	90-110		
Matrix Spike (BBA0632-MS1)	Source: V	VBA0429-02		Prepared 8	& Analyzed: 1,	/25/2021			
Total P	0.365	0.0100	mg/L	0.100	0.251	114	80-120		
Matrix Spike (BBA0632-MS2)	Source: V	VBA0601-02		Prepared 8	& Analyzed: 1,	/25/2021			
Total P	0.358	0.0100	mg/L	0.100	0.239	118	80-120		
Matrix Spike Dup (BBA0632-MSD1)	Source: V	VBA0429-02		Prepared 8	& Analyzed: 1,	/25/2021			
Total P	0.365	0.0100	mg/L	0.100	0.251	114	80-120	0.164	20
Matrix Spike Dup (BBA0632-MSD2)	Source: V	VBA0601-02		Prepared 8	& Analyzed: 1,	/25/2021			
Total P	0.358	0.0100	mg/L	0.100	0.239	118	80-120	0.00	20

Quality Control Data (Continued)

Metals by ICP-MS

Acaba	Describ Overl	Reporting	I I - St-	Spike	Source	0/ DEC	%REC	222	RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBA0459 - W 3010 Digest									
Blank (BBA0459-BLK1)			Pr	epared: 1/19	/2021 Analyze	d: 1/20/202	1		
Zinc	ND	0.00100	mg/L						
Copper	ND	0.00100	mg/L						
LCS (BBA0459-BS1)			Pr	epared: 1/19	/2021 Analyze	d: 1/20/202	1		
Copper	0.0495	0.00100	mg/L	0.0500		99.0	85-115		
Zinc	0.0480	0.00100	mg/L	0.0500		96.0	85-115		
Matrix Spike (BBA0459-MS1)	Source:	WBA0341-01	Pr	epared: 1/19	/2021 Analyze	d: 1/20/202	1		
Zinc	0.243	0.00500	mg/L	0.250	0.0143	91.5	70-130		
Copper	0.233	0.00500	mg/L	0.250	0.00211	92.2	70-130		
Matrix Spike Dup (BBA0459-MSD1)	Source:	WBA0341-01	Pr	epared: 1/19	/2021 Analyze	d: 1/20/202	1		
Zinc	0.248	0.00500	mg/L	0.250	0.0143	93.3	70-130	1.85	20
Copper	0.239	0.00500	mg/L	0.250	0.00211	94.8	70-130	2.83	20

Quality Control Data (Continued)

Hydrocarbons

				Reporting		Spike	Source		%REC		RPD
L	Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
-											

Batch:	BBA0364	1 - W	TPH-Dx
Blank (F	RA0364-R	K1)	

Diesel ND 0.160 mg/L Lube Oil ND 0.400 mg/L Prepared & Analyzed: 1/21/2021

Quality Control Data (Continued)

Hydrocarbons (Continued)

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBA0364 - W TPH-Dx ((Continued)								
Blank (BBA0364-BLK1)	•			Prepared 8	& Analyzed: 1,	/21/2021			
Mineral Oil	ND	0.160	mg/L						
Surrogate: n-Hexacosane		47.7	ppm	50.1		95.2	50-150		
LCS (BBA0364-BS1)				Prepared 8	& Analyzed: 1,	/21/2021			
Diesel	0.969	0.160	mg/L	1.00		96.4	70-130		
Lube Oil	ND	0.400	mg/L				70-130		
Surrogate: n-Hexacosane		45.7	ррт	50.1		91.2	50-150		
Duplicate (BBA0364-DUP1)	Source:	WBA0341-01		Prepared & Analyzed: 1/21/2021					
Diesel	ND	0.160	mg/L		ND				20
Lube Oil	ND	0.400	mg/L		ND				20
Mineral Oil	ND	0.160	mg/L		ND				20
Surrogate: n-Hexacosane		39.4	ррт	50.1		78.7	50-150		

Anatek Labs,
Inc.

Chain of Custody Record

Anatek Log-In#

VVBA0341
an, an mile ii a laanii () () () () () ()

Spokane County Address: 1026 W. Broadway Avenue Project Name & #: Gonzaga BioRetention Cell Email Address: EMURNIN@spokanecounty.org Phone: (509) 477-7420 Purchase Order #: Sampler Name & phone: (509)995-0557 Provide Sample Description Stormwater influent and effluent Preservative influent and effluent Description Sampling Date/Time Matrix Description Sampling Date/Time Matrix Description Description Stormwater influent and effluent Description D		Labs, Inc.		Alturas Drive, I												Log-in #
Spokane State: WA Zip: 99260 Email Address: EMURNIN@spokanecounty.org Normal and elfluent Phone: (509) 477-7420 Purchase Order #: Sampler Name & phone: (509) 995-0557 Other* Other									(30)						3	Turn
Phone Spokane State WA Zip 99260 Email Address EMURNIN@spokanecounty.org Normal Nort Day Provide Sumple Phone	Addre	ss: 1026 \	W. Broadway Ave	nue	Proje	ect Nan	ne &	#:	Go	onza	ga B	ioRe	tent	ion (Cell	Please refer to our normal http://www.anateklabs.com/services/guidelines/reporting.asp
Sample Sample Description Sample Description Stormwater influent and effluent Sample Description Stormwater influent and effluent Description Sample Description Sample Description Stormwater influent and effluent Description De	City:	Spokane	State: WA Zip:	99260	Ema	il Addre	ess :	Е	MUF	NIN	@sp	okar	neco	unty	.org	All rush order —
Friedlinguished by Sampler Name & phone: (509)995-0557 Provide Sample Description List Analyses Requested Note Special Instructions/Comments Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com Presservative in the provided in the presservative	Phone: (509) 477-7420					hase C	rder #	ŧ:					2nd Day*			
Stormwater influent and effluent Please email results to both EMURNIN@spokanecounty.org & aimeen@osbornconsulting.com	Fax:				Sam	pler Na	me &	phone	э:		(50	9)99	5-05	557		Other*
Lab Sample Identification Sampling Date/Time Matrix Part Par		Provide S	ample Description	n				List	Ana	lyse	s Re	ques	ted			Note Special Instructions/Comments
NF01122021		stormwate	r influent and effluent		-		SM 2540D	Total EPA 3 ICP/MS	Dissolved 0.8 ICP/MS	ness, SM 0B (ICP)	hosphorus, 4500-PF	H, Ecology TPH Dx	hosphate 4500-PG			EMURNIN@spokanecounty.org &
NFG1122021		Sample Identification	Sampling Date/Time	Matrix	# of C	Samp	TSS	Cu Zn 200.	Cu Zn EPA 20	Hard 234	Total F SM	MW WN	Ortho F SM			
EFF1801122021		INF01122021	01/13/21 8:00 AM	water	_		X	×		X						1 /4
Inspection Checklist Received Intact? Labels & Chains Agree? N Containers Sealed? N VOC Head Space? N Relinquished by		EFF1201122021	01/13/21 8:00 AM	water	5		X	X		X	X	X	X			1/29
Received Intact? N		EFF1801122021	01/13/21 8:00 AM	water	5		X	X		X	X	X	X			, , , , , ,
Received Intact? N																
Received Intact? N																
Received Intact? N																
Received Intact? N																
Printed Name Signature Company Date Time VOC Head Space? Y N																Inspection Checklist
Printed Name Signature Company Date Time Relinquished by Megan EMEDIALM Mary EMULT OCT 1/13/21 10:30 Received by Received by Preservative: M1504 1002983 42 Relinquished by Date & Time: 1/19 3 1/13/11 Relinquished By Date & Time: 1/19 3 1/13/1																Received Intact? (Y N
Printed Name Signature Company Date Time Relinquished by Megan Enlehand Muse Sulfate OCT 1/13/21 10:30 Received by Preservative: 11504 1002983 47 Relinquished by Date & Time: 1/19 43 1/13/41 Relinquished by Date & Time: 1/19 43 1/13/41 Relinquished by Inspected By:																Labels & Chains Agree?
Printed Name Signature Company Date Time Relinquished by Megan Enlevant Museultt OCT 1/3/21 10:30 Received by Preservative: #1584 1002983 4-2 Relinquished by Date & Time: // 19 9 1/3/21 Relinquished by Date & Time: // 19 9 1/3/21 Relinquished by Date & Time: // 19 9 1/3/21																Containers Sealed?
Relinquished by Megan Enlebrand Muse Educated OCT 11,13/21 10:30 Temperature (°C): 0.3/0.1 1RH/ Preservative: H1504 1002983 L72 Relinquished by Date & Time: 1/19 98 1/13/24 Relinquished by																VOC Head Space?
Relinquished by Megan Enlebrand Muse Educated OCT 11,13/21 10:30 Temperature (°C): 0.3/0.1 1RH/ Preservative: H1504 1002983 L72 Relinquished by Date & Time: 1/19 98 1/13/24 Relinquished by																- billali
Received by					, , , ,	7 1			Com	oany						na college
Relinquished by Calinquished by	Relinqu	uished by	gan Enjervalm	mur g	M		\mathcal{L}	/	0	CT	-1		1/1	1/9/		· /
Received by Date & Time: // 19 98 1/13/2/ Relinquished by Inspected By:	Receiv	ed by	Scoff	+ Fr	D		Berin -		a	rai	the		1/13	121	103	Preservative: <u>H1504' 1002993</u> 42
Received by Date & Time: // 19 98 1/13/2/ Relinquished by Inspected By:	Relinqu	uished by		l												HU 200385152 PH 2001015
mopoted by.	Receive	ed by														
Received by	Relinqu	ished by														Inspected By:
	Receive	ed by														

Form COC01.00 - Eff 1 Mar 2015

Page 1 of 1

Appendix A.2 Bioretention Soil Media Reports

SOILTEST FARM CONSULTANTS - 1

2925 DRIGGS DR

Date Received: 3/7/2019

Grower: SPOKANE COUNTY

Sampled By:

Moses Lake, WA 98837

Field: UNINSTALLED

Laboratory #: S19-00971

Customer Account #:

Soil Test Results

Customer Sample ID:

Cation Exchange CEC meq/100g 9.9 pH 1:1

E.C. 1:1 m.mhos/cm Est Sat Paste E.C. m.mhos/cm

Effervescence

Lbs/Acre

Ammonium - N mg/kg

Organic Matter W.B. % ENR:

Other Tests:

Organic Matter (LOI): 5.0 %:

SAT PASTE pH = 7.3, Ca = 5.25 meq/L, Mg = 3.68 meq/L, Na = 0.47 meq/L SAR - 0.27, %MOISTURE = 0.9%

We make every effort to provide an accurate analysis of your sample. For reasonable cause we will repeat tests, but because of factors beyond our control in sampling procedures and the inherent variability of soil, our liability is limited to the price of the tests. Recommendations are to be used as general guides and should be modified for specific field conditions and situations. Note: "u" indicates that the element was analyzed for but not detected

This is your Invoice #: \$19-00971 Account # 100100 Reviewed by: KEB List Cost: \$155.00

Client: SPOKANE COUNTY Sample I.D. UNINSTALLED Date Reported: 3/22/2019

Date Received: 03/07/19

ETHAN MURNIN

Laboratory # S19-971

1026 W BROADWAY AVE

SPOKANE, WA 99260

Reveiwed by Brent Thyssen, CPSSc

AMOUNT:

	Method	Dry Wt.	Units	MDL	
Calcium	3050B DIGEST/6010D	7547	mg/Kg	9.00	
Copper	3050B DIGEST/6010D	17.3	mg/Kg	0.20	
Magnesium	3050B DIGEST/6010D	7055	mg/Kg	1.00	
Zinc	3050B DIGEST/6010D	57.7	mg/Kg	0.30	

SOILTEST FARM CONSULTANTS - 1

S19-00972

2925 DRIGGS DR

Laboratorv #:

3/7/2019 Date Received:

Grower: **SPOKANE COUNTY**

Sampled By:

Moses Lake, WA 98837

Field: **INSTALLED 18IN**

Customer Account #:

Soil Test Results

Customer Sample ID:

Cation Exchange CEC mea/100g 9.6 pH 1:1

> E.C. 1:1 m.mhos/cm Est Sat Paste E.C. m.mhos/cm

Effervescence

Lbs/Acre

Ammonium - N

mg/kg

ENR: Organic Matter W.B. %

Other Tests:

Organic Matter (LOI): 4.5 %:

SAT PASTE pH = 6.9, Ca = 3.05 meg/L, Mg = 8.30 meg/L, Na = 17.76 meg/L SAR - 7.46, %MOISTURE = 33.4%

We make every effort to provide an accurate analysis of your sample. For reasonable cause we will repeat tests, but because of factors beyond our control in sampling procedures and the inherent variability of soil, our liability is limited to the price of the tests. Recommendations are to be used as general guides and should be modified for specific field conditions and situations. Note: "u" indicates that the element was analyzed for but not detected

This is your Invoice #: S19-00972 Account # 100100 Reviewed by: KEB List Cost: \$155.00

Client: SPOKANE COUNTY Sample I.D. INSTALLED 18IN Date Reported: 3/22/2019

ETHAN MURNIN

Laboratory # S19-972

1026 W BROADWAY AVE

Date Received: 03/07/19

Reveiwed by Brent Thyssen, CPSSc

SPOKANE, WA 99260 AMOUNT:

	Method	Dry Wt.	Units	MDL	
Calcium	3050B DIGEST/6010D	2867	mg/Kg	9.00	
Copper	3050B DIGEST/6010D	16.8	mg/Kg	0.20	
Magnesium	3050B DIGEST/6010D	7270	mg/Kg	1.00	
Zinc	3050B DIGEST/6010D	86.4	mg/Kg	0.30	

SOILTEST FARM CONSULTANTS - 1

2925 DRIGGS DR

Date Received: 3/7/2019

Grower: S

SPOKANE COUNTY

Sampled By:

Moses Lake, WA 98837

INSTALLED 12IN

Laboratory #: S19-00973

Customer Account #:

Soil Test Results Customer Sample ID:

Cation Exchange CEC meq/100g 10.7 pH 1:1

E.C. 1:1 m.mhos/cm Est Sat Paste E.C. m.mhos/cm

Field:

Effervescence

Lbs/Acre

Ammonium - N

mg/kg

Organic Matter W.B. % ENR:

Other Tests:

Organic Matter (LOI): 6.2 %:

SAT PASTE pH =7.0, Ca = 3.74 meq/L, Mg = 9.18 meq/L, Na = 12.77 meq/L SAR - 5.02, %MOISTURE = 57.8%

We make every effort to provide an accurate analysis of your sample. For reasonable cause we will repeat tests, but because of factors beyond our control in sampling procedures and the inherent variability of soil, our liability is limited to the price of the tests. Recommendations are to be used as general guides and should be modified for specific field conditions and situations. Note: "u" indicates that the element was analyzed for but not detected

This is your Invoice #: S19-00973 Account # 100100 Reviewed by: KEB List Cost: \$155.00

Client: SPOKANE COUNTY Sample I.D. INSTALLED 12IN Date Reported: 3/22/2019

ETHAN MURNIN

Laboratory # S19-973

1026 W BROADWAY AVE

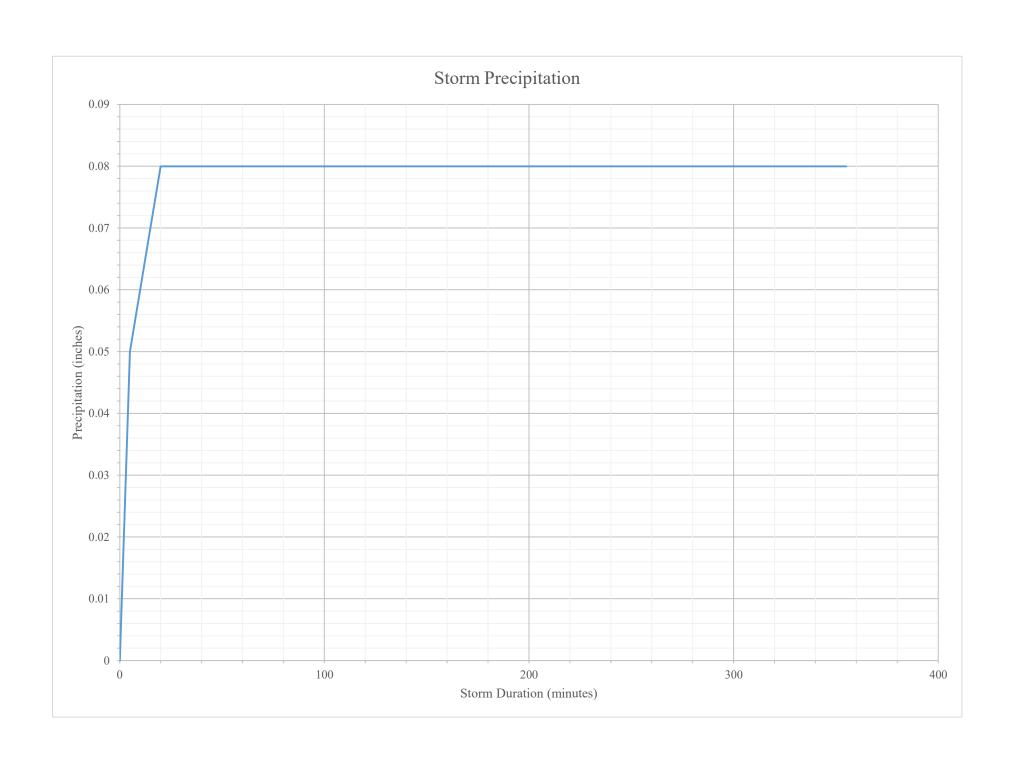
Date Received: 03/07/19 Reveiwed by Brent Thyssen, CPSSc

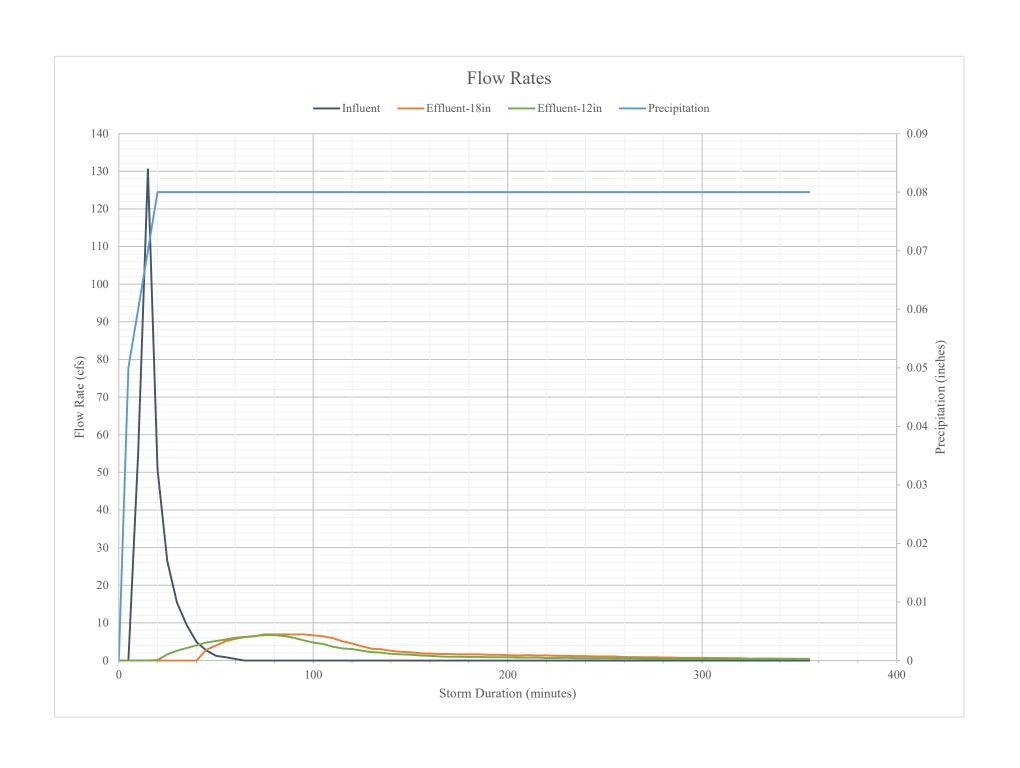
SPOKANE, WA 99260 AMOUNT:

	Method	Dry Wt.	Units	MDL	
Calcium	3050B DIGEST/6010D	3702	mg/Kg	9.00	
Copper	3050B DIGEST/6010D	16.1	mg/Kg	0.20	
Magnesium	3050B DIGEST/6010D	7529	mg/Kg	1.00	
Zinc	3050B DIGEST/6010D	82.6	mg/Kg	0.30	

Comparison of Ecology Bioretention Soil Media to Uninstalled and Installed Media

Parameter	Ecology 60:40 Specification (Ecology, 2019)	2014 Pre- Installation	2019 18-inch	2019 12-inch	% Diff 18-inch	% Diff 12-inch
Cation Exchange Capacity (meq/100g)	≥ 5	9.9	9.6	10.7	3.03%	-8.08%
Organic Matter Content (%)	5-8	5	4.50	6.20	10.00%	-24.00%
Calcium (meq/L)	N/A	5.25	3.05	3.74	41.90%	28.76%
Copper (mg/kg)	N/A	17.3	16.8	16.1	2.89%	6.94%
Magnesium (meq/L)	N/A	3.68	8.3	9.18	-125.54%	-149.46%
Zinc (mg/kg)	N/A	57.7	86.4	82.6	-49.74%	-43.15%

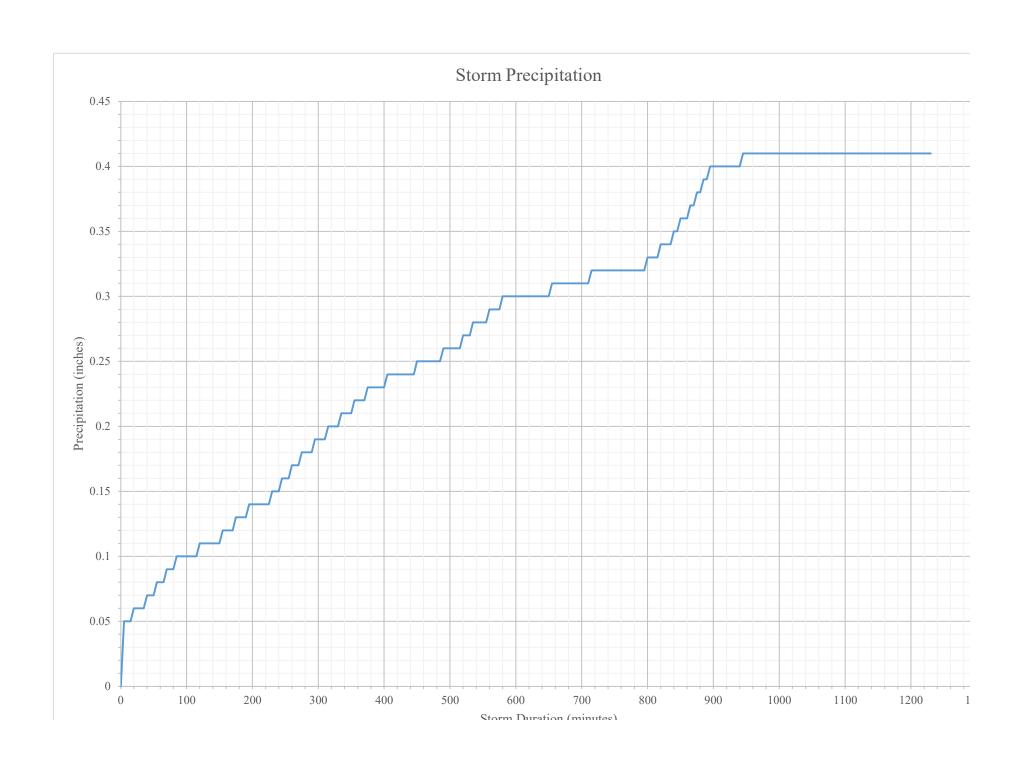

Note negative values indicate an increase in the parameter since the media was installed.

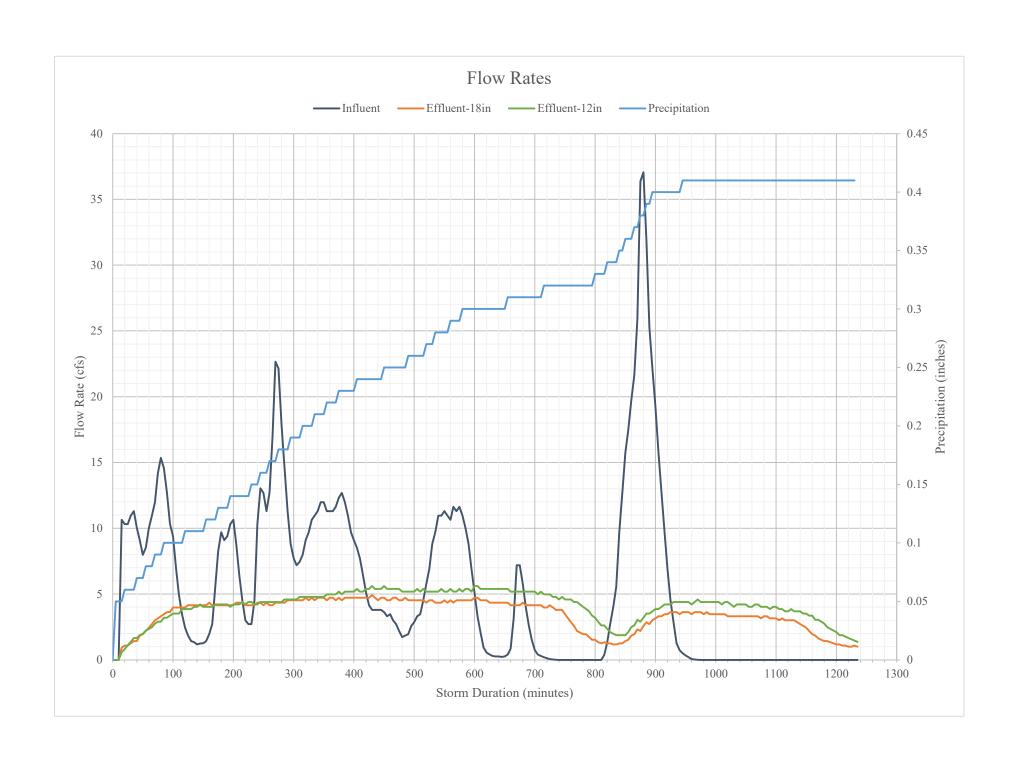

Appendix B. Storm Reports

	Paramter	Value	Units	Definition	Notes
	Storm ID	11/22/2018	-	Date storm event started	
	Storm Start Date and Time	11/22/18 8:35 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	11/22/18 2:25 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.080	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	5.83	hours	Duration of storm event	
	Storm Average Intensity	0.01	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	432.50	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	52.616	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	24.020	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	27.287	ft ³	Total volume of effluent from start of event to end of event	
Average Flow	Influent	7.153	gpm	Average influent flow rate during storm event	
Rate	12" Effluent	0.513	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	0.648	gpm	Average bypass flow rate during storm event	
	Influent	34.489	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	1.787	gpm	Peak effluent flow rate during storm event	
	18" Effluent	1.833	gpm	Peak bypass flow rate during storm event	
	Influent	6	-		
Aliquots	12" Effluent	2	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	3	-		
Sample	Influent	0.50	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	0.75	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	3.17	hours		43th anquot if the number of anquots reported execeus 43
	Influent	240	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	240	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	240	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	96.7%	%		
Sampled -	% of 12 Effluent	70.6%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	93.2%	%		
90th Percentile Flow Rate	Influent	14.565	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 11/22/2018

			Storm Date:			11/22/2018						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	74.7	20	100	31	36	58.50%	51.81%	1		
	Total Copper	mg/L	0.0065	N/A	N/A	0.00531	0.004	18.31%	38.46%	0.00007		
	Dissolved Copper	mg/L	0.00321	0.005	0.02	0.00434	0.00416	-35.20%	-29.60%	0.00007		Dissolved copper for effluents
ter	Total Zinc	mg/L	0.0649	N/A	N/A	0.0201	0.0213	69.03%	67.18%	0.00025		
Required Parameters	Dissolved Zinc	mg/L	0.0385	0.02	0.3	0.0406	0.0279	-5.45%	27.53%	0.00025	Flag	Dissolved zinc for 12" Eff
Para	Total Phosphorus	mg/L	N/A	0.1	0.5	N/A	N/A	1	-	0.00505		
<u> </u>	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Ţ.	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
) Se	NWTPH-Dx											
	Lube Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Diesel	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.05		
ers	PSD											
Screening Parameters	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
araı	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
99 G.	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
·ii	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ree	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
S	Hardness	mg CaCO3/L	13	N/A	N/A	148	183	-1038.46%	-1307.69%	1		Hardness for effluents
œ	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ster	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ame	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
er.]	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
9	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

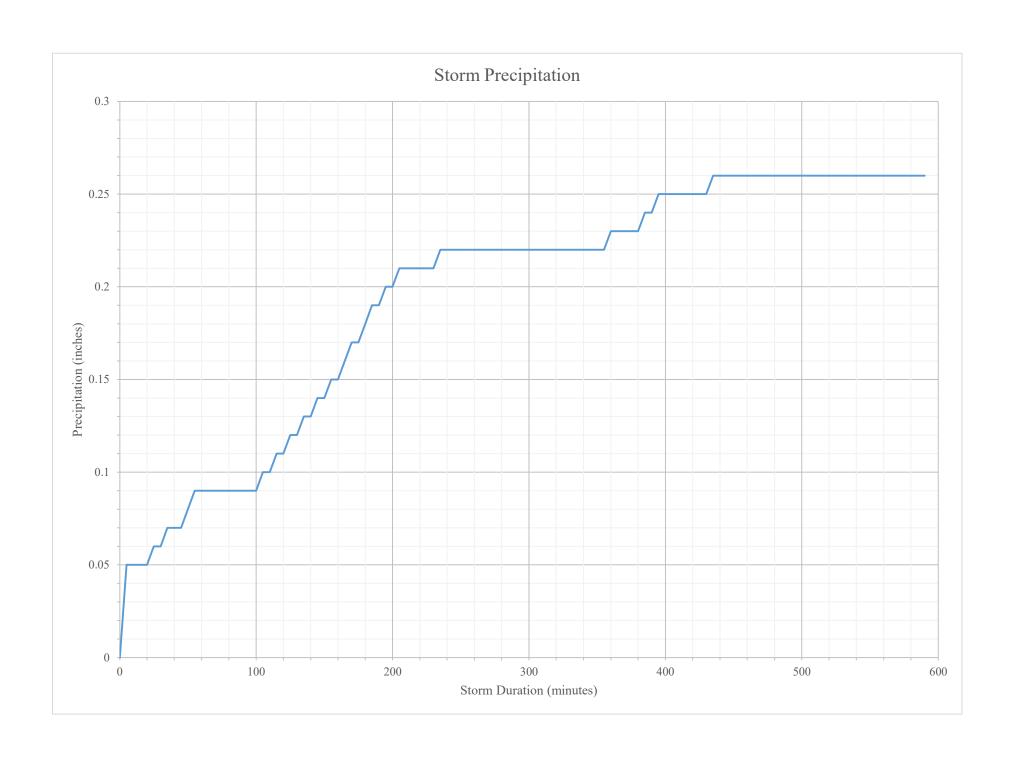


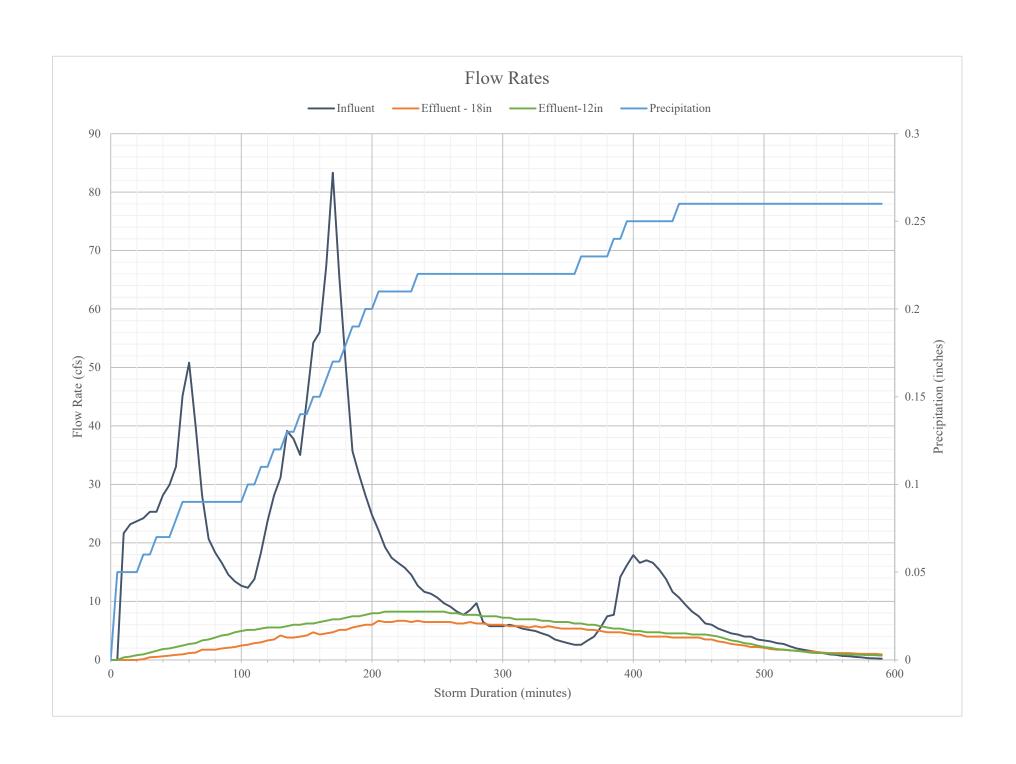


Г	Paramter	Value	Units	Definition	Notes
	Storm ID	12/16/2018	-	Date storm event started	
	Storm Start Date and Time	12/16/18 5:55 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	12/17/18 2:20 AM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.41	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	20.42	hours	Duration of storm event	
	Storm Average Intensity	0.02	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	64.33	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	243.175	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	178.824	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	151.759	ft ³	Total volume of effluent from start of event to end of event	
Average Flow	Influent	2.032	gpm	Average influent flow rate during storm event	
Rate	12" Effluent	1.108	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	0.939	gpm	Average bypass flow rate during storm evnt	
	Influent	9.792	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	1.482	gpm	Peak effluent flow rate during storm event	
	18" Effluent	1.299	gpm	Peak bypass flow rate during storm event	
	Influent	27	-		
Aliquots	12" Effluent	40	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	34	-		
Sample	Influent	13.25	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration -	12" Effluent	18.00	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	17.92	hours		45th anquot if the number of anquots reported exceeds 45
	Influent	250	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	125	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	125	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	98.1%	%		
Sampled -	% of 12 Effluent	98.8%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	99.0%	%		
90th Percentile Flow Rate	Influent	3.164	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 12/16/2018

Storm Date: 12/16/2018												
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	9	20	100	5	7	44.44%	22.22%	1		
	Total Copper	mg/L	0.00321	N/A	N/A	0.00155	0.00147	51.71%	54.21%	0.00007		
	Dissolved Copper	mg/L	0.00289	0.005	0.02	0.00149	0.00132	48.44%	54.33%	0.00007		
ţe	Total Zinc	mg/L	0.0261	N/A	N/A	0.0111	0.0059	57.47%	77.39%	0.00025		
ame	Dissolved Zinc	mg/L	0.0285	0.02	0.3	0.0129	0.0111	54.74%	61.05%	0.00025		
Required Parameters	Total Phosphorus	mg/L	0.118	0.1	0.5	0.35	0.388	-196.61%	-228.81%	0.00505		Increase in total P in Eff
등 F	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	ı	-	0.01		
- E	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	1	-	0.01		
Şed	NWTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	ı	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	ı	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	ı	-	0.05		
ers	PSD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
araı	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	1	-	N/A		
g 9	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
l ·ff	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Screening Parameters	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Sc	Hardness	mg CaCO3/L	43	N/A	N/A	222	243	-416.28%	-465.12%	1		Increase in hardness in Eff
80	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ğ	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Para	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
er]	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	1	-	N/A		
Oth	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	ı	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	ı	-	N/A		

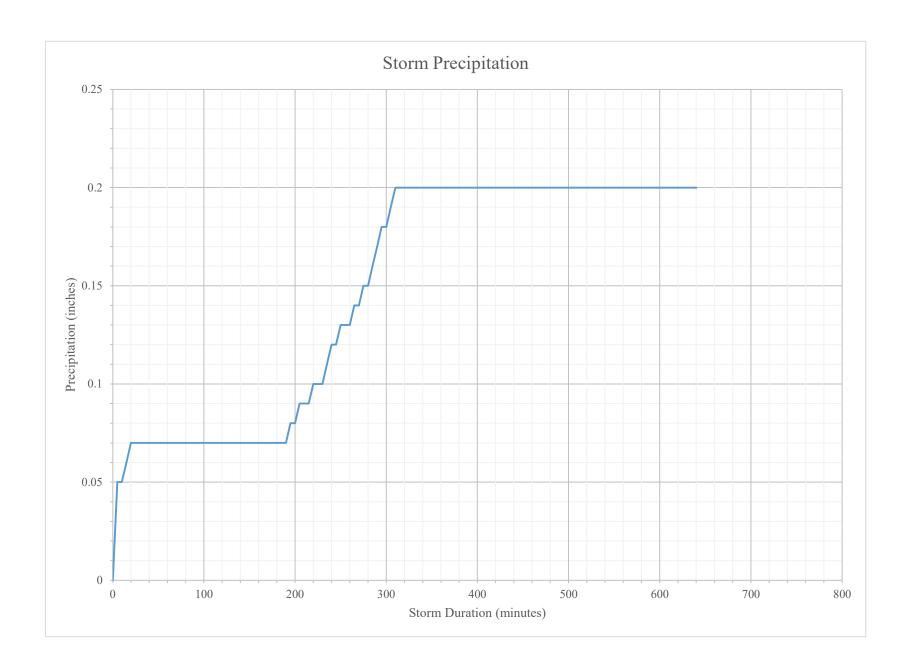


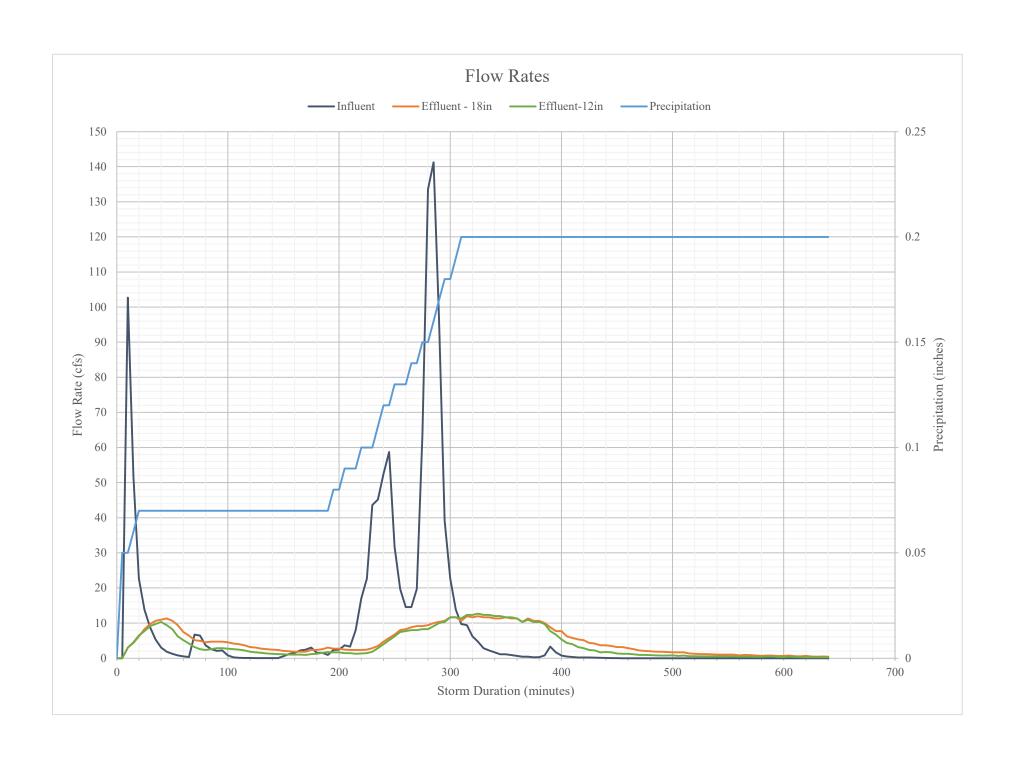


	Paramter	Value	Units	Definition	Notes
	Storm ID	1/17/2019	-	Date storm event started	
	Storm Start Date and Time	1/17/19 9:35 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	1/17/19 7:20 PM		Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.26	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	9.75	hours	Duration of storm event	
	Storm Average Intensity	0.03	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	171.75	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	322.731	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	98.736	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	75.990	ft ³	Total volume of effluent from start of event to end of event	
A E1	Influent	4.007	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	1.317	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	1.021	gpm	Average bypass flow rate during storm evnt	
	Influent	22.012	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	2.179	gpm	Peak effluent flow rate during storm event	
	18" Effluent	1.768	gpm	Peak bypass flow rate during storm event	
	Influent	30	-		
Aliquots	12" Effluent	7	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	6	-		
G 1	Influent	4.67	hours		T1 1 2 0 4 4 2 1 4 4 5 4 11 4 12 4 4 5 4 1454
Sample - Duration -	12" Effluent	2.42	hours	Time in hours between the collection of the first and last aliquots	The duration reflects the time between the first and last aliquots, or the first and 45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	2.33	hours		anquot if the number of anquots reported exceeds 45
	Influent	300	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	150	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	150	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
G. 17.1	% of Influent	98.5%	%		
Storm Volume	% of 12 Effluent	37.6%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	41.9%	%		
90th Percentile Flow Rate	Influent	9.649	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 1/17/2019

			Storm Date.			1/1//2019						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	8	20	100	1	5	87.50%	37.50%	1		
	Total Copper	mg/L	0.00451	N/A	N/A	0.00139	0.00148	69.18%	67.18%	0.00007		
70	Dissolved Copper	mg/L	0.00406	0.005	0.02	0.00142	0.00146	65.02%	64.04%	0.00007		
eters	Total Zinc	mg/L	0.0338	N/A	N/A	0.00832	0.0125	75.38%	63.02%	0.00025		
ame	Dissolved Zinc	mg/L	0.0291	0.02	0.3	0.0134	0.0146	53.95%	49.83%	0.00025		
Parame	Total Phosphorus	mg/L	N/A	0.1	0.5	N/A	N/A	1	-	0.00505		
l pa	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Required	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	1	-	0.01		
) §	NWTPH-Dx											
	Lube Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Diesel	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.05		
ers	PSD											
Screening Parameters	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
araı	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
- E	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
l iñ	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
lee.	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Sc	Hardness	mg CaCO3/L	N/A	N/A	N/A	N/A	N/A	-	-	1		
so.	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ame	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Para	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
er]	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Oth		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

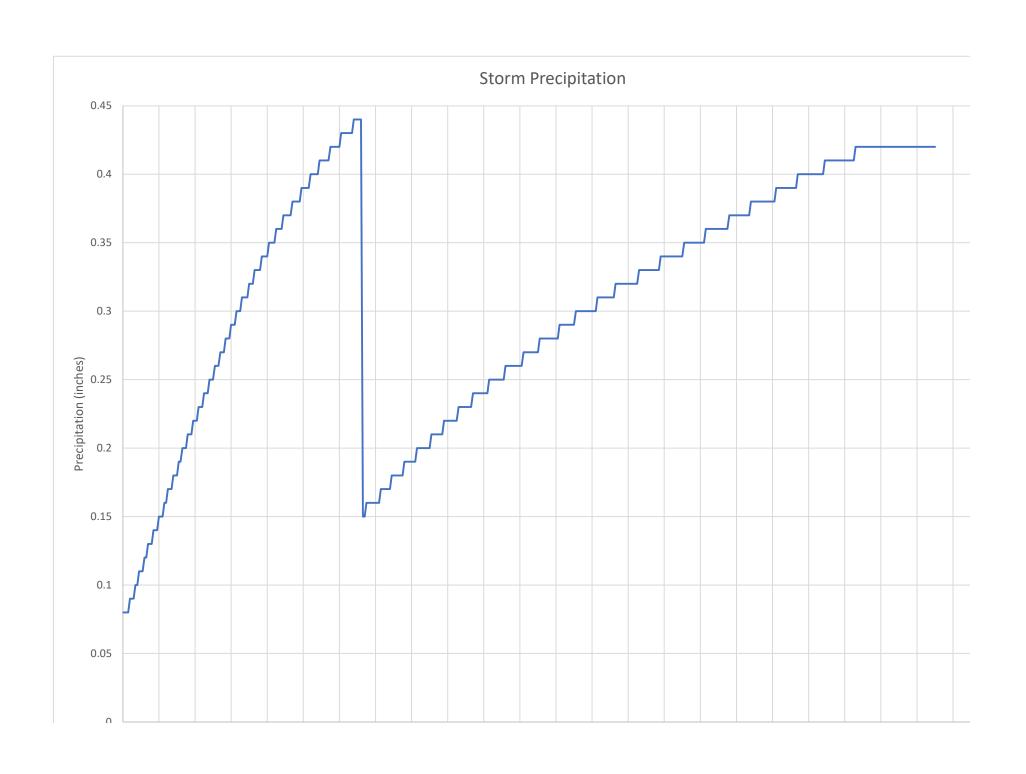


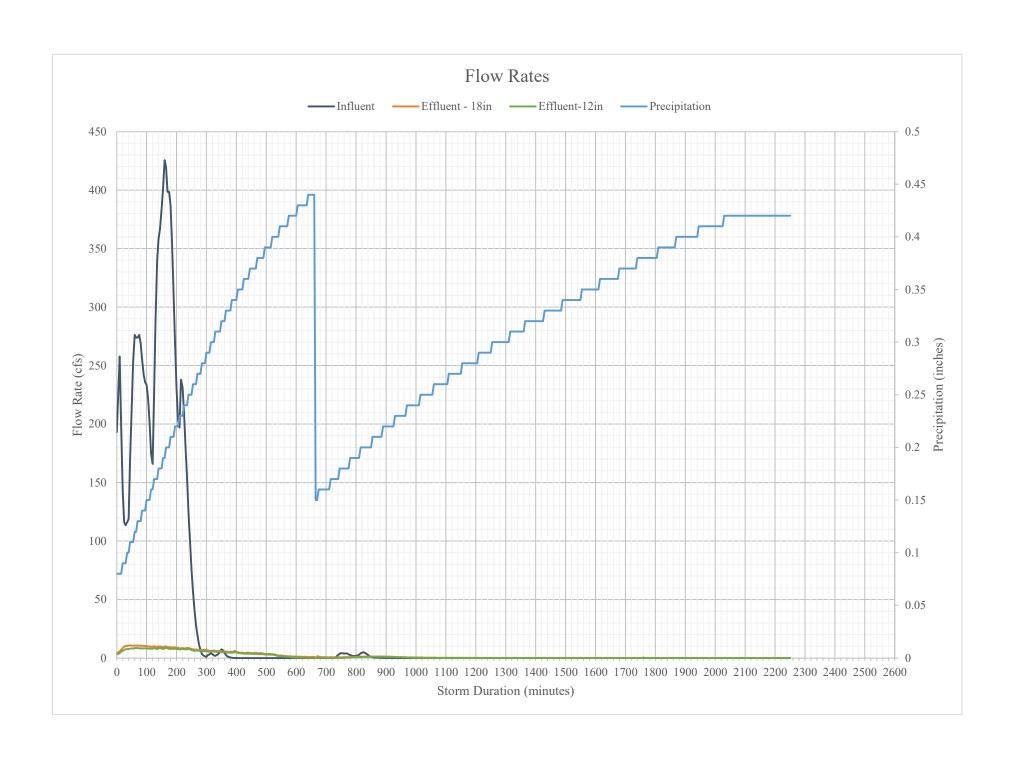


Г	Paramter	Value	Units	Definition	Notes		
	Storm ID	7/24/2019	-	Date storm event started			
	Storm Start Date and Time	7/23/19 10:05 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain			
	Storm End Date and Time	7/24/19 8:40 AM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain			
Storm Data	Total Precipitation Depth	0.20	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event			
Storin Data	Storm Duration	10.58	hours	Duration of storm event			
	Storm Average Intensity	0.02	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)			
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr			
	Storm Antecedent Dry Period	176.42	hours	From end of the last rainfall event to start of current rainfall event			
	Influent	207.084	ft ³	Total volume of influent from start of event to end of event			
Total Volume	12" Effluent	89.981	ft ³	Total volume of effluent from start of event to end of event			
	18" Effluent	109.733	ft ³	Total volume of effluent from start of event to end of event			
Average Flow	Influent	3.091	gpm	Average influent flow rate during storm event			
Rate	12" Effluent	1.061	gpm	Average effluent flow rate during storm event			
Kate	18" Effluent	1.297	gpm	Average bypass flow rate during storm evnt			
	Influent	37.321	gpm	Peak influent flow rate during storm event			
Peak Flow Rate	12" Effluent	3.350	gpm	Peak effluent flow rate during storm event			
	18" Effluent	3.164	gpm	Peak bypass flow rate during storm event			
	Influent	>45	-				
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45		
	18" Effluent	>45	-				
G 1	Influent	6.08	hours		The duration reflects the time between the first and last aliquots, or the first and		
Sample – Duration –	12" Effluent	6.42	hours	Time in hours between the collection of the first and last aliquots			
Duration	18" Effluent	5.83	hours		45th aliquot if the number of aliquots reported exceeds 45		
	Influent	100	L	Volume of stormwater that pass through the influent before a aliquot is collected			
Threshold	12" Effluent	50	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected			
	18" Effluent	50	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected			
Storm Volume	% of Influent	76.8%	%				
	% of 12 Effluent	88.4%	%	Number of aliquots times the threshold volume, divided by the total storm volume			
Sampled -	% of 18 Effluent	72.5%	%				
90th Percentile Flow Rate	Influent	11.604	gpm	90th Percentile flow rate from storm start and end time.			

Storm Date: 7/24/2019

			Storm Date:			7/24/2019						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	78	20	100	12	34	84.62%	56.41%	1		
	Total Copper	mg/L	0.00885	N/A	N/A	0.0064	0.00533	27.68%	39.77%	0.00007		
	Dissolved Copper	mg/L	0.00676	0.005	0.02	0.00608	0.00515	10.06%	23.82%	0.00007		
ter	Total Zinc	mg/L	0.0565	N/A	N/A	0.0139	0.00852	75.40%	84.92%	0.00025		
l me	Dissolved Zinc	mg/L	0.0307	0.02	0.3	0.0074	0.0102	75.90%	66.78%	0.00025		
Required Parameters	Total Phosphorus	mg/L	0.334	0.1	0.5	0.886	1.28	-165.27%	-283.23%	0.00505		Increase of total P in Eff
l pa	Iron	mg/L	0.633	N/A	N/A	0.169	0.3	73.30%	52.61%	0.01		
in.	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	1	N/A		
§	NWTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	1	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	1	0.05		
ers	PSD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
araı	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
<u> </u>	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
i i	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Screening Parameters	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Sc	Hardness	mg CaCO3/L	52	N/A	N/A	128	244	-146.15%	-369.23%	0.865		Increase of hardness in Eff
· ·	Dissolved Iron	mg/L	0.128	N/A	N/A	0.048	0.0628	62.50%	50.94%	0.01		
ter	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
am.	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	ı	N/A		
erI	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	1	N/A		
Oth	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	1	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	1	N/A		

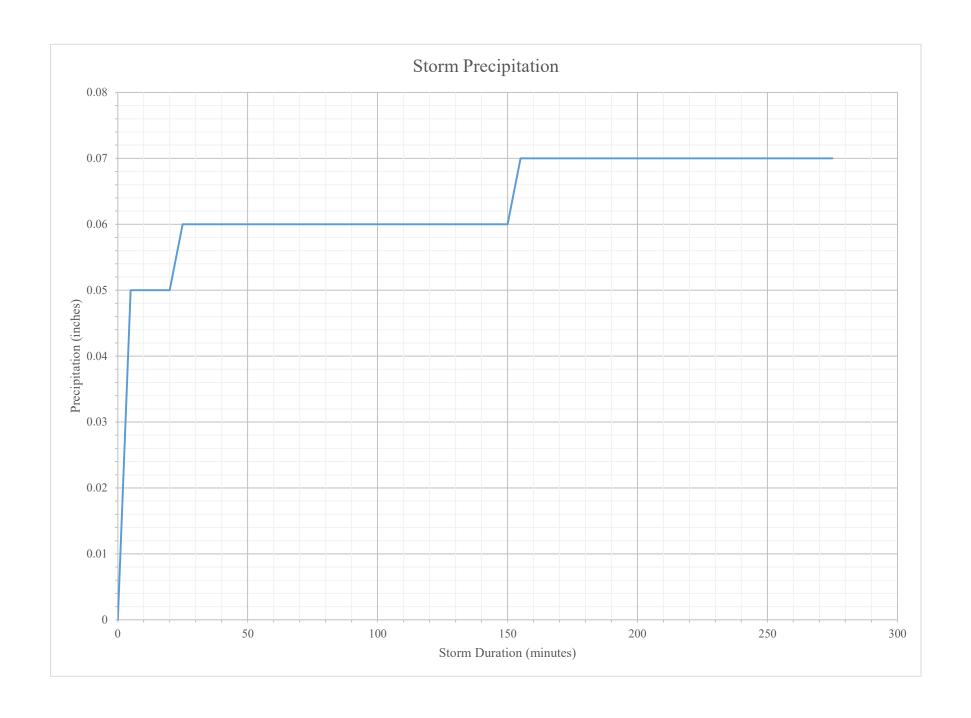


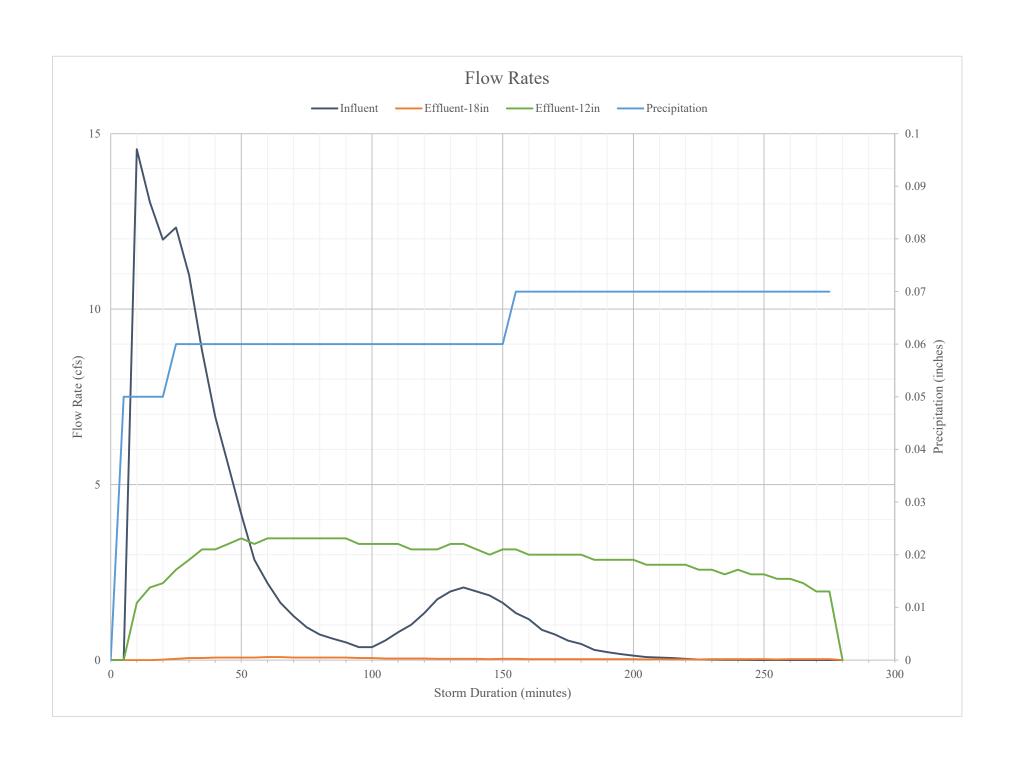


	Paramter	Value	Units	Definition	Notes
	Storm ID	9/28/2019	-	Date storm event started	
	Storm Start Date and Time	9/28/19 4:55 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	9/29/19 6:20 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.71	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	37.42	hours	Duration of storm event	
	Storm Average Intensity	0.02	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	432.42	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	2340.989	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	124.128	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	158.591	ft ³	Total volume of effluent from start of event to end of event	
Average Flow	Influent	21.345	gpm	Average influent flow rate during storm event	
Rate	12" Effluent	0.636	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	0.573	gpm	Average bypass flow rate during storm evnt	
	Influent	112.439	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	2.404	gpm	Peak effluent flow rate during storm event	
	18" Effluent	2.897	gpm	Peak bypass flow rate during storm event	
	Influent	>45	-		
Aliquots	12" Effluent	16	-	Total number of aliquots obtained during qualifying storm event	
	18" Effluent	41	-		
Sample	Influent	3.58	hours		
Duration	12" Effluent	8.33	hours	Time in hours between the collection of the first and last aliquots	
Duration	18" Effluent	8.58	hours		
	Influent	400	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	200	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	100	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	27.2%	%		
Sampled -	% of 12 Effluent	91.1%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	91.4%	%		
90th Percentile Flow Rate	Influent	83.561	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 9/28/2019

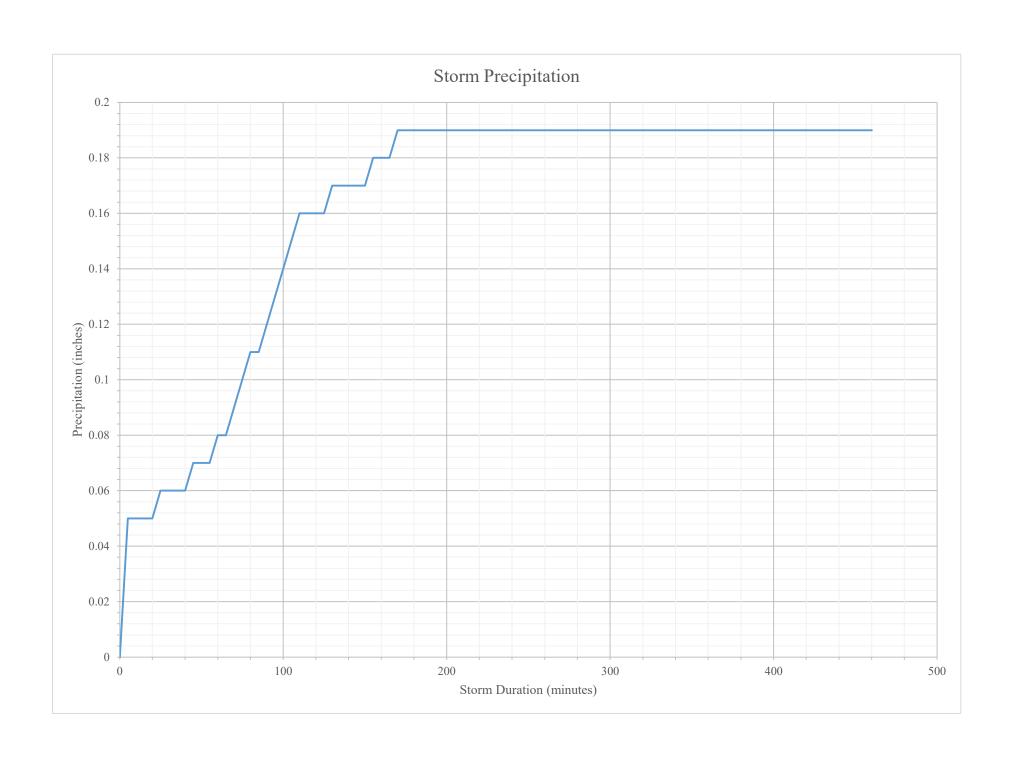
			Storm Date:			9/28/2019						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	68	20	100	N/A	50	-	26.47%	1		
	Total Copper	mg/L	0.0033	N/A	N/A	N/A	0.0051	-	-54.55%	0.00007		Increased in copper
× ×	Dissolved Copper	mg/L	0.00133	0.005	0.02	N/A	0.00469	-	-252.63%	0.00007		Increased in dissolved copper
l ser	Total Zinc	mg/L	0.0403	N/A	N/A	N/A	0.0513	-	-27.30%	0.00025		Increased in zinc
) iii	Dissolved Zinc	mg/L	0.0599	0.02	0.3	N/A	0.0181	-	69.78%	0.00025		
Required Parameters	Total Phosphorus	mg/L	0.0991	0.1	0.5	N/A	0.793	-	-700.20%	0.00505		Increase in phosphorous
ह	Iron	mg/L	0.435	N/A	N/A	N/A	0.785	-	-80.46%	0.01		Increased in dissolved iron in Eff
Ţ.	Dissolved Iron	mg/L	0.0126	N/A	N/A	N/A	0.0513	-	-307.14%	0.01		Increased in iron in Eff
Se	NWTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	N/A	ND	-	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	N/A	ND	-	-	0.05		
Cers	PSD											
Screening Parameters	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ara	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
l i	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ree	Orthophosphate	mg/L	0.0501	N/A	N/A	N/A	0.7	-	-1297.21%	N/A		
Š	Hardness	mg CaCO3/L	18	N/A	N/A	N/A	145	-	-705.56%	0.865		Increase in hardness in Eff
S	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
am	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Раг	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
her	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ō	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

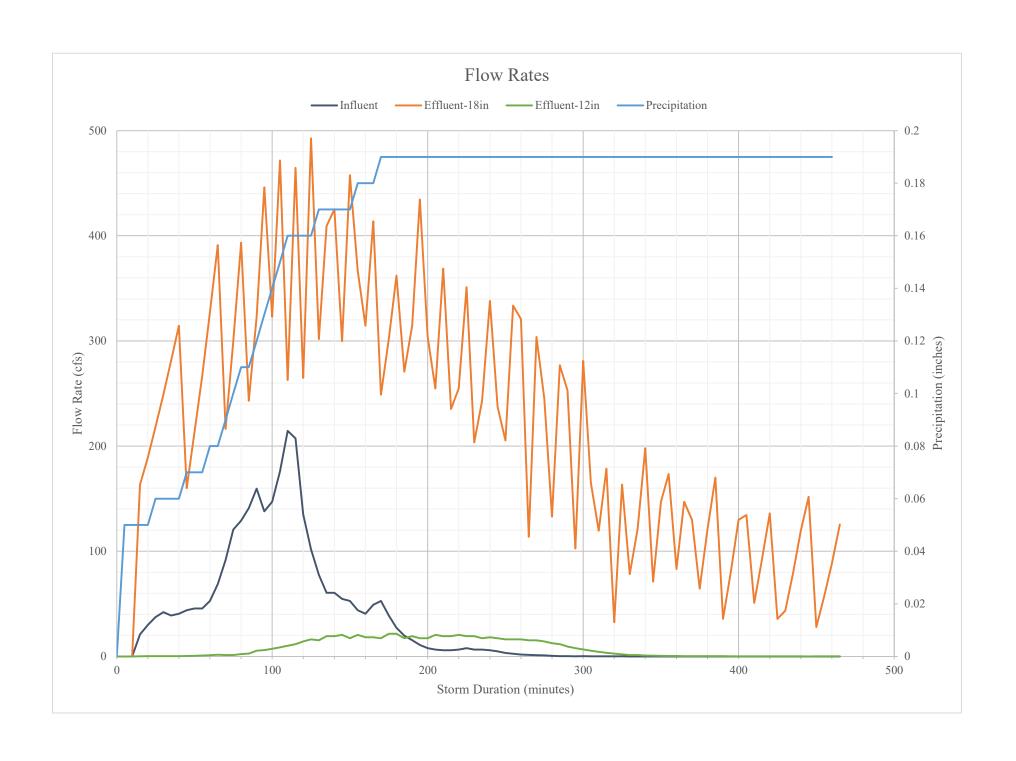




Г	Paramter	Value	Units	Definition	Notes	
	Storm ID	11/19/2019	-	Date storm event started		
	Storm Start Date and Time	11/19/19 1:05 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain		
	Storm End Date and Time	11/19/19 5:40 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain		
Storm Data	Total Precipitation Depth	0.07	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event		
Storm Data	Storm Duration	4.58	hours	Duration of storm event		
	Storm Average Intensity	0.02	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)		
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr		
	Storm Antecedent Dry Period	44.83	hours	From end of the last rainfall event to start of current rainfall event		
	Influent	21.338	ft ³	Total volume of influent from start of event to end of event		
Total Volume	12" Effluent	27.694	ft ³	Total volume of effluent from start of event to end of event		
	18" Effluent	0.351	ft ³	Total volume of effluent from start of event to end of event		
Average Flow	Influent	0.003	gpm	Average influent flow rate during storm event		
Rate	12" Effluent	0.627	gpm	Average effluent flow rate during storm event		
Kate	18" Effluent	0.006	gpm	Average bypass flow rate during storm evnt		
	Influent	0.009	gpm	Peak influent flow rate during storm event		
Peak Flow Rate	12" Effluent	0.717	gpm	Peak effluent flow rate during storm event		
	18" Effluent	0.006	gpm	Peak bypass flow rate during storm event		
	Influent	2	-			
Aliquots	12" Effluent	7	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45	
	18" Effluent	0	-			
Sample	Influent	0.33	hours		The duration reflects the time between the first and last aliquots, or the first and	
Duration -	12" Effluent	3.42	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45	
Duration	18" Effluent	0.00	hours		45th anquot if the number of anquots reported exceeds 45	
	Influent	210	L	Volume of stormwater that pass through the influent before a aliquot is collected		
Threshold	12" Effluent	105	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected		
	18" Effluent	105	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected		
Storm Volume	% of Influent	69.6%	%			
Storm Volume -	% of 12 Effluent	93.8%	%	Number of aliquots times the threshold volume, divided by the total storm volume		
Sampieu	% of 18 Effluent	0.0%	%			
90th Percentile Flow Rate	Influent	2.498	gpm	90th Percentile flow rate from storm start and end time.		

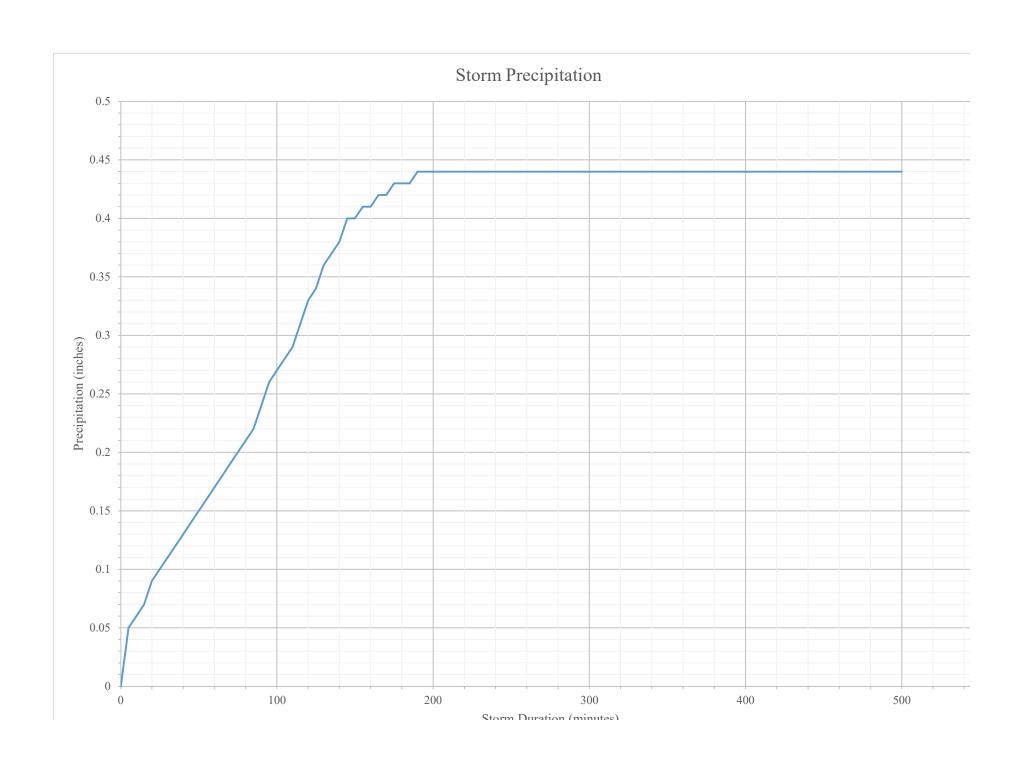
Storm Date: 11/19/2019

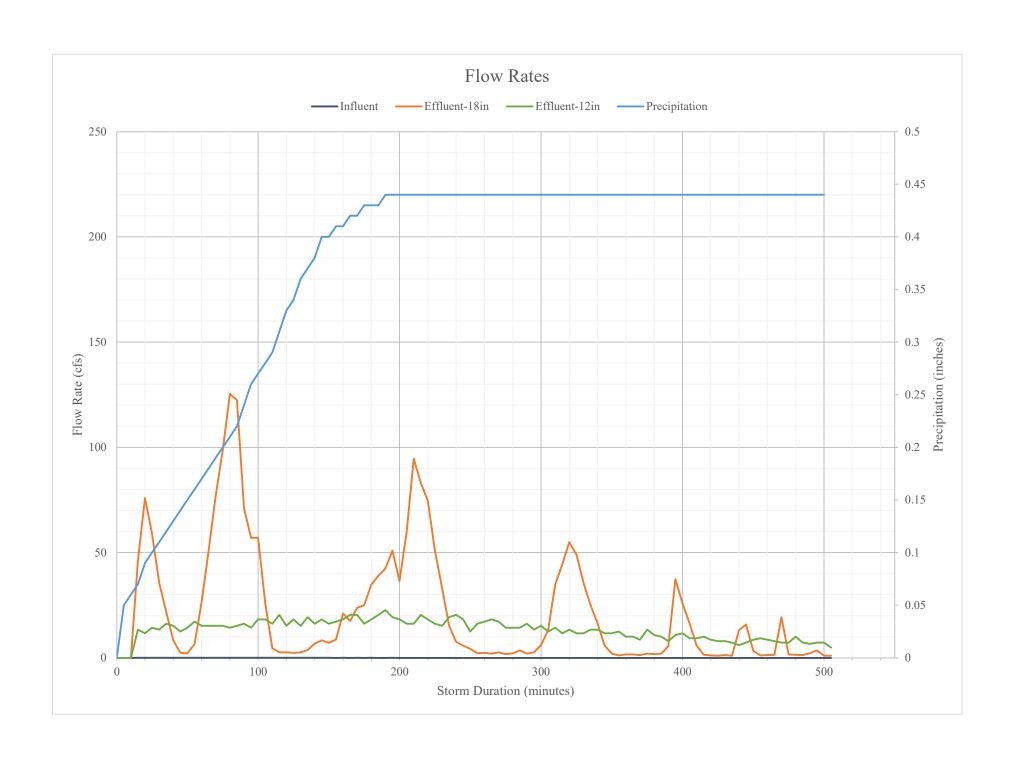

			Storm Date:			11/19/2019						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	22	20	100	1	N/A	95.45%	-	1		No data for 18" eff
	Total Copper	mg/L	N/A	N/A	N/A	0.00338	N/A	-	-	0.00007		No inf data, no 18" eff data
	Dissolved Copper	mg/L	N/A	0.005	0.02	0.00324	N/A	-	-	0.00007		No inf data, no 18" eff data
ters	Total Zinc	mg/L	N/A	N/A	N/A	0.0125	N/A	-	-	0.00025		No inf data, no 18" eff data
ıme	Dissolved Zinc	mg/L	N/A	0.02	0.3	0.0134	N/A	-	-	0.00025		No inf data, no 18" eff data
Required Parameters	Total Phosphorus	mg/L	N/A	0.1	0.5	0.416	N/A	-	-	0.00505		No inf data, no 18" eff data
l g	Iron	mg/L	N/A	N/A	N/A	0.192	N/A	-	-	0.01		
H. TE	Dissolved Iron	mg/L	N/A	N/A	N/A	0.0589	N/A	-	-	0.01		No inf data, no 18" eff data
ट्ट	NWTPH-Dx											
_	Lube Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Diesel	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.05		
SIS	PSD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ırar	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	1	-	N/A		
P P	<62.5	μm	N/A	N/A	N/A	N/A	N/A	1	-	N/A		
i i	pH		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Screening Parameters	Orthophosphate	mg/L	0.0901	N/A	N/A	0.349	N/A	-287.35%	-	N/A		Increased orthophosphate in eff
Sc	Hardness	mg CaCO3/L	N/A	N/A	N/A	104	N/A	1	-	1		
100	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ter	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	TKN	mg/L	N/A	N/A	N/A	0.803	N/A	-	-	N/A		No inf data, no 18" eff data
Parz	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	15.6	N/A	-	-	N/A		
er I	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Oth	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	16.4	N/A	-	-	N/A		
			·	·								



Storm Date: 12/7/2019

			Storm Date:			12/7/2019						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	16	20	100	3	8	81.25%	50.00%	1		
	Total Copper	mg/L	0.00353	N/A	N/A	0.00315	0.00386	10.76%	-9.35%	0.00007		Increased in 18in eff
	Dissolved Copper	mg/L	0.00306	0.005	0.02	0.00255	0.00361	16.67%	-17.97%	0.00007		Increased in 18in eff
Required Parameters	Total Zinc	mg/L	0.0246	N/A	N/A	0.00298	0.00504	87.89%	79.51%	0.00025		
ıme	Dissolved Zinc	mg/L	0.024	0.02	0.3	0.0115	0.0133	52.08%	44.58%	0.00025		
Para	Total Phosphorus	mg/L	N/A	0.1	0.5	0.505	0.576	-	-	0.00505		Increase of total P in Eff
ed J	Iron	mg/L	0.315	N/A	N/A	0.146	0.301	53.65%	4.44%	0.01		
<u> </u>	Dissolved Iron	mg/L	0.176	N/A	N/A	0.0489	0.00977	72.22%	94.45%	0.01		
Rec	NWTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	ı	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
23	PSD											
Screening Parameters	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ran	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Pa .	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ing	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
reer	Orthophosphate	mg/L	0.122	N/A	N/A	0.354	0.454	-190.16%	-272.13%	N/A		Increased in PO4/P
Sc	Hardness	mg CaCO3/L	14.5	N/A	N/A	101	148	-596.55%	-920.69%	1		Increase of hardness in Eff
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ters	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ıme	TKN	mg/L	0.5	N/A	N/A	0.5	0.5	0.00%	0.00%	N/A		
Other Parameters	Nitrate-Nitrite	mg/L	0.188	N/A	N/A	0.305	0.602	-62.23%	-220.21%	N/A		Increase in nitrate-nitrite
E J	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Oth	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	ND	N/A	N/A	ND	0.602	-	-	N/A		

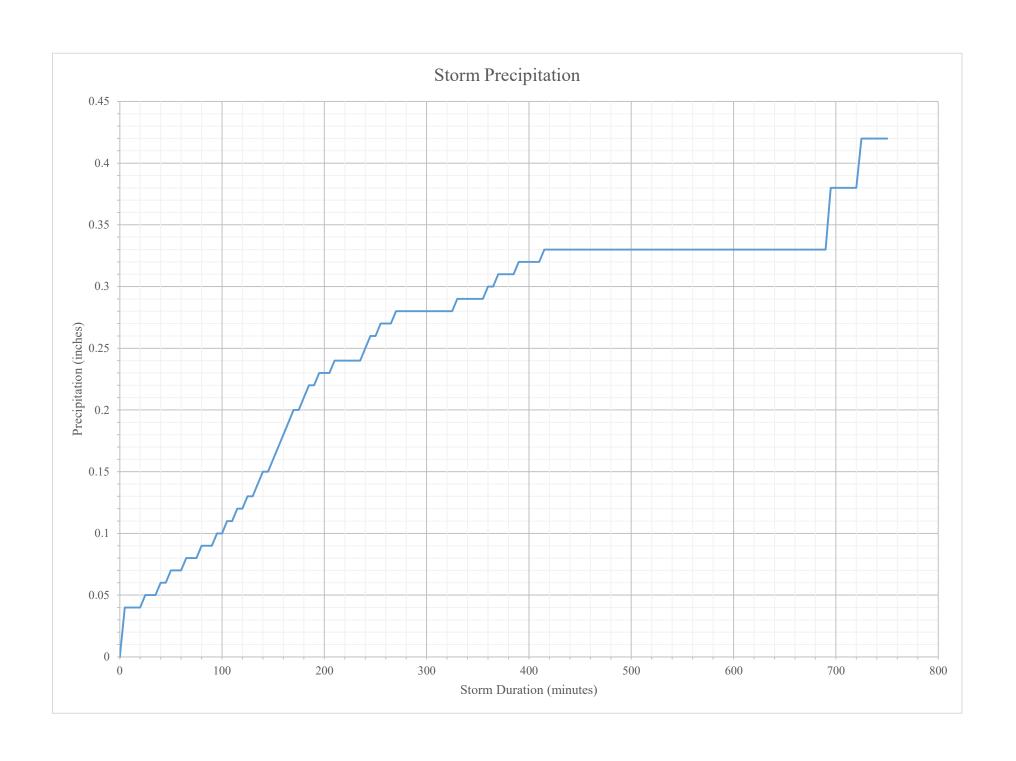


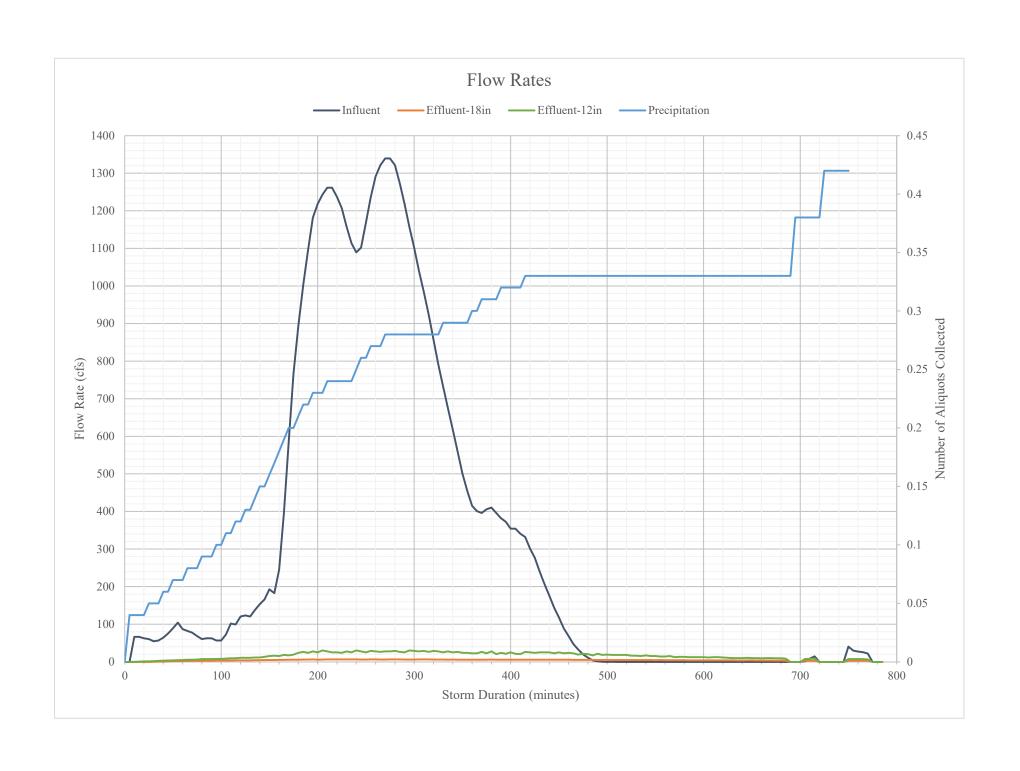

Г	Paramter	Value	Units	Definition	Notes	
	Storm ID	12/7/2019	-	Date storm event started		
	Storm Start Date and Time	12/7/19 5:55 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain		
	Storm End Date and Time	12/7/19 1:30 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain		
Storm Data	Total Precipitation Depth	0.19	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event		
Storin Data	Storm Duration	7.58	hours	Duration of storm event		
	Storm Average Intensity	0.03	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)		
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr		
	Storm Antecedent Dry Period	420.25	hours	From end of the last rainfall event to start of current rainfall event		
	Influent	513.869	ft ³	Total volume of influent from start of event to end of event		
Total Volume	12" Effluent	125.317	ft ³	Total volume of effluent from start of event to end of event		
	18" Effluent	3675.194	ft ³	Total volume of effluent from start of event to end of event		
Average Flow	Influent	12.197	gpm	Average influent flow rate during storm event		
Rate	12" Effluent	2.082	gpm	Average effluent flow rate during storm event		
Kate	18" Effluent	60.393	gpm	Average bypass flow rate during storm evnt		
	Influent	56.669	gpm	Peak influent flow rate during storm event		
Peak Flow Rate	12" Effluent	5.690	gpm	Peak effluent flow rate during storm event		
	18" Effluent	130.134	gpm	Peak bypass flow rate during storm event		
	Influent	>45	-			
Aliquots	12" Effluent	35	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45	
	18" Effluent	>45	-			
Sample	Influent	3.67	hours		The duration reflects the time between the first and last aliquots, or the first and	
Duration -	12" Effluent	3.92	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45	
Duration	18" Effluent	3.67	hours		45th anquot if the number of anquots reported exceeds 45	
	Influent	200	L	Volume of stormwater that pass through the influent before a aliquot is collected		
Threshold	12" Effluent	100	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected		
	18" Effluent	200	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected		
Storm Volume	% of Influent	61.9%	%			
Storm Volume -	% of 12 Effluent	98.7%	%	Number of aliquots times the threshold volume, divided by the total storm volume		
Sampieu	% of 18 Effluent	8.7%	%			
90th Percentile Flow Rate	Influent	36.288	gpm	90th Percentile flow rate from storm start and end time.		

Storm Date: 12/19/2019

TSS	Parameter	Units	Influent EMC	Information								
TSS		Omis	Measured	Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	S	mg/L	14	20	100	5	6	64.29%	57.14%	1		
Tota	tal Copper	mg/L	0.00365	N/A	N/A	0.0011	0.00164	69.86%	55.07%	0.00007		
Diss	ssolved Copper	mg/L	0.00215	0.005	0.02	ND	0.00127	-	40.93%	0.00007		
E Tota	tal Zinc	mg/L	0.0236	N/A	N/A	0.0013	0.00384	94.49%	83.73%	0.00025		
E Diss	ssolved Zinc	mg/L	0.0279	0.02	0.3	0.0091	0.00842	67.38%	69.82%	0.00025		
Rednined Parameters Tota Iron Iron WW	tal Phosphorus	mg/L	0.19	0.1	0.5	0.409	0.496	-115.26%	-161.05%	0.00505		Increase in total P in Eff
ਰ Iron	n	mg/L	0.164	N/A	N/A	0.0291	0.158	82.26%	3.66%	0.01		
Diss	ssolved Iron	mg/L	0.0268	N/A	N/A	0.0124	0.0257	53.73%	4.10%	0.01		
≥ NW	VTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
N	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
E	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
S PSE	D											
> net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
2 12	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
a <	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
.∰ pH			N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Screening Parameters Variable Variable	thophosphate	mg/L	0.113	N/A	N/A	0.215	0.283	-90.27%	-150.44%	N/A		Increase in phosphate
S Hare	rdness	mg CaCO3/L	153	N/A	N/A	292	315	-90.85%	-105.88%	1		Increase in hardness in Eff
_∞ Calc	lcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
j Mag		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Ĭ TKN	N	mg/L	1.18	N/A	N/A	0.5	0.5	57.63%	57.63%	N/A		
Other Parameters Other Darameters Diss	trate-Nitrite	mg/L	0.1	N/A	N/A	0.11	0.201	-10.00%	-101.00%	N/A		Increase in Nitrate-Nitrite
E Lead		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
E Diss	ssolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	tal Nitrogen	mg/L	1.18	N/A	N/A	ND	ND	-	-	N/A		

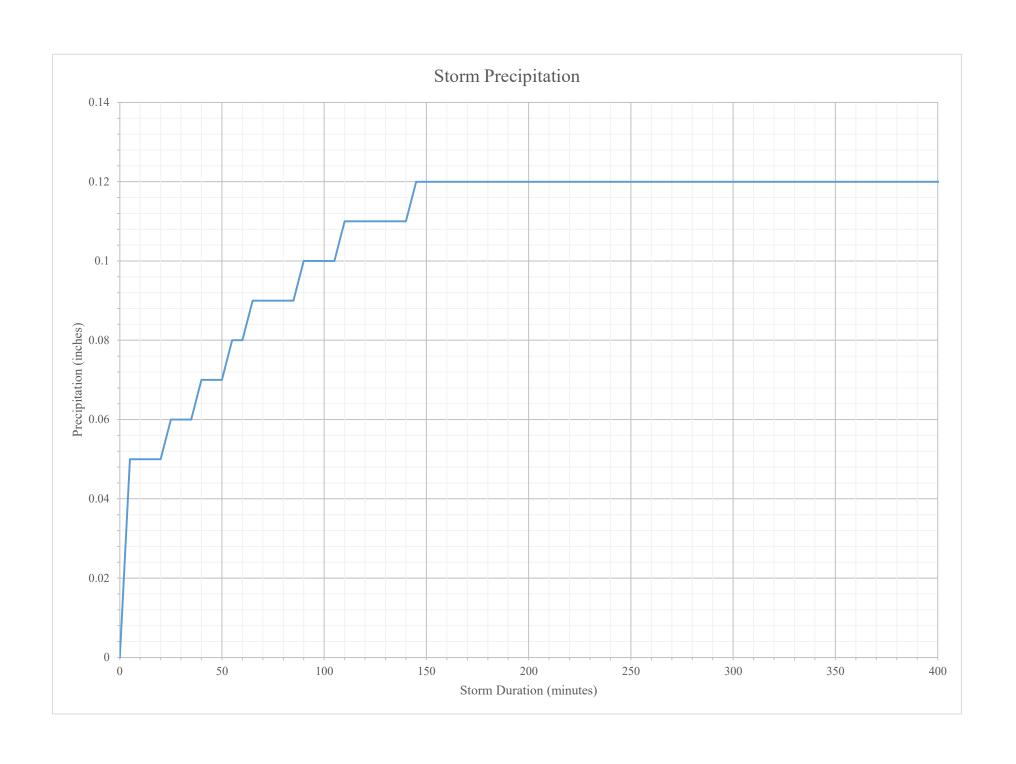
	Paramter	Value	Units	Definition	Notes		
	Storm ID	12/19/2019	-	Date storm event started	Not a qualifying event because does not have a 6 hour dry period after the storm (4 hr 15 min)		
1 [Storm Start Date and Time	12/19/19 6:55 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain			
	Storm End Date and Time	12/20/19 3:10 AM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain			
Storm Data	Total Precipitation Depth	0.44	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event			
Storin Data	Storm Duration	8.25	hours	Duration of storm event			
	Storm Average Intensity	0.05	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)			
	Storm Peak Intensity	0.36	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr			
	Storm Antecedent Dry Period	159.08	hours	From end of the last rainfall event to start of current rainfall event			
	Influent	1113.728	ft ³	Total volume of influent from start of event to end of event			
Total Volume	12" Effluent	240.007	ft ³	Total volume of effluent from start of event to end of event			
	18" Effluent	392.860	ft ³	Total volume of effluent from start of event to end of event			
Average Flow	Influent	19.836	gpm	Average influent flow rate during storm event			
Rate	12" Effluent	3.630	gpm	Average effluent flow rate during storm event			
Kate	18" Effluent	5.621	gpm	Average bypass flow rate during storm evnt			
	Influent	60.596	gpm	Peak influent flow rate during storm event			
Peak Flow Rate	12" Effluent	5.997	gpm	Peak effluent flow rate during storm event			
	18" Effluent	33.132	gpm	Peak bypass flow rate during storm event			
	Influent	35	-				
Aliquots	12" Effluent	19	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45		
	18" Effluent	31	-				
Sample	Influent	2.83	hours		The duration reflects the time between the first and last aliquots, or the first and 45th aliquot if the number		
Duration	12" Effluent	7.67	hours	Time in hours between the collection of the first and last aliquots	of aliquots reported exceeds 45		
Duration	18" Effluent	7.50	hours		or anquois reported execcus 4.5		
	Influent	710	L	Volume of stormwater that pass through the influent before a aliquot is collected			
Threshold	12" Effluent	355	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected			
	18" Effluent	355	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected			
Storm Volume	% of Influent	78.8%	%				
Sampled -	% of 12 Effluent	99.3%	%	Number of aliquots times the threshold volume, divided by the total storm volume			
Sampled	% of 18 Effluent	99.0%	%				
90th Percentile Flow Rate	Influent	55.705	gpm	90th Percentile flow rate from storm start and end time.			

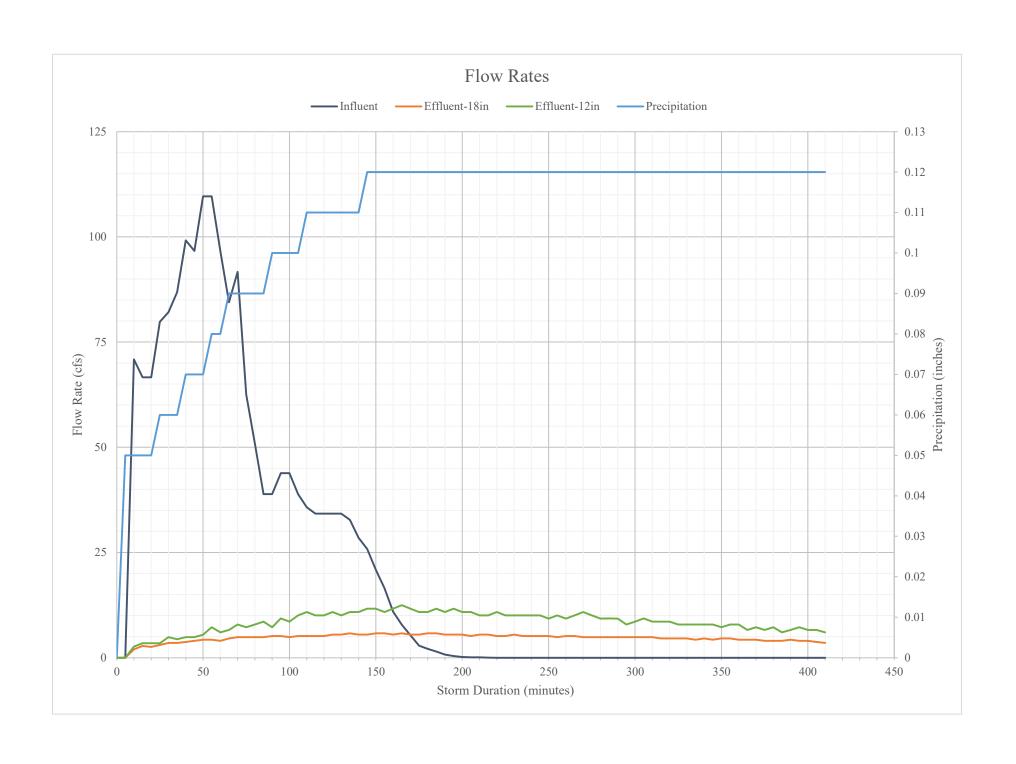




	Paramter	Value	Units	Definition	Notes
	Storm ID	1/28/2020	-	Date storm event started	Combined three storms into one, storms status = 3 at 1/28/2020 13:25, 1/28/2020 13:55 and 1/29/2020 14:25
	Storm Start Date and Time	1/28/20 2:05 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	1/28/20 2:50 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.42	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	12.75	hours	Duration of storm event	
	Storm Average Intensity	0.03	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.12		Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	15.17	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	90.927	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	28.930	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	12.190	ft ³	Total volume of effluent from start of event to end of event	
Average Flow	Influent	123.496	gpm	Average influent flow rate during storm event	
Rate	12" Effluent	4.545	gpm	Average effluent flow rate during storm event	
Rate	18" Effluent	1.239	gpm	Average bypass flow rate during storm evnt	
	Influent	353.844	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	8.016	gpm	Peak effluent flow rate during storm event	
	18" Effluent	1.799	gpm	Peak bypass flow rate during storm event	
	Influent	>45	-		
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	18	-		
Sample	Influent	3.67	hours		The duration reflects the time between the first and last aliquots, or the first and 45th aliquot if the number of aliquots
Duration	12" Effluent	5.92	hours	Time in hours between the collection of the first and last aliquots	reported exceeds 45
Daration	18" Effluent	9.58	hours		reported execus 49
	Influent	350	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	175	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	175	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	100.0%	%		Calculated storm volume sampled = 612%; changed to 100%
Storm volume Sampled	% of 12 Effluent	100.0%	%	Number of aliquots times the threshold volume, divided by the total storm volume	Calculated storm volume sampled = 962%; changed to 100%
Sampled	% of 18 Effluent	100.0%	%		Calculated storm volume sampled = 913%; changed to 100%
90th Percentile Flow Rate	Influent	323.847	gpm	90th Percentile flow rate from storm start and end time.	

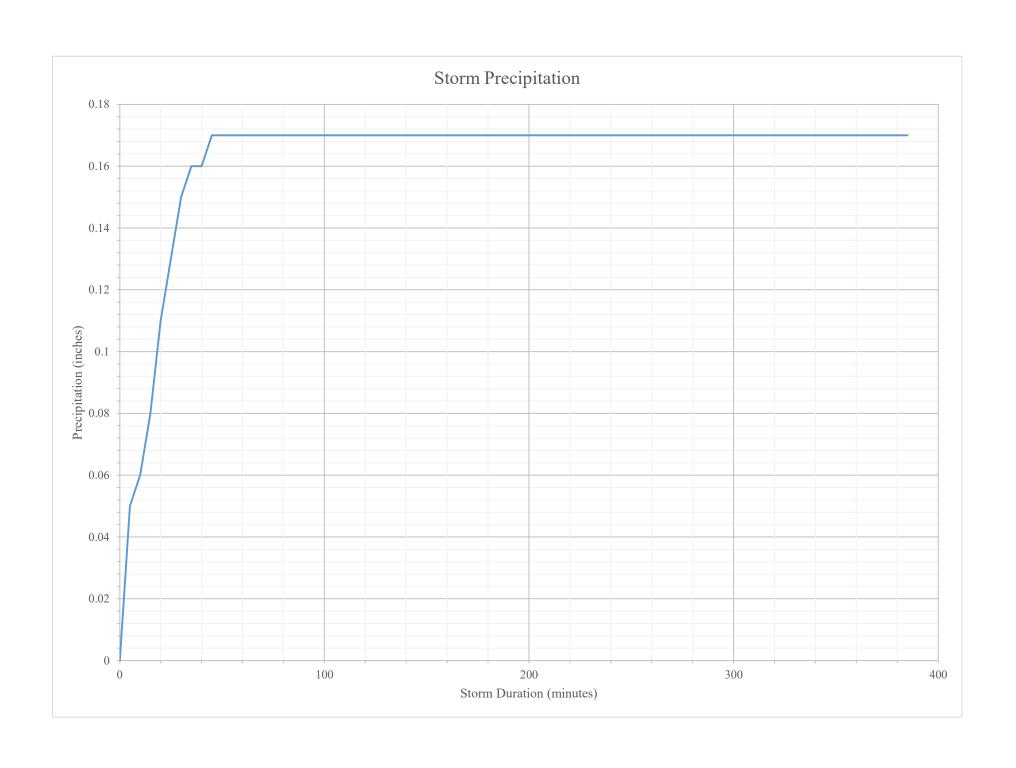
Storm Date: 1/28/2020

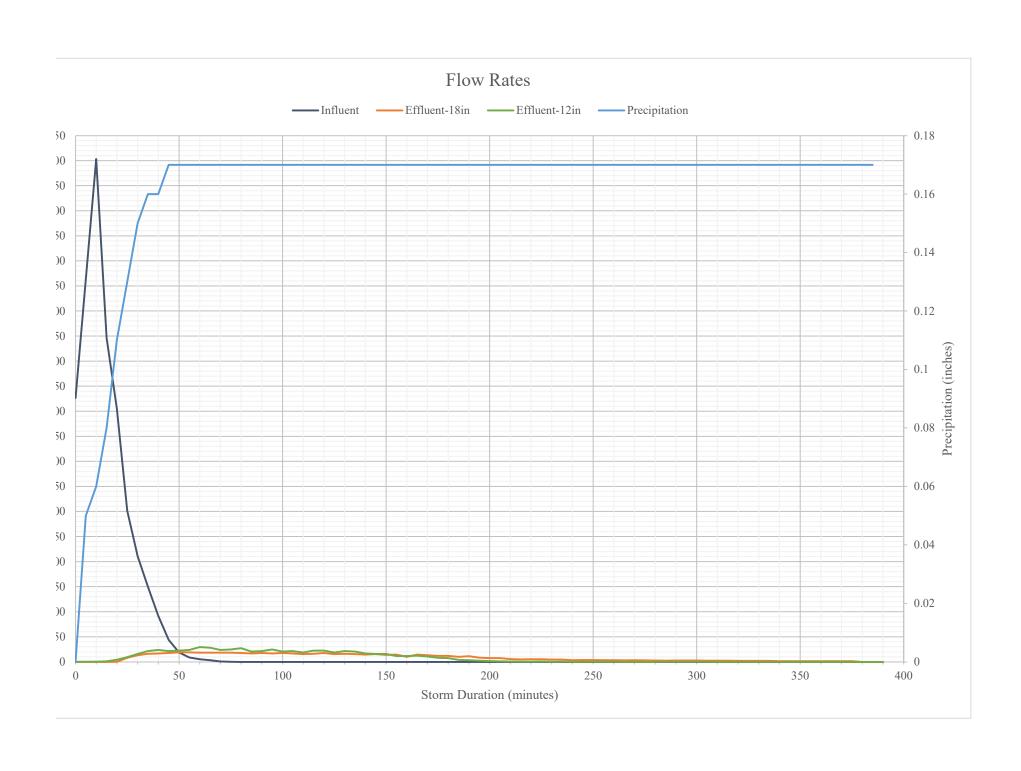

			Storm Date:			1/28/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Flags
	TSS	mg/L	11	20	100	3.5	1.5	68.18%	86.36%	1		
	Total Copper	mg/L	0.00369	N/A	N/A	0.00685	0.00835	-85.64%	-126.29%	0.00007		Increase in copper
o o	Dissolved Copper	mg/L	0.00373	0.005	0.02	0.0067	0.0084	-79.62%	-125.20%	0.00007		Increase in dissolved copper
eters	Total Zinc	mg/L	0.0217	N/A	N/A	0.0057	0.00888	73.73%	59.08%	0.00025		
) E	Dissolved Zinc	mg/L	0.0192	0.02	0.3	0.0176	0.0192	8.33%	0.00%	0.00025		
Para	Total Phosphorus	mg/L	0.105	0.1	0.5	0.516	0.945	-391.43%	-800.00%	0.00505		Increase in total P in Eff
Required Param	Iron	mg/L	0.313	N/A	N/A	0.282	0.476	9.90%	-52.08%	0.01		Increase in iron for 18in
<u>Ē</u>	Dissolved Iron	mg/L	0.017	N/A	N/A	0.136	0.166	-700.00%	-876.47%	0.01		Increase in dissolved iron
l Se	NWTPH-Dx											
, .	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	1	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	1	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	1	0.05		
ers	PSD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	1	N/A		
arar	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	1	N/A		
<u> </u>	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	1	N/A		
l ig	pН		N/A	N/A	N/A	N/A	N/A	-	1	N/A		
Screening Parameters	Orthophosphate	mg/L	0.0502	N/A	N/A	0.445	0.738	-786.45%	-1370.12%	N/A		Increase in phosphate
Sc	Hardness	mg CaCO3/L	20	N/A	N/A	59	52	-195.00%	-160.00%	1		Increase in hardness in Eff
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	1	N/A		
ter	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ıme	TKN	mg/L	0.5	N/A	N/A	0.5	0.801	0.00%	-60.20%	N/A		Increase in TKN in 18in
Other Parameters	Nitrate-Nitrite	mg/L	0.42	N/A	N/A	1	0.683	-138.10%	-62.62%	N/A		Increase in nitrate-nitrite
er J	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
St.	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		



	Paramter	Value	Units	Definition	Notes		
	Storm ID	1/30/2020	-	Date storm event started			
	Storm Start Date and Time	1/29/20 3:50 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain			
	Storm End Date and Time	1/29/20 10:35 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain			
Storm Data	Total Precipitation Depth	0.120	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event			
Storin Data	Storm Duration	6.75	hours	Duration of storm event			
	Storm Average Intensity	0.018	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)			
	Storm Peak Intensity	0.120	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr			
	Storm Antecedent Dry Period	25	hours	From end of the last rainfall event to start of current rainfall event			
	Influent	316	ft ³	Total volume of influent from start of event to end of event			
Total Volume	12" Effluent	123	ft ³	Total volume of effluent from start of event to end of event			
	18" Effluent	68	ft ³	Total volume of effluent from start of event to end of event			
Average Flow	Influent	11.244	gpm	Average influent flow rate during storm event			
Rate	12" Effluent	2.266	gpm	Average effluent flow rate during storm event			
Kate	18" Effluent	1.251	gpm	Average bypass flow rate during storm evnt			
	Influent	28.96	gpm	Peak influent flow rate during storm event			
Peak Flow Rate	12" Effluent	3.30	gpm	Peak effluent flow rate during storm event			
	18" Effluent	1.53	gpm	Peak bypass flow rate during storm event			
	Influent	43	-				
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45		
	18" Effluent	27	-				
Sample	Influent	3.50	hours		The duration reflects the time between the first and last aliquots, or the first and 45th aliquot if the number		
Duration	12" Effluent	5.58	hours	Time in hours between the collection of the first and last aliquots	of aliquots reported exceeds 45		
Duration	18" Effluent	6.17	hours		of anquots reported exceeds 45		
	Influent	140	L	Volume of stormwater that pass through the influent before a aliquot is collected			
Threshold	12" Effluent	70	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected			
	18" Effluent	70	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected			
C: X7.1	% of Influent	67.4%	%				
Storm Volume	% of 12 Effluent	90.7%	%	Number of aliquots times the threshold volume, divided by the total storm volume			
Sampled	% of 18 Effluent	98.6%	%				
90th Percentile Flow Rate	Influent	25.400	gpm	90th Percentile flow rate from storm start and end time.			

1/30/2020 Storm Date: Influent Conc. Influent Conc. Influent EMC 12" Removal 18" Removal Detection Parameter Units Minimum Maximum 12" Effluent 18" Effluent Flags Notes Measured Efficiency Efficiency Limit (DL) Limit Limit 20 100 3.5 ND 65.00% TSS mg/L 10 Total Copper mg/L 0.00414 N/A N/A 0.00682 0.00762 -64.73% -84.06% 0.00007 Increase in copper 0.00118 0.005 0.02 0.00463 0.00648 -292.37% -449.15% 0.00007 Dissolved Copper mg/L Increase in dissolved copper Total Zinc mg/L 0.0198 N/A N/A 0.00644 0.0077667.47% 60.81% 0.00025 0.00804 0.02 0.00483 39.93% 19.28% 0.00025 Dissolved Zinc 0.3 0.00649 mg/L Total Phosphorus 0.107 0.1 0.5 0.572 -434.58% -751.40% 0.00505 Increase in total P in Eff 0.911 mg/L 0.381 N/A N/A 0.385 0.295 -1.05% 22.57% 0.01 Iron mg/L N/A N/A 0.185 0.245 -789.42% -1077.88% Dissolved Iron mg/L 0.0208 0.01 Increase in dissolved iron NWTPH-Dx Lube Oil ND N/A N/A ND ND 0.25 mg/kg Mineral Oil mg/kg ND N/A N/A ND ND N/A Diesel mg/kg ND N/A N/A ND ND -0.05 PSD >250 N/A N/A N/A μm N/A N/A N/A 250 - 62.5 N/A N/A N/A N/A N/A N/A μm <62.5 μm N/A N/A N/A N/A N/A N/A pH Orthophosphate N/A N/A N/A N/A N/A N/A -251.30% mg/L 0.115 N/A N/A 0.404 0.776 -574.78% N/A Increase in phosphate Hardness mg CaCO3/L 15 N/A N/A 51 48.5 -240.00% -223,33% 1 Increase in hardness in Eff N/A N/A N/A N/A N/A N/A Calcium mg/L Magnesium mg/L N/A N/A N/A N/A N/A N/A TKN 0.865 -34.55% -31.66% 0.657 N/A N/A 0.884 N/A Increase in TKN in 18in mg/L ND N/A N/A 0.134 0.228 -34.00% -128.00% N/A Nitrate-Nitrite Increase in nitrate-nitrite, The PQL =0.100 was used to determine the removal efficieny mg/L N/A N/A N/A N/A N/A N/A Lead mg/L N/A N/A Dissolved Lead mg/L N/A N/A N/A N/A N/A N/A N/A Total Nitrogen mg/L N/A N/A N/A

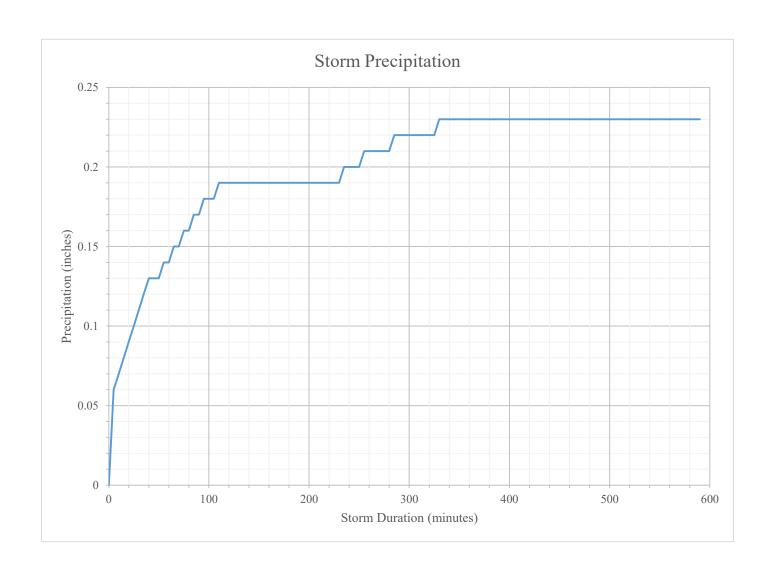


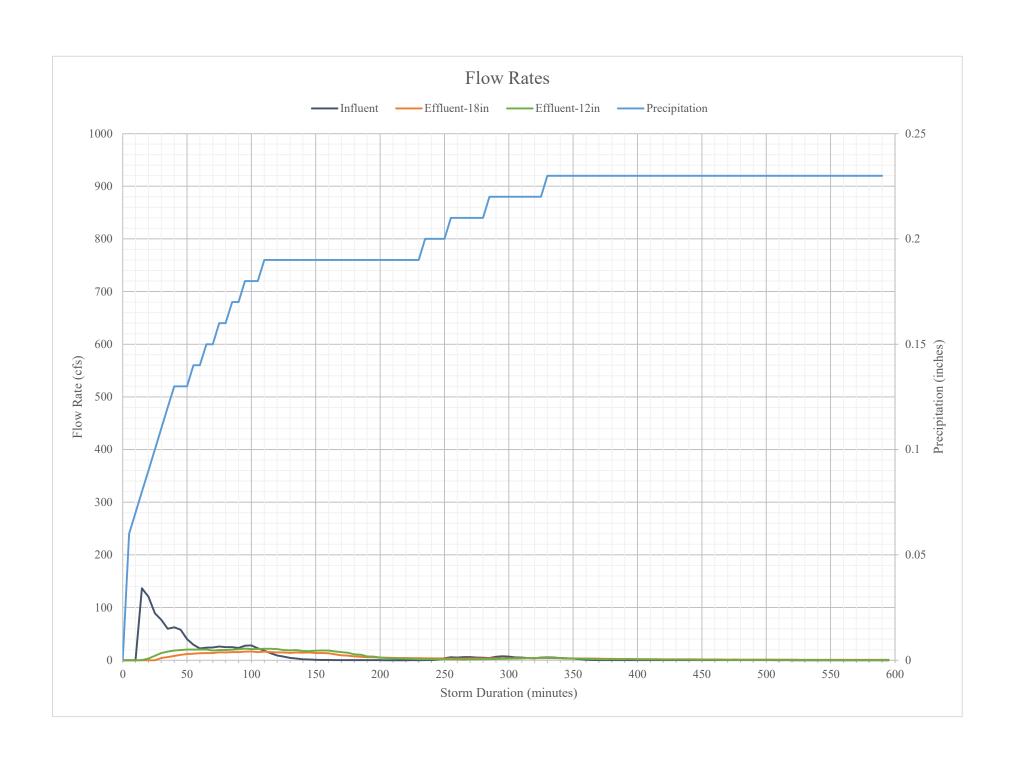


	Paramter	Value	Units	Definition	Notes
	Storm ID	2/23/2020	-	Date storm event started	
	Storm Start Date and Time	2/23/20 1:40 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	2/23/20 8:00 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.17	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	6.33	hours	Duration of storm event	
	Storm Average Intensity	0.03	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.36	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	179.42	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	657.237	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	111.860	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	113.090	ft ³	Total volume of effluent from start of event to end of event	
A El	Influent	61.934	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	2.935	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	2.349	gpm	Average bypass flow rate during storm evnt	
	Influent	265.026	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	7.794	gpm	Peak effluent flow rate during storm event	
	18" Effluent	5.030	gpm	Peak bypass flow rate during storm event	
	Influent	16	-		
Aliquots	12" Effluent	38	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	38	-		
Sample	Influent	1.25	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	3.08	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	5.25	hours		43th anquot if the number of anquots reported exceeds 43
	Influent	165	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	83	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	83	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	14.2%	%		
Sampled -	% of 12 Effluent	99.6%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	98.5%	%		
90th Percentile Flow Rate	Influent	154.940	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 2/23/2020

			Storm Date:			2/23/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	90	20	100	2.7	1.5	97.00%	98.33%	1		
	Total Copper	mg/L	0.00759	N/A	N/A	0.00181	0.00164	76.15%	78.39%	0.00007		
	Dissolved Copper	mg/L	0.00274	0.005	0.02	0.00309	0.00228	-12.77%	16.79%	0.00007		Increased in 12in
ters	Total Zinc	mg/L	0.0654	N/A	N/A	0.00255	0.00186	96.10%	97.16%	0.00025		
l me	Dissolved Zinc	mg/L	0.0398	0.02	0.3	0.04	0.0279	-0.50%	29.90%	0.00025		Increased in dissolved zinc for 12in
Param	Total Phosphorus	mg/L	0.153	0.1	0.5	0.285	0.381	-86.27%	-149.02%	0.00505		Increase in total P in Eff
 	Iron	mg/L	1.86	N/A	N/A	0.147	0.0869	92.10%	95.33%	0.01		
Required	Dissolved Iron	mg/L	0.0514	N/A	N/A	0.0449	0.0328	12.65%	36.19%	0.01		
§	NWTPH-Dx											
_	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
STS	PSD											
nete	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ırar	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
P. P.	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
l ili	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Screening Parameters	Orthophosphate	mg/L	0.0645	N/A	N/A	0.245	0.329	-279.84%	-410.08%	N/A		Increase in orthophosphate
Sci	Hardness	mg CaCO3/L	24.5	N/A	N/A	143	193	-483.67%	-687.76%	1		Increase in hardness in Eff
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ters	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ii ii	TKN	mg/L	0.878	N/A	N/A	0.5	0.958	43.05%	-9.11%	N/A		Increase in TKN in 18in
Other Parameters	Nitrate-Nitrite	mg/L	0.154	N/A	N/A	0.307	0.742	-99.35%	-381.82%	N/A		Increase in nitrate-nitrite
er I	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Oth	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	1.03	N/A	N/A	ND	1.7	-	-65.05%	N/A		Increased in 18in

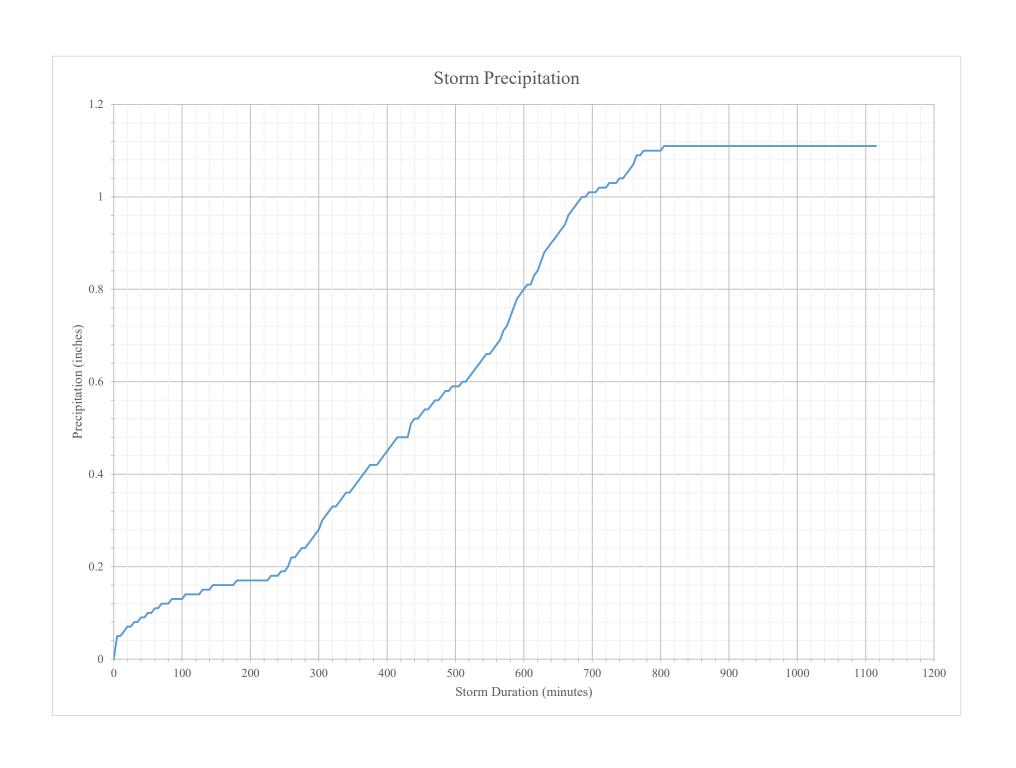


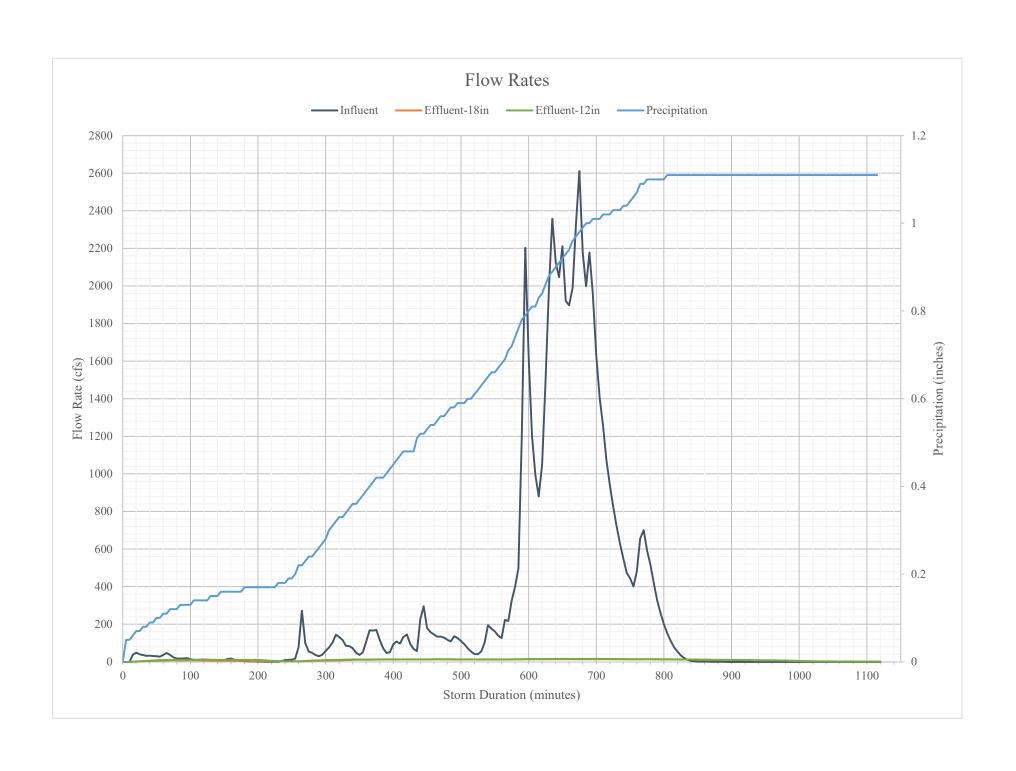


	Paramter	Value	Units	Definition	Notes
	Storm ID	5/6/2020	-	Date storm event started	
	Storm Start Date and Time	5/6/20 9:10 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	5/6/20 6:55 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.23	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	9.75	hours	Duration of storm event	
	Storm Average Intensity	0.02	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	2.74	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	74.08	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	192.103	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	131.125	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	104.421	ft ³	Total volume of effluent from start of event to end of event	
4 51	Influent	2.672	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	1.690	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	1.370	gpm	Average bypass flow rate during storm evnt	
	Influent	31.793	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	5.852	gpm	Peak effluent flow rate during storm event	
	18" Effluent	4.383	gpm	Peak bypass flow rate during storm event	
	Influent	19	-		
Aliquots	12" Effluent	26	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	21	-		
Sample	Influent	5.08	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	6.25	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	8.33	hours		45th anquot if the number of anquots reported exceeds 45
	Influent	278	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	139	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	139	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	97.2%	%		
Sampled -	% of 12 Effluent	97.4%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	98.8%	%		
90th Percentile Flow Rate	Influent	7.373	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 5/6/2020

Parameter Units				Storm Date:			5/6/2020						
Total Copper		Parameter	Units		Minimum	Maximum	12" Effluent	18" Effluent				Flags	Notes
Dissolved Copper mg/L 0.0055 0.005 0.002 0.00519 N/A 5.64% - 0.000007		TSS	mg/L	83	20	100	10	5	87.95%	93.98%	1		
Total Zine mg/L 0.0575 N/A N/A 0.00681 0.00616 88.16% 89.29% 0.00025		Total Copper	mg/L	0.00844	N/A	N/A	0.00533	N/A	36.85%	-	0.00007		
Dissolved Zinc mg/L 0.0355 0.02 0.3 0.0194 0.0242 45.35% 31.83% 0.00025	· ·	Dissolved Copper	mg/L	0.0055	0.005	0.02	0.00519	N/A	5.64%	-	0.00007		
Total Phosphorus mg/L 0.358 0.1 0.5 0.505 0.739 -41.06% -106.42% 0.00505	ters	Total Zinc	mg/L	0.0575	N/A	N/A	0.00681	0.00616	88.16%	89.29%	0.00025		
From mg/L 0.677 N/A N/A 0.231 0.272 65.88% 59.82% 0.01	m	Dissolved Zinc	mg/L	0.0355	0.02	0.3	0.0194	0.0242	45.35%	31.83%	0.00025		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	arg	Total Phosphorus	mg/L	0.358	0.1	0.5	0.505	0.739	-41.06%	-106.42%	0.00505		Increased Total P for Eff
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	- F	Iron	mg/L	0.677	N/A	N/A	0.231	0.272	65.88%	59.82%	0.01		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25) in	Dissolved Iron	mg/L	0.0449	N/A	N/A	0.0633	0.102	-40.98%	-127.17%	0.01		Increased dissolved iron for Eff
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	ङू	NWTPH-Dx											
Diesel mg/kg ND N/A N/A ND ND - - 0.05	-	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
PSD		Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
250		Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
Calcium mg/L N/A	ers	PSD											
Calcium mg/L N/A	net	>250	μm	4.49	N/A	N/A	1.57	2.05	65.03%	54.34%	N/A		
Calcium mg/L N/A	ırar	250 - 62.5	μm	23.93	N/A	N/A	3.14	3.02	86.88%	87.38%	N/A		
Calcium mg/L N/A	P 25	<62.5	μm	54.37	N/A	N/A	8.52	3.66	84.33%	93.27%	N/A		
Calcium mg/L N/A	l ·ill	pН		7.68	N/A	N/A	6.68	6.73	13.02%	12.37%	N/A		
Calcium mg/L N/A	<u> </u>	Orthophosphate	mg/L	0.0308	N/A	N/A	0.342	0.574	-1010.39%	-1763.64%	N/A		Increased orthophosphate for Eff
Magnesium mg/L N/A Sc	Hardness	mg CaCO3/L	19.6		N/A		154	-588.78%	-685.71%	1		Increased Hardness for Eff	
	80	Calcium	mg/L						-	-			
	ţe		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	ame		mg/L							-			
	Para	Nitrate-Nitrite	mg/L				-		-5.97%	-144.78%			Increased nitrate-nititrite for Eff
	er l		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Oth	Dissolved Lead	mg/L	N/A		N/A	N/A	N/A	-	-	N/A		
12.512070 1502170 1502170		Total Nitrogen	mg/L	0.134	N/A	N/A	1.8	1.88	-1243.28%	-1302.99%	N/A		Increased total nitrogen for Eff

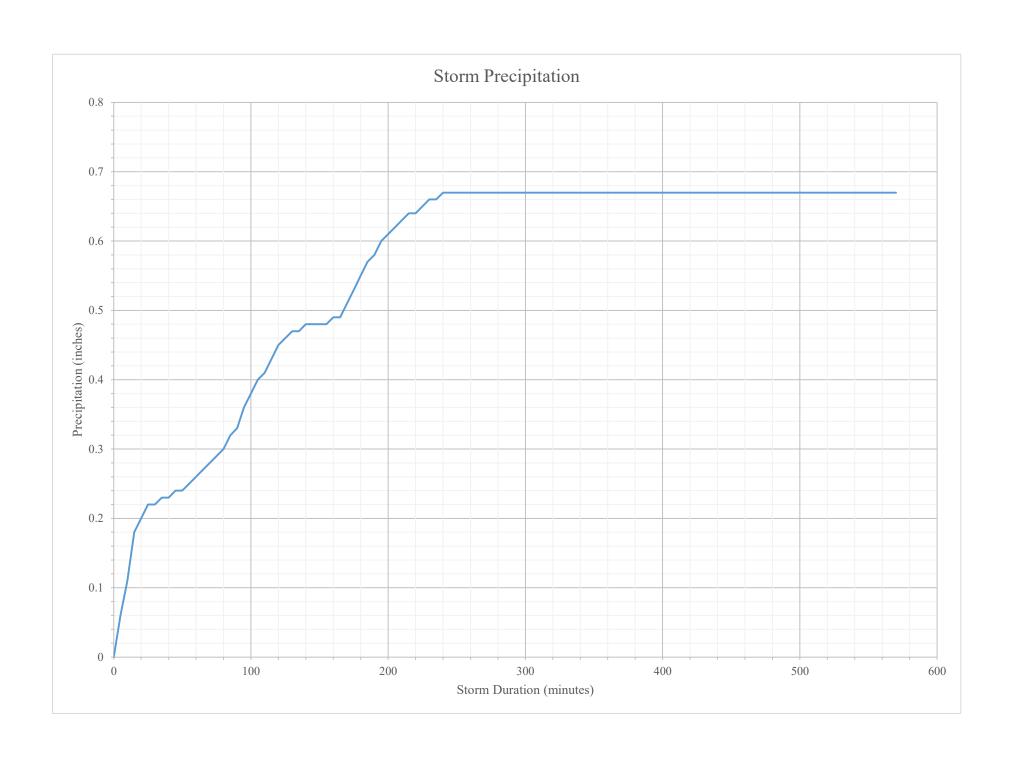


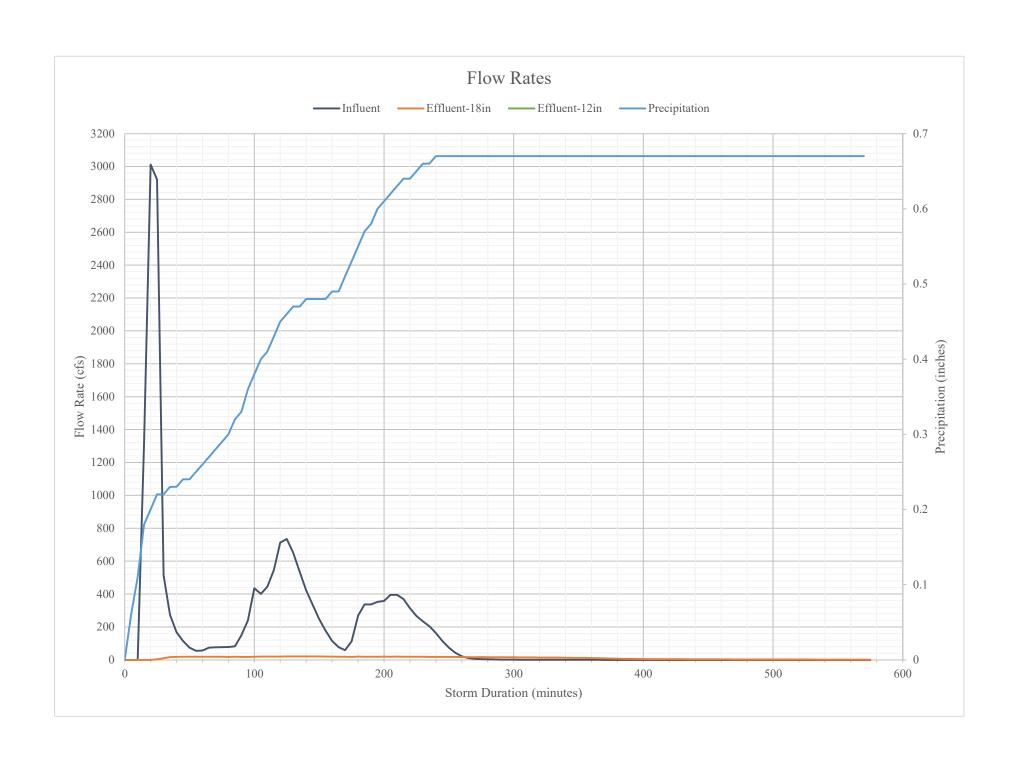


	Paramter	Value	Units	Definition	Notes
	Storm ID	5/20/2020	-	Date storm event started	
	Storm Start Date and Time	5/20/20 11:55 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	5/21/20 6:25 AM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	1.11	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	18.50	hours	Duration of storm event	
	Storm Average Intensity	0.06	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	1.53	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	5.17	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	11386.908	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	393.625	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	352.704	ft ³	Total volume of effluent from start of event to end of event	
A E1	Influent	96.748	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	2.651	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	2.376	gpm	Average bypass flow rate during storm evnt	
	Influent	689.839	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	4.163	gpm	Peak effluent flow rate during storm event	
	18" Effluent	3.845	gpm	Peak bypass flow rate during storm event	
	Influent	>45	1		
Aliquots	12" Effluent	31	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	28	-		
Sample	Influent	8.25	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	15.92	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	17.17	hours		45th anquot it the number of anquots reported exceeds 45
	Influent	712	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	356	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	356	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	9.9%	%		
Sampled -	% of 12 Effluent	99.1%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	99.9%	%		
90th Percentile Flow Rate	Influent	429.479	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 5/20/2020

			Storm Date:			5/20/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	N/A	20	100	N/A	N/A	-	-	1		
	Total Copper	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.00007		
	Dissolved Copper	mg/L	N/A	0.005	0.02	N/A	N/A	-	-	0.00007		
Parameters	Total Zinc	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.00025		
l am	Dissolved Zinc	mg/L	N/A	0.02	0.3	N/A	N/A	-	-	0.00025		
are	Total Phosphorus	mg/L	N/A	0.1	0.5	N/A	N/A	-	-	0.00505		
	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Required	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Reg	NWTPH-Dx											
	Lube Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Diesel	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.05		
SIS	PSD											
Screening Parameters	>250	μm	4.31	N/A	N/A	1.06	1.07	75.41%	75.17%	N/A		
arar	250 - 62.5	μm	15.7	N/A	N/A	1.73	2.25	88.98%	85.67%	N/A		
- E	<62.5	μm	28.92	N/A	N/A	6.63	4.93	77.07%	82.95%	N/A		
l .iii	pH		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
reel	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
S	Hardness	mg CaCO3/L	N/A	N/A	N/A	N/A	N/A	-	-	1		
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
SIS	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
nete	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ıran	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
r Pg	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
0	PO4/P	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

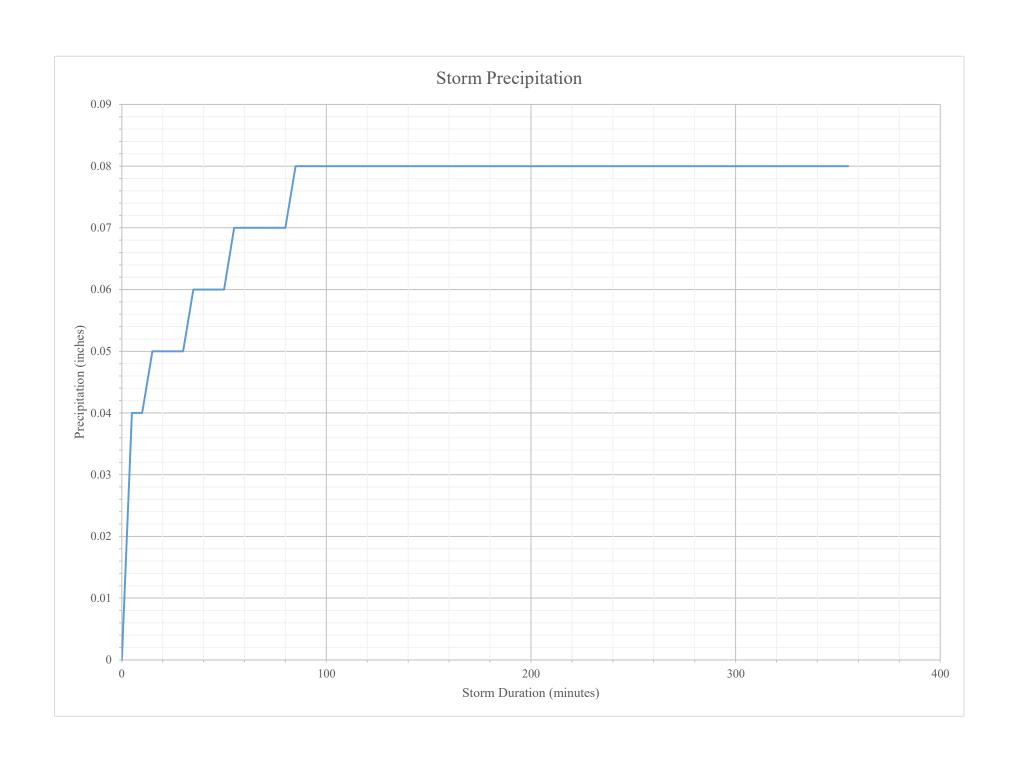


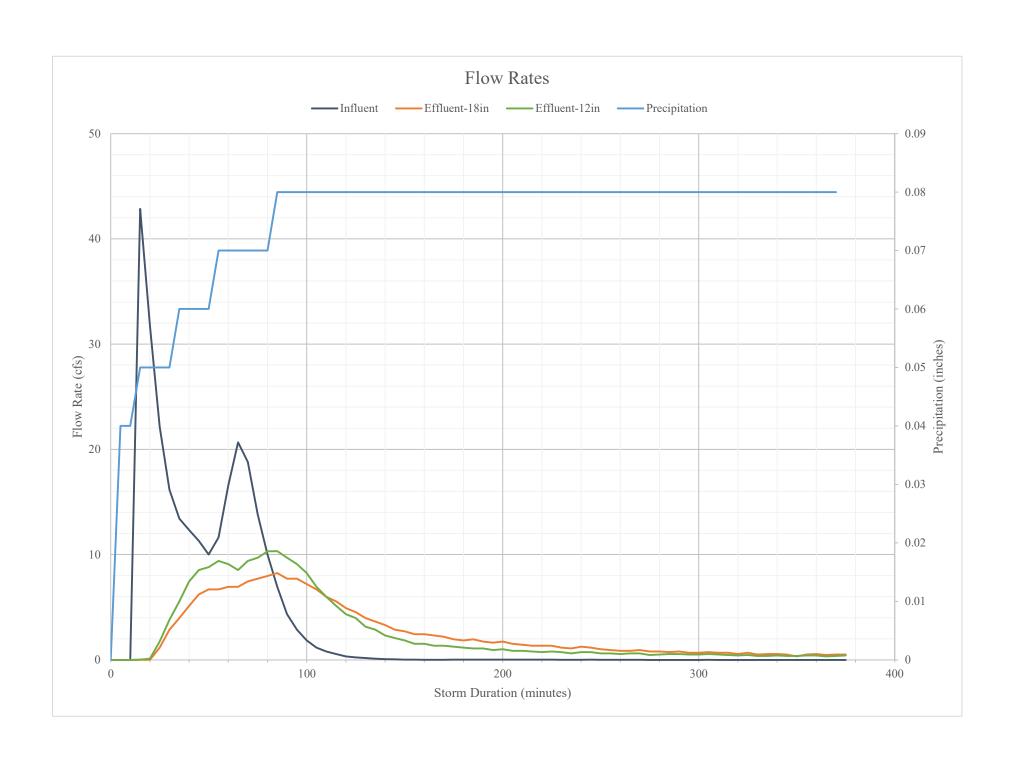


	Paramter	Value	Units	Definition	Notes
	Storm ID	5/31/2020	-	Date storm event started	
	Storm Start Date and Time	5/31/20 3:55 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	5/31/20 1:20 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.67	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	9.42	hours	Duration of storm event	
	Storm Average Intensity	0.07	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	3.07	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	129.92	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	3457.199	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	387.122	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	229.710	ft ³	Total volume of effluent from start of event to end of event	
A E1	Influent	29.591	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	4.162	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	2.594	gpm	Average bypass flow rate during storm evnt	
	Influent	104.483	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	9.078	gpm	Peak effluent flow rate during storm event	
	18" Effluent	5.208	gpm	Peak bypass flow rate during storm event	
	Influent	>45	-		
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	28	-		
Sample	Influent	3.67	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	5.42	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	7.08	hours		43 th anquot it the number of anquots reported exceeds 43
	Influent	450	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	225	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	225	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	20.7%	%		
Storm Volume -	% of 12 Effluent	92.4%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	96.9%	%		
90th Percentile Flow Rate	Influent	141.279	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 5/31/2020

			Storm Date:			5/31/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	120	20	100	12	4	90.00%	96.67%	1		
	Total Copper	mg/L	0.00477	N/A	N/A	0.00344	0.00488	27.88%	-2.31%	0.00007		Increased total copper in 18" eff
	Dissolved Copper	mg/L	0.00119	0.005	0.02	0.00344	0.00432	-189.08%	-263.03%	0.00007		Increased dissolved copper in eff
ters	Total Zinc	mg/L	0.0428	N/A	N/A	0.014	0.00506	67.29%	88.18%	0.00025		
Required Parameters	Dissolved Zinc	mg/L	0.0081	0.02	0.3	0.0143	0.00412	-76.54%	49.14%	0.00025		Increased dissolved zinc in 12" eff
Para	Total Phosphorus	mg/L	N/A	0.1	0.5	N/A	N/A	1	-	0.00505		
l pa	Iron	mg/L	0.842	N/A	N/A	0.459	0.478	45.49%	43.23%	0.01		
n in	Dissolved Iron	mg/L	0.0218	N/A	N/A	0.0825	0.0984	-278.44%	-351.38%	0.01		Increased dissolved iron in eff
§	NWTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	1	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	1	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	1	-	0.05		
ers	PSD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	1	-	N/A		
arar	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
2 E	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
l ·i	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Screening Parameters		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
S	Hardness	mg CaCO3/L	12.7	N/A	N/A	91.1	116	-617.32%	-813.39%	1		Increased hardness in eff
so.	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ster	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ame	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Para	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Off	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

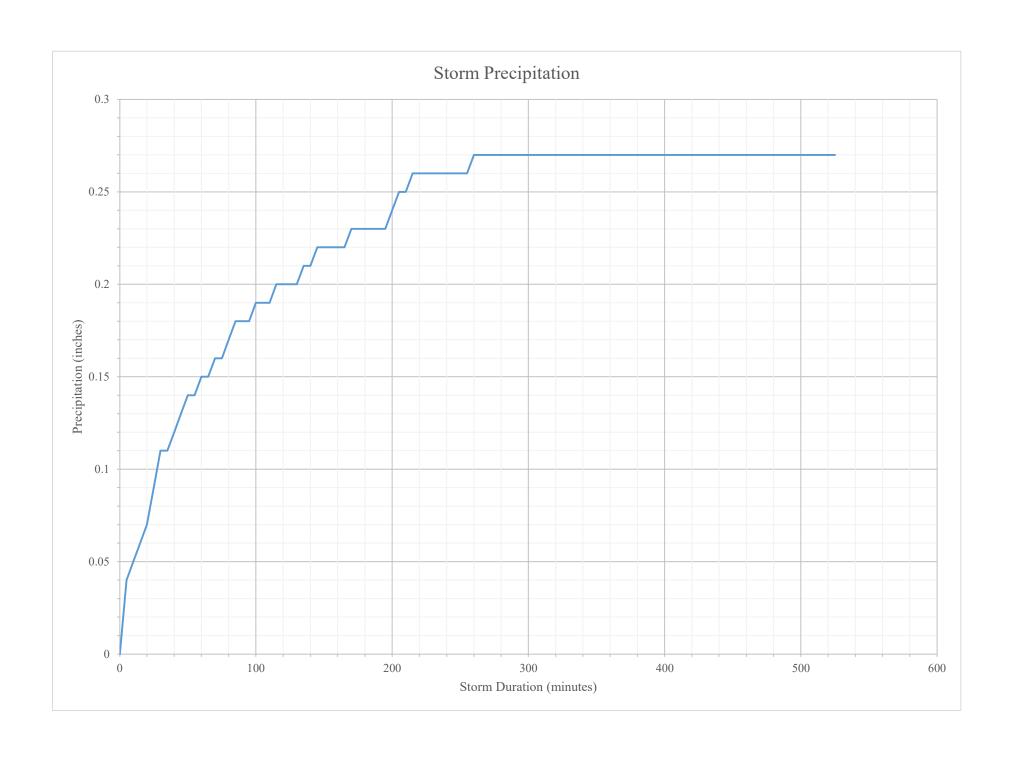


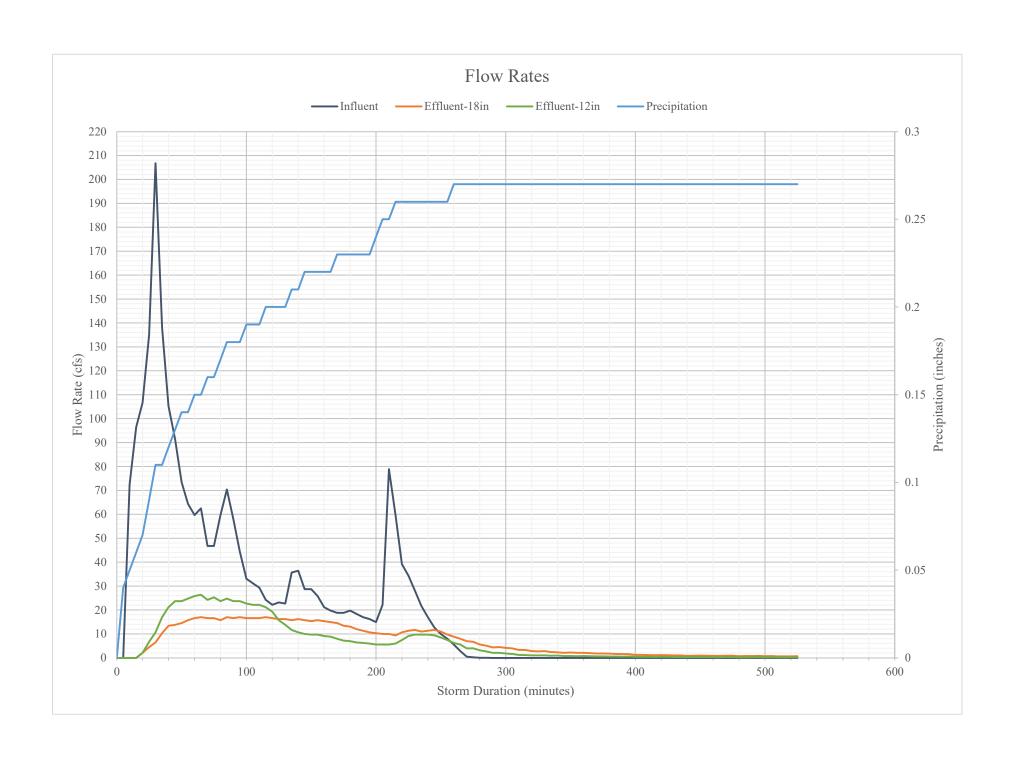


	Paramter	Value	Units	Definition	Notes
	Storm ID	9/25/2020	-	Date storm event started	
	Storm Start Date and Time	9/25/20 10:55 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	9/25/20 5:00 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.08	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	6.08	hours	Duration of storm event	
	Storm Average Intensity	0.01	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	29.17	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	47.905	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	35.279	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	34.247	ft ³	Total volume of effluent from start of event to end of event	
4 51	Influent	1.352	gpm	Average influent flow rate during storm event	
Average Flow -	12" Effluent	0.723	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	0.702	gpm	Average bypass flow rate during storm evnt	
	Influent	11.322	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	2.726	gpm	Peak effluent flow rate during storm event	
	18" Effluent	2.179	gpm	Peak bypass flow rate during storm event	
	Influent	8	-		
Aliquots	12" Effluent	12	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	12	-		
Sample	Influent	1.08	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	3.17	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	4.17	hours		43th anquot if the number of anquots reported exceeds 43
	Influent	154	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	77	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	77	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
C4 V-1	% of Influent	90.9%	%		
Storm Volume — Sampled —	% of 12 Effluent	92.5%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
	% of 18 Effluent	95.3%	%		
90th Percentile Flow Rate	Influent	4.360	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 9/25/2020

	Storm Date:					9/25/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	36	20	100	25	153	30.56%	-325.00%	1		Increase TSS for 18" Eff
	Total Copper	mg/L	0.0146	N/A	N/A	0.00674	0.0056	53.84%	61.64%	0.00007		
	Dissolved Copper	mg/L	0.0112	0.005	0.02	0.00671	0.00297	40.09%	73.48%	0.00007		
eters	Total Zinc	mg/L	0.0595	N/A	N/A	0.00427	0.0094	92.82%	84.20%	0.00025		
	Dissolved Zinc	mg/L	0.0444	0.02	0.3	0.00327	0.00323	92.64%	92.73%	0.00025		
Required Param	Total Phosphorus	mg/L	0.477	0.1	0.5	0.433	0.751	9.22%	-57.44%	0.00505		Increase total phosphorus for 18" Eff
등	Iron	mg/L	1.2	N/A	N/A	0.185	0.435	84.58%	63.75%	0.01		
<u> iğ</u>	Dissolved Iron	mg/L	0.139	N/A	N/A	0.0543	0.0426	60.94%	69.35%	0.01		
&	NWTPH-Dx											
, ,	Lube Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Diesel	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.05		
SIS	PSD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
eening Parameters	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
P P	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	ı	N/A		
l ·ff	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Sci	Hardness	mg CaCO3/L	49.9	N/A	N/A	204	196	-308.82%	-292.79%	1		Hardness for effluents
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
SIS	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Jete	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Lan	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
- Pa	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Ō	PO4/P	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

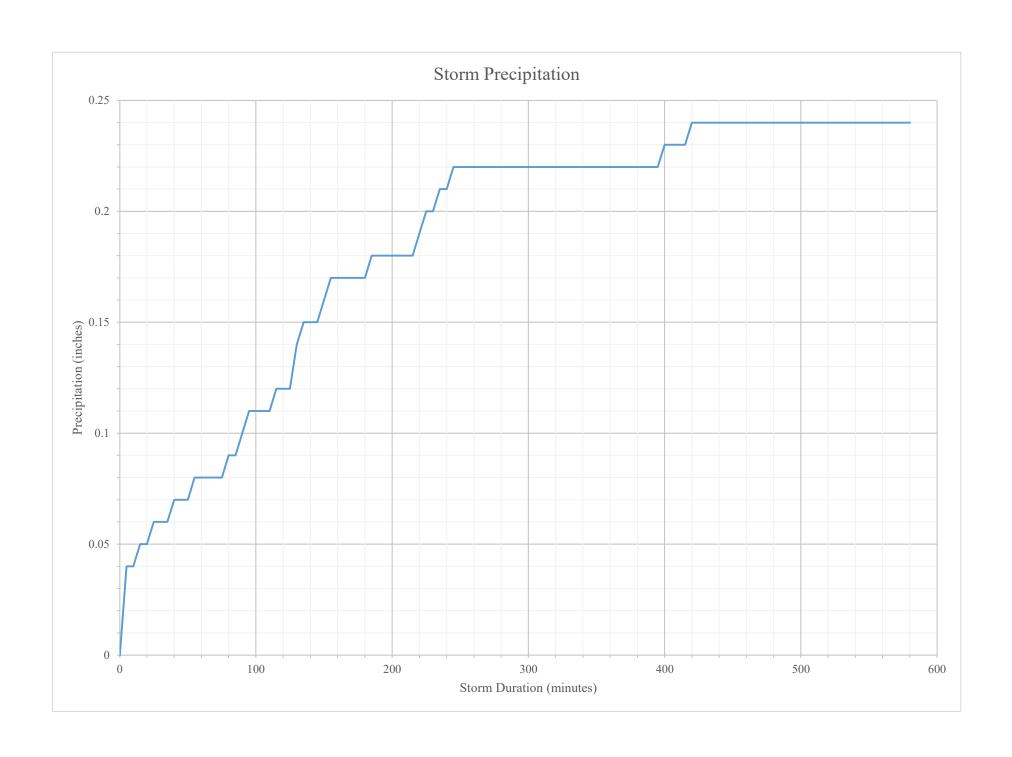


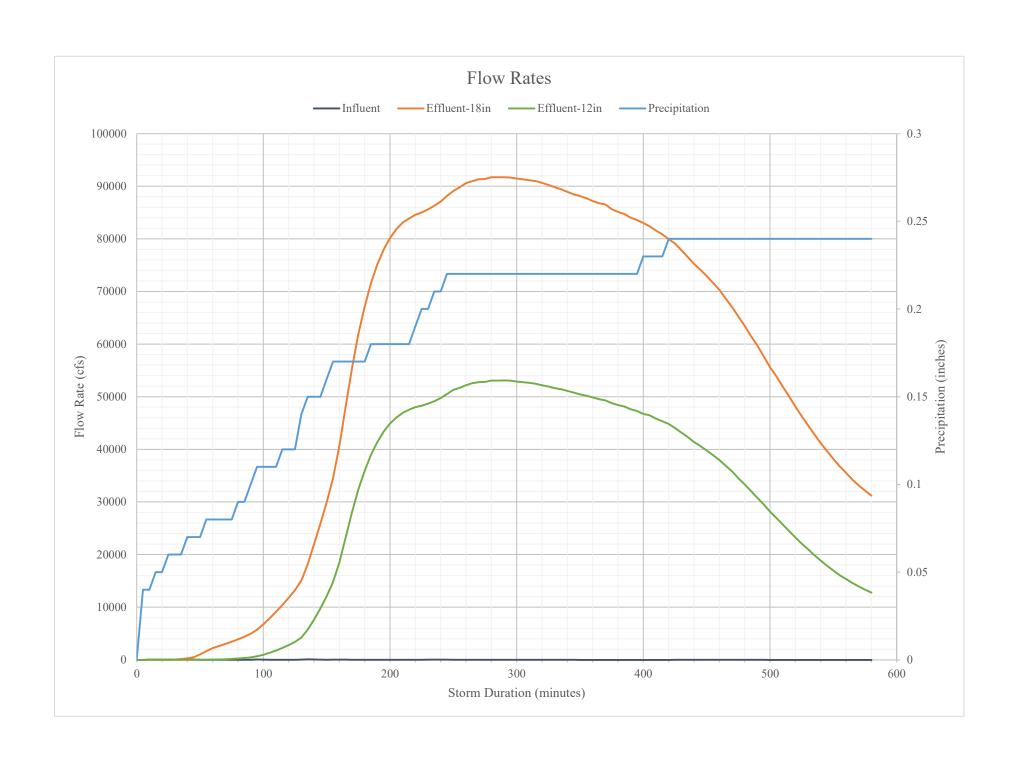


	Paramter	Value	Units	Definition	Notes	
	Storm ID	10/10/2020	-	Date storm event started		
	Storm Start Date and Time	10/10/20 9:05 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain		
	Storm End Date and Time	10/10/20 5:45 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain		
G, D,	Total Precipitation Depth	0.27	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event		
Storm Data	Storm Duration	8.67	hours	Duration of storm event		
	Storm Average Intensity 0.03			Total rainfall amount divided by total rainfall duration (e.g., inches per hour)		
	Storm Peak Intensity	0.24	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr		
	Storm Antecedent Dry Period	352.08	hours	From end of the last rainfall event to start of current rainfall event		
	Influent	421.263	ft ³	Total volume of influent from start of event to end of event		
Total Volume	12" Effluent	127.844	ft ³	Total volume of effluent from start of event to end of event		
	18" Effluent	134.703	ft ³	Total volume of effluent from start of event to end of event		
A 171	Influent	11.249	gpm	Average influent flow rate during storm event		
Average Flow Rate	12" Effluent	1.874	gpm	Average effluent flow rate during storm event		
Rate	18" Effluent	1.975	gpm	Average bypass flow rate during storm evnt		
	Influent	54.635	gpm	Peak influent flow rate during storm event		
Peak Flow Rate	12" Effluent	6.979	gpm	Peak effluent flow rate during storm event		
	18" Effluent	4.495	gpm	Peak bypass flow rate during storm event		
	Influent	30	-			
Aliquots	12" Effluent	18	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45	
	18" Effluent	19	-			
Sample	Influent	3.83	hours		The duration reflects the time between the first and last aliquots, or the first and	
Duration	12" Effluent	4.75	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45	
Duration	18" Effluent	6.25	hours		43th anquot if the number of anquots reported exceeds 43	
	Influent	392	L	Volume of stormwater that pass through the influent before a aliquot is collected		
Threshold	12" Effluent	196	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected		
	18" Effluent	196	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected		
Storm Volume	% of Influent	98.6%	%			
Sampled -	% of 12 Effluent	97.5%	%	Number of aliquots times the threshold volume, divided by the total storm volume		
Sampled	% of 18 Effluent	97.7%	%			
90th Percentile Flow Rate	Influent	24.819	gpm	90th Percentile flow rate from storm start and end time.		

Storm Date: 10/10/2020

			Storm Date:			10/10/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	12	20	100	4.4	4	63.33%	66.67%	1		
	Total Copper	mg/L	0.00734	N/A	N/A	0.00742	0.00633	-1.09%	13.76%	0.00007		Total copper for 12" Eff
	Dissolved Copper	mg/L	0.00491	0.005	0.02	0.00651	0.00563	-32.59%	-14.66%	0.00007		Dissolved copper for effluents
Parameters	Total Zinc	mg/L	0.0423	N/A	N/A	0.00739	0.00893	82.53%	78.89%	0.00025		
ıme	Dissolved Zinc	mg/L	0.0319	0.02	0.3	0.0149	0.0223	53.29%	30.09%	0.00025		
are	Total Phosphorus	mg/L	0.288	0.1	0.5	0.475	0.715	-64.93%	-148.26%	0.00505		Total phosphorus for effluents
	Iron	mg/L	0.866	N/A	N/A	0.502	0.444	42.03%	48.73%	0.01		
Required	Dissolved Iron	mg/L	0.0771	N/A	N/A	0.0826	0.114	-7.13%	-47.86%	0.01		Dissolved iron for effluents
इ	NWTPH-Dx											
_	Lube Oil	mg/kg	0.52	N/A	N/A	ND	ND	23.08%	23.08%	0.4		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
SIS	PSD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
eening Parameters	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
P ₂	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ing	pH		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
eel	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Scr	Hardness	mg CaCO3/L	26.9	N/A	N/A	136	146	-405.58%	-442.75%	1		Hardness for effluents
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
213	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	TKN	mg/L	1.39	N/A	N/A	2.19	1.56	-57.55%	-12.23%	N/A		TKN for effluents
ıran	Nitrate-Nitrite	mg/L	0.12	N/A	N/A	0.177	0.468	-47.50%	-290.00%	N/A		Nitrate-Nitrite for effluents
Ъ	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ther	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Ō	PO4/P	mg/L	0.194	N/A	N/A	0.418	0.642	-115.46%	-230.93%	N/A		PO4/P for effluents
	Total Nitrogen	mg/L	1.51	N/A	N/A	2.37	2.03	-56.95%	-34.44%	N/A		Total Nitrogen for effluents

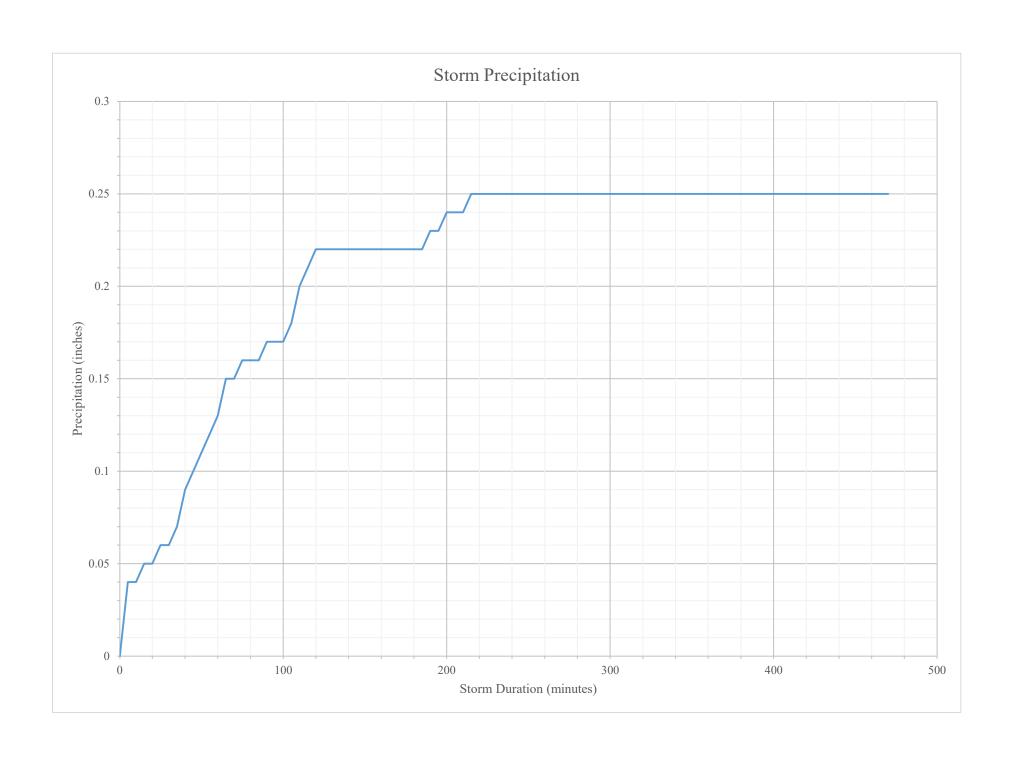


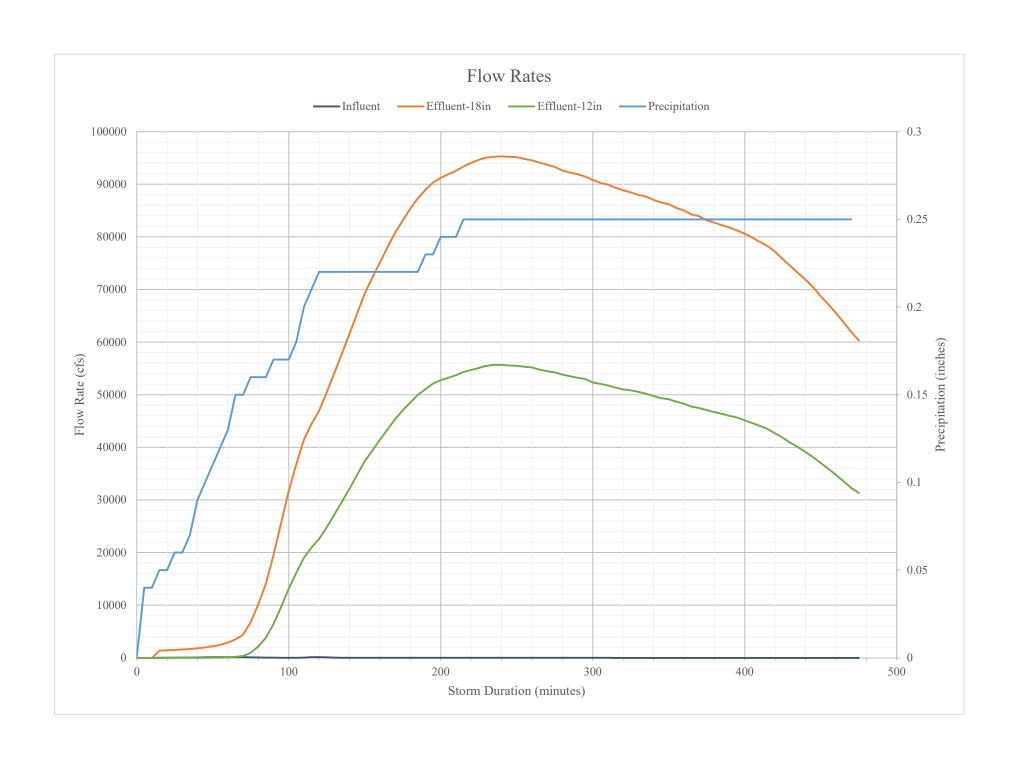


Г	Paramter	Value	Units	Definition	Notes	
	Storm ID	10/11/2020	-	Date storm event started		
	Storm Start Date and Time	10/11/20 6:20 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain		
	Storm End Date and Time	10/12/20 3:55 AM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain		
] c, D, [Total Precipitation Depth	0.24	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event		
Storm Data	Storm Duration	9.58	hours	Duration of storm event		
	Storm Average Intensity	0.03	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)		
	Storm Peak Intensity	3.16	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr		
	Storm Antecedent Dry Period	24.58	hours	From end of the last rainfall event to start of current rainfall event		
	Influent	191.709	ft ³	Total volume of influent from start of event to end of event		
Total Volume	12" Effluent	612592.933	ft ³	Total volume of effluent from start of event to end of event	Effluent larger than influent flows	
	18" Effluent	1133901.413	ft ³	Total volume of effluent from start of event to end of event	Effluent larger than influent flows	
Average Flow	Influent	3.050	gpm	Average influent flow rate during storm event		
Rate	12" Effluent	7965.714	gpm	Average effluent flow rate during storm event	Effluent larger than influent flows	
Kate	18" Effluent	14744.431	gpm	Average bypass flow rate during storm event	Effluent larger than influent flows	
	Influent	27.824	gpm	Peak influent flow rate during storm event		
Peak Flow Rate	12" Effluent	14030.383	gpm	Peak effluent flow rate during storm event	Effluent larger than influent flows	
	18" Effluent	24229.855	gpm	Peak bypass flow rate during storm event	Effluent larger than influent flows	
	Influent	11	-			
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45	
	18" Effluent	>45	-			
Sample	Influent	3.92	hours		The duration reflects the time between the first and last aliquots, or the first and	
Duration	12" Effluent	3.75	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45	
Duration	18" Effluent	3.67	hours		43th anquot if the number of anquots reported exceeds 43	
	Influent	474	L	Volume of stormwater that pass through the influent before a aliquot is collected		
Threshold	12" Effluent	237	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected		
	18" Effluent	237	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected		
Storm Volume	% of Influent	96.1%	%			
Sampled -	% of 12 Effluent	0.1%	%	Number of aliquots times the threshold volume, divided by the total storm volume		
Sampled	% of 18 Effluent	0.0%	%			
90th Percentile Flow Rate	Influent	7.906	gpm	90th Percentile flow rate from storm start and end time.		

Storm Date: 10/11/2020

	Storm Date:					10/11/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	12.3	20	100	9.4	7.6	23.58%	38.21%	1		
	Total Copper	mg/L	0.00523	N/A	N/A	0.00931	0.00818	-78.01%	-56.41%	0.00007		Increased total copper in effluents
· ·	Dissolved Copper	mg/L	0.00366	0.005	0.02	0.00762	0.00648	-108.20%	-77.05%	0.00007		Increased dissolved copper in effluents
Required Parameters	Total Zinc	mg/L	0.0274	N/A	N/A	0.00841	0.00994	69.31%	63.72%	0.00025		
l m	Dissolved Zinc	mg/L	0.0244	0.02	0.3	0.0208	0.00719	14.75%	70.53%	0.00025		
ara	Total Phosphorus	mg/L	0.148	0.1	0.5	0.427	0.45	-188.51%	-204.05%	0.00505		Increased total phosphorus in effluents
l pa	Iron	mg/L	0.544	N/A	N/A	0.676	0.447	-24.26%	17.83%	0.01		Increaed iron in 12" eff
Ę.	Dissolved Iron	mg/L	0.0258	N/A	N/A	0.0798	0.0594	-209.30%	-130.23%	0.01		Increased dissolved iron in effluents
ङ्घ	NWTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
SIS	PSD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ıran	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
J. P.	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Screening Parameters	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ieei	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Sci	Hardness	mg CaCO3/L	19.2	N/A	N/A	136	190	-608.33%	-889.58%	1		Increased hardness in effluents
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
SIS	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ete	TKN	mg/L	0.653	N/A	N/A	1.29	1.05	-97.55%	-60.80%	N/A		Increased TKN in effluents
ran	Nitrate-Nitrite	mg/L	0.159	N/A	N/A	0.146	0.194	8.18%	-22.01%	N/A		Increased Nitrate-nitrite in 18" eff
- Pa	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
5	PO4/P	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	0.812	N/A	N/A	1.44	1.25	-77.34%	-53.94%	N/A		Increased total nitrogen in effluents

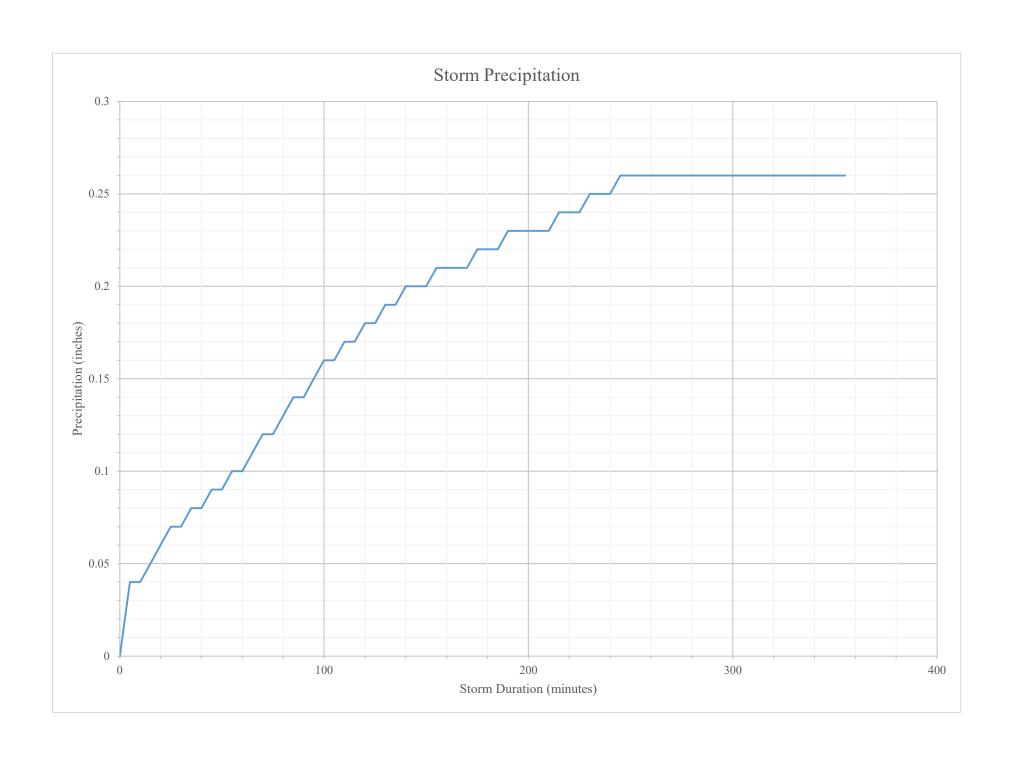


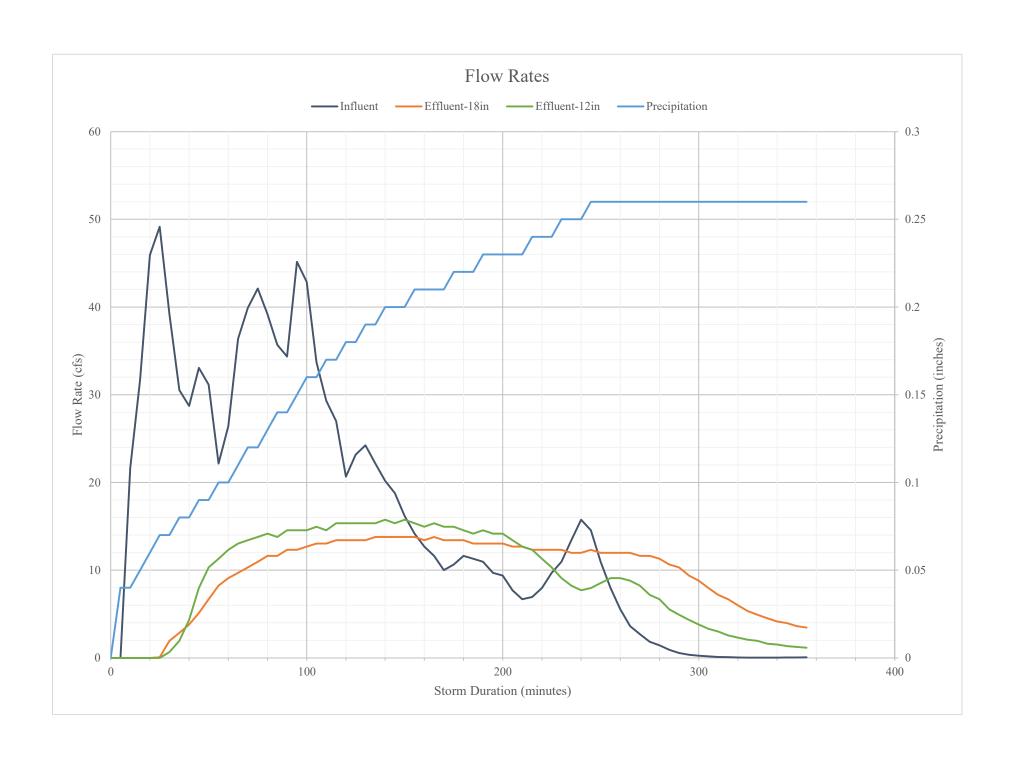


Г	Paramter	Value	Units	Definition	Notes
	Storm ID	10/13/2020	-	Date storm event started	
	Storm Start Date and Time	10/13/20 7:55 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	10/13/20 3:40 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.25	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	7.75	hours	Duration of storm event	
	Storm Average Intensity	0.03	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.24	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	28.00	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	310.457	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	603503.180	ft ³	Total volume of effluent from start of event to end of event	Effluent larger than influent flows
	18" Effluent	1085944.876	ft ³	Total volume of effluent from start of event to end of event	Effluent larger than influent flows
Average Flow	Influent	7.254	gpm	Average influent flow rate during storm event	
Rate	12" Effluent	9703.919	gpm	Average effluent flow rate during storm event	Effluent larger than influent flows
Kate	18" Effluent	17461.252	gpm	Average bypass flow rate during storm evnt	Effluent larger than influent flows
	Influent	36.091	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	14710.330	gpm	Peak effluent flow rate during storm event	Effluent larger than influent flows
	18" Effluent	25176.750	gpm	Peak bypass flow rate during storm event	Effluent larger than influent flows
	Influent	20	-		
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	>45	-		
Sample	Influent	3.67	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration -	12" Effluent	3.67	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	4.25	hours		43th anquot if the number of anquots reported exceeds 43
	Influent	438	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	219	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	219	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	99.7%	%		
Sampled -	% of 12 Effluent	0.1%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampieu	% of 18 Effluent	0.0%	%		
90th Percentile Flow Rate	Influent	29.840	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 10/13/2020

			Storm Date:			10/13/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	N/A	20	100	N/A	N/A	-	-	1		
	Total Copper	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.00007		
	Dissolved Copper	mg/L	N/A	0.005	0.02	N/A	N/A	-	-	0.00007		
ters	Total Zinc	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.00025		
ame	Dissolved Zinc	mg/L	N/A	0.02	0.3	N/A	N/A	-	-	0.00025		
Required Parameters	Total Phosphorus	mg/L	N/A	0.1	0.5	N/A	N/A	1	-	0.00505		
<u> </u>	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
<u> </u>	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Sec	NWTPH-Dx											
	Lube Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.25		
	Mineral Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Diesel	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.05		
ers	PSD											
Screening Parameters	>250	μm		N/A	N/A			-	-	N/A		
araı	250 - 62.5	μm		N/A	N/A			-	-	N/A		
9 P	<62.5	μm		N/A	N/A			-	-	N/A		
l ·f	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
] [5]	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
S	Hardness	mg CaCO3/L	N/A	N/A	N/A	N/A	N/A	-	-	1		
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
SIS	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
nete	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ıran	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
the	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
0	PO4/P	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

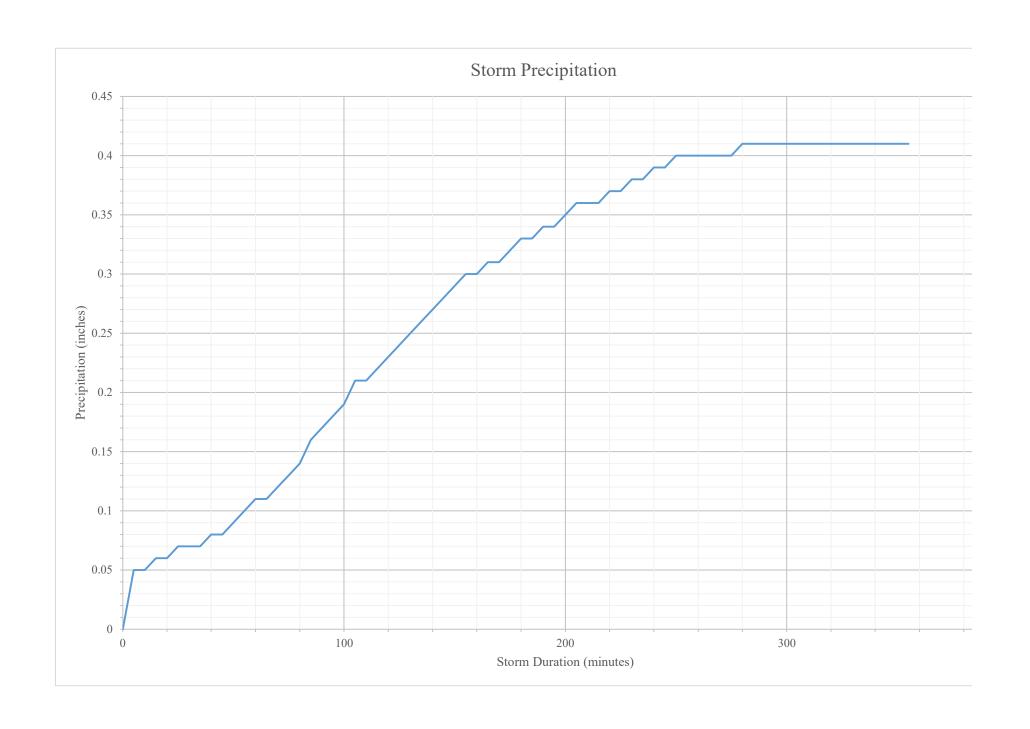


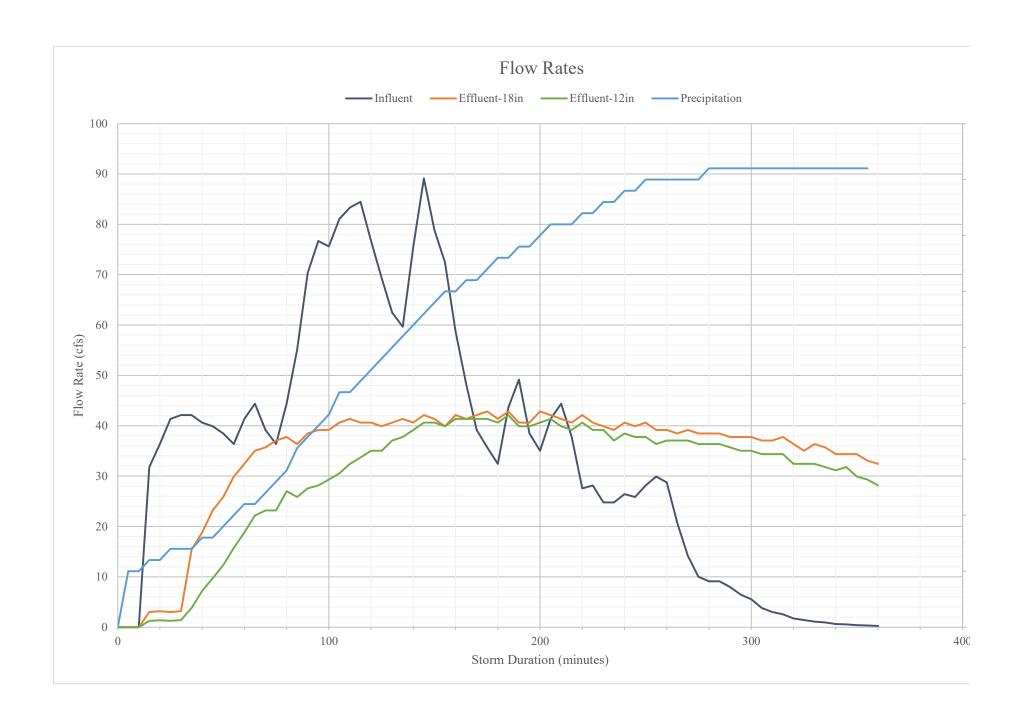


	Paramter	Value	Units	Definition	Notes
	Storm ID	11/5/2020	-	Date storm event started	
	Storm Start Date and Time	11/5/20 5:05 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	11/6/20 2:30 AM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.27	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	9.42	hours	Duration of storm event	
	Storm Average Intensity	0.03	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	3.35	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	41.58	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	203.803	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	118.835	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	133.903	ft ³	Total volume of effluent from start of event to end of event	
4 171	Influent	4.010	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	1.615	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	1.820	gpm	Average bypass flow rate during storm event	
	Influent	12.989	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	4.163	gpm	Peak effluent flow rate during storm event	
	18" Effluent	3.642	gpm	Peak bypass flow rate during storm event	
	Influent	17	-		
Aliquots	12" Effluent	20	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	22	-		
C1-	Influent	3.92	hours		The duration reflects the time between the first and last aliquots, or the first and
Sample - Duration -	12" Effluent	6.42	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	6.42	hours		43th anquot if the number of anquots reported exceeds 43
	Influent	332	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	166	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	166	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
G. 77.1	% of Influent	97.9%	%		
Storm Volume	% of 12 Effluent	98.7%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	96.4%	%		
90th Percentile Flow Rate	Influent	9.980	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 11/5/2020

Storm Date: 11/3/2020												
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	54	20	100	12	9	77.78%	83.33%	1		
	Total Copper	mg/L	0.00551	N/A	N/A	0.00487	0.00412	11.62%	25.23%	0.00007		
· ·	Dissolved Copper	mg/L	0.00293	0.005	0.02	0.00395	0.00341	-34.81%	-16.38%	0.00007		Increased dissolved copper in eff
Required Parameters	Total Zinc	mg/L	0.0343	N/A	N/A	0.0038	0.00688	88.92%	79.94%	0.00025		
ame	Dissolved Zinc	mg/L	0.0167	0.02	0.3	0.00883	0.00906	47.13%	45.75%	0.00025		
Para	Total Phosphorus	mg/L	0.6	0.1	0.5	0.232	1.92	61.33%	-220.00%	0.00505		Increased TP in 18" eff
등	Iron	mg/L	1.35	N/A	N/A	0.431	0.352	68.07%	73.93%	0.01		
<u> </u>	Dissolved Iron	mg/L	0.114	N/A	N/A	0.0591	0.073	48.16%	35.96%	0.01		
) Se	NWTPH-Dx							-	-			
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
ers	PSD											
net	>250	μт	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Screening Parameters	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
P. D.	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
l ·ff	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
] [6	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Sci	Hardness	mg CaCO3/L	18.8	N/A	N/A	135	135	-618.09%	-618.09%	1		Increased hardness in eff
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
SIS	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
nete	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	1	-	N/A		
Lan	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
. Pa	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Ō	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	PO4/4	mg/L	0.204	N/A	N/A	0.29	0.454			N/A		

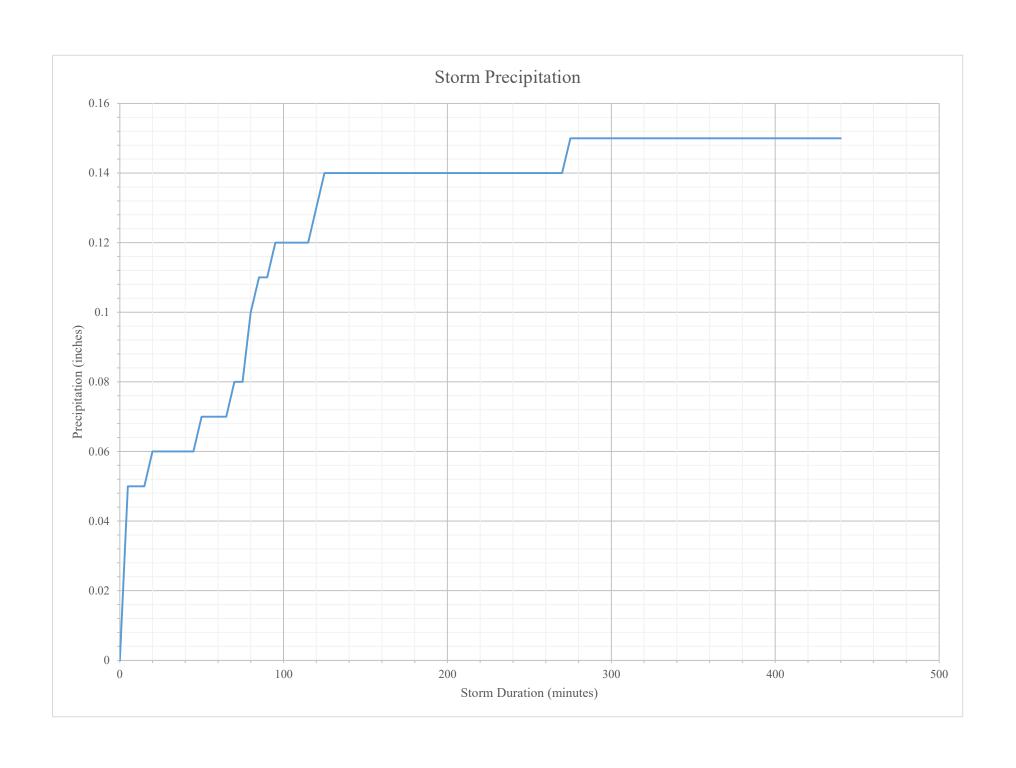


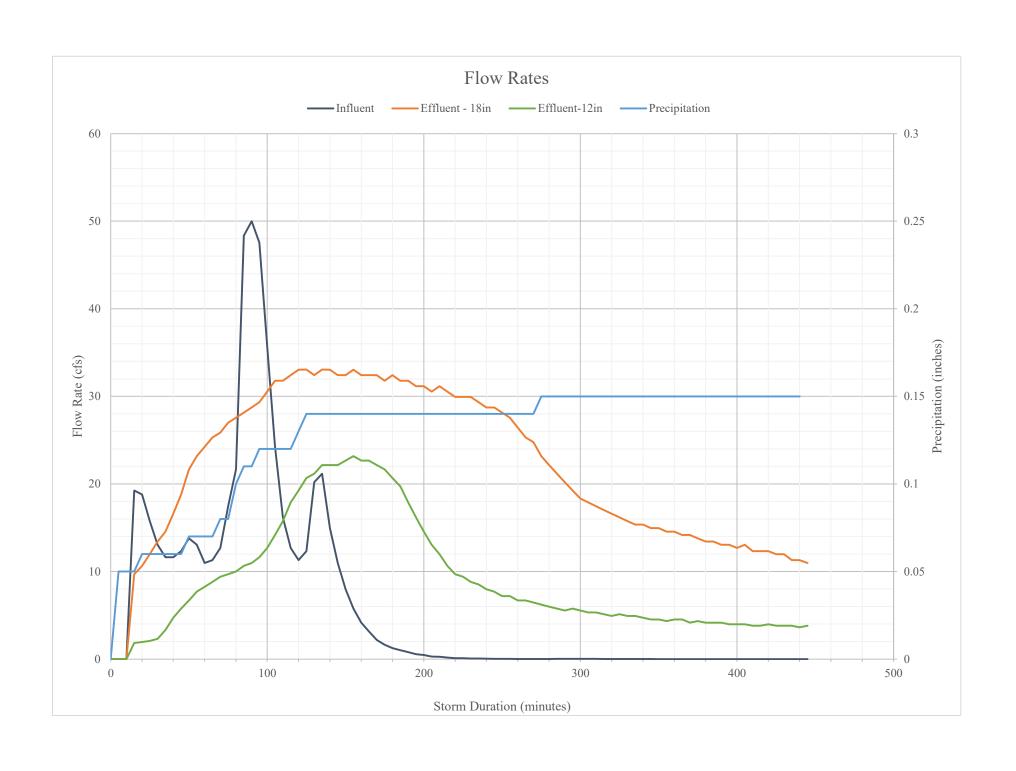


	Paramter	Value	Units	Definition	Notes			
	Storm ID	11/13/2020	-	Date storm event started				
	Storm Start Date and Time	11/13/20 7:55 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain				
	Storm End Date and Time	11/13/20 5:55 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain				
Storm Data	Total Precipitation Depth	0.43	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event				
Storin Data	Storm Duration	10.00	hours	Duration of storm event				
	Storm Average Intensity	0.04	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)				
	Storm Peak Intensity	3.21	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr				
	Storm Antecedent Dry Period	59.67	hours	From end of the last rainfall event to start of current rainfall event				
	Influent	459.964	ft ³	Total volume of influent from start of event to end of event				
Total Volume	12" Effluent	472.460	ft ³	Total volume of effluent from start of event to end of event				
	18" Effluent	615.278	ft ³	Total volume of effluent from start of event to end of event				
Average Flow	Influent	6.810	gpm	Average influent flow rate during storm event				
Rate	12" Effluent	5.888	gpm	Average effluent flow rate during storm event				
Kate	18" Effluent	7.667	gpm	Average bypass flow rate during storm event				
	Influent	23.543	gpm	Peak influent flow rate during storm event				
Peak Flow Rate	12" Effluent	11.123	gpm	Peak effluent flow rate during storm event				
	18" Effluent	11.322	gpm	Peak bypass flow rate during storm event				
	Influent	28	-					
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45			
	18" Effluent	>45	-					
Sample	Influent	5.75	hours		The duration reflects the time between the first and last aliquots, or the first and			
Duration	12" Effluent	4.83	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45			
Duration	18" Effluent	4.33	hours		43th anquot it the number of anquots reported exceeds 43			
	Influent	460	L	Volume of stormwater that pass through the influent before a aliquot is collected				
Threshold	12" Effluent	230	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected				
	18" Effluent	230	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected				
Storm Volume	% of Influent	98.9%	%					
Storm volume -	% of 12 Effluent	77.4%	%	Number of aliquots times the threshold volume, divided by the total storm volume				
Sampled	% of 18 Effluent	59.4%	%					
90th Percentile Flow Rate	Influent	18.590	gpm	90th Percentile flow rate from storm start and end time.				

Storm Date: 11/13/2020

			Storm Date:			11/13/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	15	20	100	3.67	4	75.53%	73.33%	1		
	Total Copper	mg/L	0.00286	N/A	N/A	0.00306	0.00227	-6.99%	20.63%	0.00007		Increased total copper in 12" eff
	Dissolved Copper	mg/L	0.00198	0.005	0.02	0.00255	0.00178	-28.79%	10.10%	0.00007		Increased dissolved copper in 12" eff
Required Parameters	Total Zinc	mg/L	0.0192	N/A	N/A	0.00329	0.00264	82.86%	86.25%	0.00025		
l m	Dissolved Zinc	mg/L	0.0238	0.02	0.3	0.0125	0.00956	47.48%	59.83%	0.00025		
Pare	Total Phosphorus	mg/L	0.392	0.1	0.5	0.268	0.3	31.63%	23.47%	0.00505		
ed 1	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	1	ı	0.01		
H.	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	1	1	0.01		
Red	NWTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	ı	ı	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	1	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
ers	PSD											
Screening Parameters	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
arar	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
g P	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
l ·il	pH		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ree		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
S	Hardness	mg CaCO3/L	36.6	N/A	N/A	117	200	-219.67%	-446.45%	1		Increased hardness in eff
o	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ter	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
alie	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Para	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Oth	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

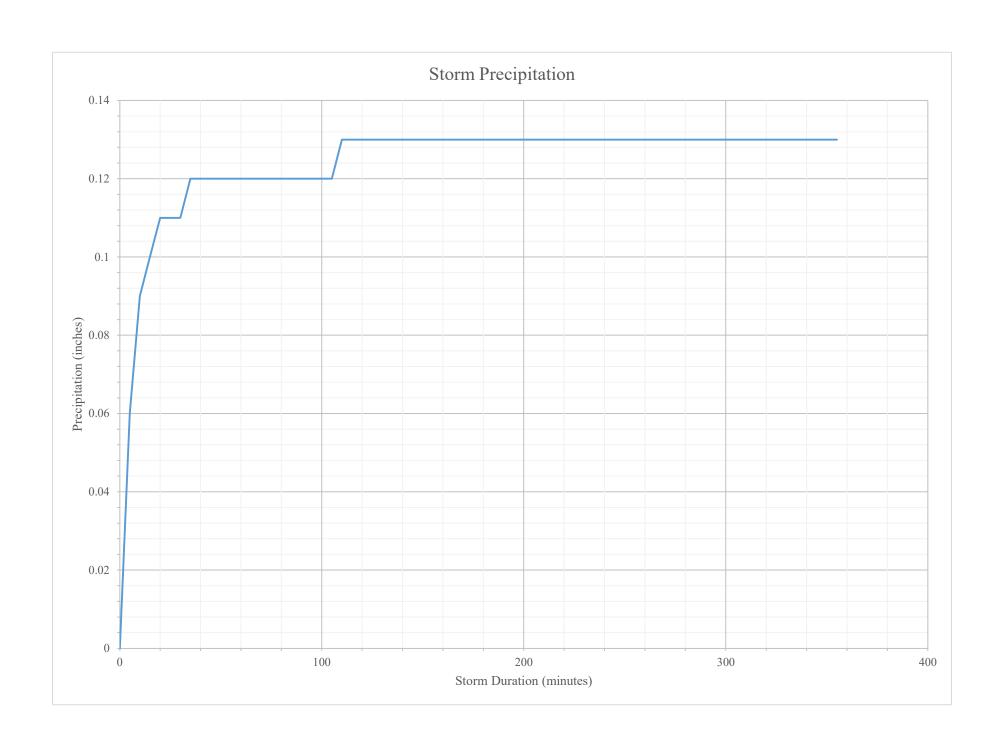


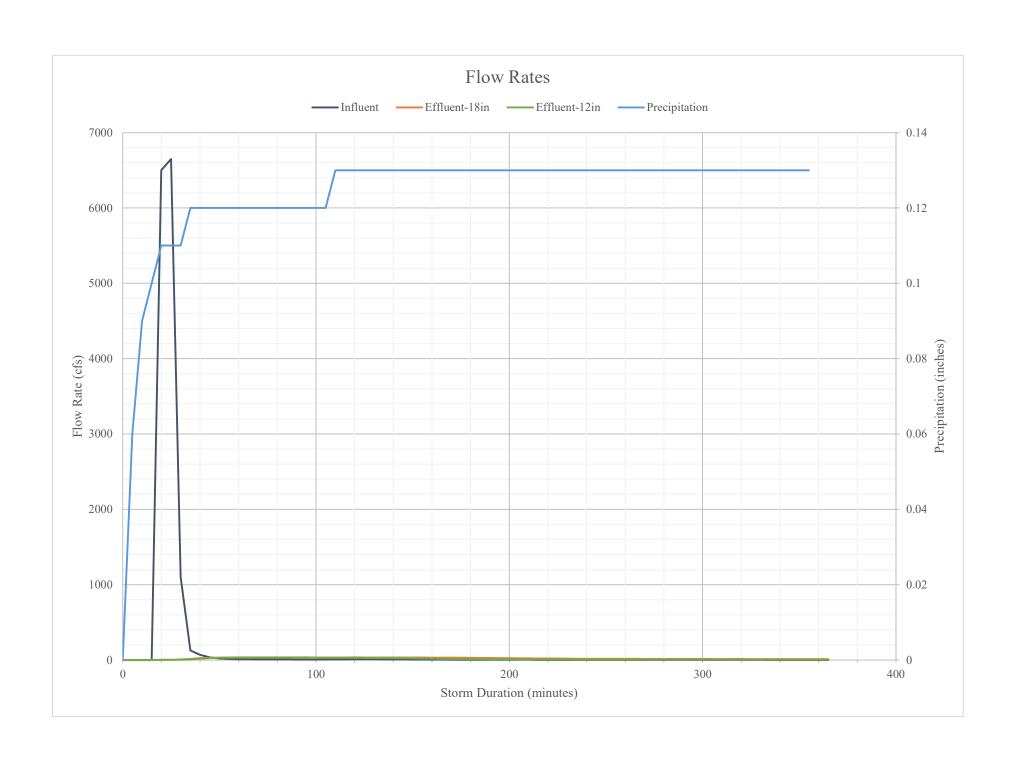


	Paramter	Value	Units	Definition	Notes
	Storm ID	11/16/2020	-	Date storm event started	
	Storm Start Date and Time	11/16/20 3:10 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	11/16/20 10:25 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.15	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	7.25	hours	Duration of storm event	
	Storm Average Intensity	0.02	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.24	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	34.25	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	98.777	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	143.220	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	346.979	ft ³	Total volume of effluent from start of event to end of event	
A E1	Influent	2.031	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	2.591	gpm	Average effluent flow rate during storm event	
Rate	18" Effluent	6.155	gpm	Average bypass flow rate during storm event	
	Influent	13.208	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	6.123	gpm	Peak effluent flow rate during storm event	
	18" Effluent	8.733	gpm	Peak bypass flow rate during storm event	
	Influent	23	-		
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	>45	-		
C1-	Influent	2.33	hours		The density of the size between the first and he to be the first and 45th
Sample - Duration -	12" Effluent	3.67	hours	Time in hours between the collection of the first and last aliquots	The duration reflects the time between the first and last aliquots, or the first and 45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	3.92	hours		anquot if the number of anquots reported exceeds 45
	Influent	118	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	59	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	59	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Gt 17.1	% of Influent	97.1%	%		
Storm Volume	% of 12 Effluent	65.5%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	27.0%	%		
90th Percentile Flow Rate	Influent	5.436	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 11/16/2020

			Storm Date:			11/16/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	17	20	100	2.25	2.5	86.76%	85.29%	1		
	Total Copper	mg/L	0.00308	N/A	N/A	0.00289	0.00243	6.17%	21.10%	0.00007		
	Dissolved Copper	mg/L	0.00337	0.005	0.02	0.00313	0.00243	7.12%	27.89%	0.00007		
ter	Total Zinc	mg/L	0.0175	N/A	N/A	0.00187	0.00255	89.31%	85.43%	0.00025		
l me	Dissolved Zinc	mg/L	0.0248	0.02	0.3	0.00684	0.00727	72.42%	70.69%	0.00025		
ara	Total Phosphorus	mg/L	0.552	0.1	0.5	0.264	0.664	52.17%	-20.29%	0.00505		Increased phosphorus in 18" eff
Required Parameters	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
) in	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Şed	NWTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
ers	PSD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
araı	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
<u> </u>	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
l ili	pН		6.45	N/A	N/A	6.47	6.39	-0.31%	0.93%	N/A		Increased pH in 12" eff
Screening Parameters	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Sc	Hardness	mg CaCO3/L	N/A	N/A	N/A	N/A	N/A	-	1	1		
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ter	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ıme	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	1	1	N/A		
Other Parameters	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
erI	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Oth	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

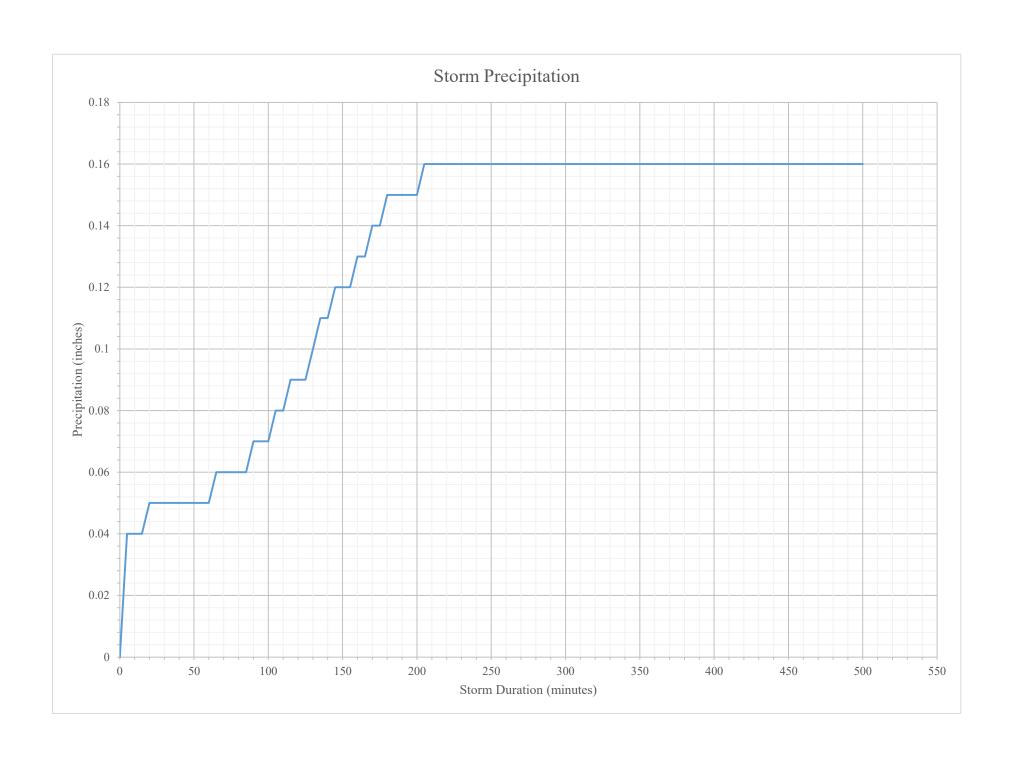


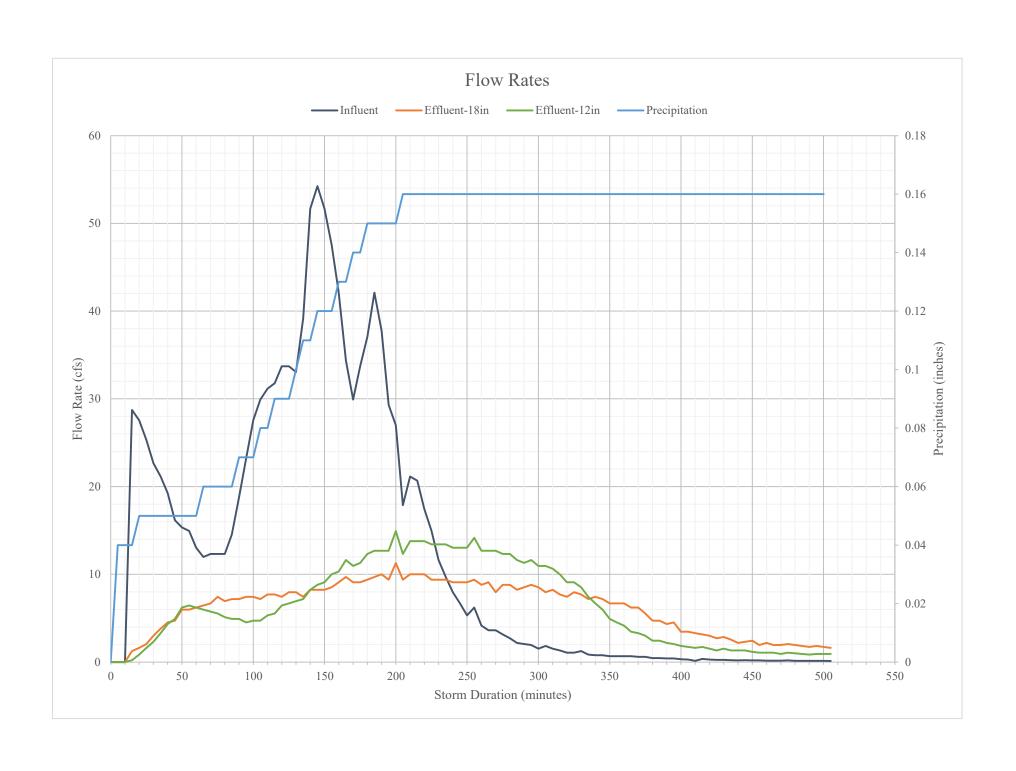


	Paramter	Value	Units	Definition	Notes
	Storm ID	11/18/2020	-	Date storm event started	
	Storm Start Date and Time	11/18/20 2:30 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	11/18/20 8:35 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.13	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	6.08	hours	Duration of storm event	
	Storm Average Intensity	0.02	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.72	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	40.08	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	2607.043	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	182.435	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	285.220	ft ³	Total volume of effluent from start of event to end of event	
A E1	Influent	53.404	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	3.737	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	5.843	gpm	Average bypass flow rate during storm event	
	Influent	1756.638	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	8.563	gpm	Peak effluent flow rate during storm event	
	18" Effluent	9.610	gpm	Peak bypass flow rate during storm event	
	Influent	>45	-		
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	>45	-		
Sample	Influent	3.67	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	3.67	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	3.67	hours		45th anquot if the number of anquots reported exceeds 45
	Influent	142	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	71	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	71	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	8.7%	%		
Sampled -	% of 12 Effluent	61.9%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	39.6%	%		
90th Percentile Flow Rate	Influent	3.493	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 11/18/2020

Parameter Units				Storm Date:			11/18/2020						
Total Copper		Parameter	Units		Minimum	Maximum	12" Effluent	18" Effluent				Flags	Notes
Dissolved Copper mg/L 0.0033 0.005 0.02 0.00337 0.00326 -2.12% 1.21% 0.00007 Increased dissolved copper in the 12" eff Total Zinc mg/L 0.024 N/A N/A 0.00281 0.0032 88.29% 86.67% 0.00025		TSS	mg/L	21	-		9	8			1		
Total Zinc		Total Copper	mg/L	0.00443	N/A	N/A	0.0043	0.00318	2.93%	28.22%	0.00007		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	ro.	Dissolved Copper	mg/L	0.0033	0.005	0.02	0.00337	0.00326	-2.12%	1.21%	0.00007		Increased dissolved copper in the 12" eff
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	ter			0.024			0.00281	0.0032		86.67%			
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	ame	Dissolved Zinc	mg/L	0.0151	0.02	0.3	0.00484	0.00532	67.95%	64.77%	0.00025		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	Para	Total Phosphorus							-285.88%	-323.53%			Increased total phosphorus in the eff
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	- - - - -		mg/L	N/A			N/A	N/A	-	-	0.01		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	<u> </u>		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Mineral Oil mg/kg ND N/A N/A N/A ND ND - - N/A Diesel mg/kg ND N/A N/A N/A ND ND - - 0.05 PSD	Sec	NWTPH-Dx											
Diesel mg/kg ND N/A N/A ND ND - - 0.05	, ,								-	-			
PSD			mg/kg						-	-			
September Sept			mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
Hardness mg CaCO3/L 28.7 N/A N/A 103 109 -258.89% -279.79% 1 Increased hardness in the eff	ers												
Hardness mg CaCO3/L 28.7 N/A N/A 103 109 -258.89% -279.79% 1 Increased hardness in the eff	net		μm						-	-			
Hardness mg CaCO3/L 28.7 N/A N/A 103 109 -258.89% -279.79% 1 Increased hardness in the eff	araı	250 - 62.5	μm						-	-			
Hardness mg CaCO3/L 28.7 N/A N/A 103 109 -258.89% -279.79% 1 Increased hardness in the eff	<u> </u>	<62.5	μm						-	-			
Hardness mg CaCO3/L 28.7 N/A N/A 103 109 -258.89% -279.79% 1 Increased hardness in the eff	·	pН											
Calcium mg/L N/A N/A N/A N/A N/A N/A N/A Magnesium mg/L N/A											N/A		• •
Magnesium mg/L N/A N/A	S		mg CaCO3/L						-258.89%	-279.79%	1		Increased hardness in the eff
	so.	Calcium	mg/L	N/A			N/A		-	-	N/A		
	ter								-	-			
	ame								-	-			
	Para								-	-			
	er]								-	-			
Total Nitrogen mg/L N/A N/A N/A N/A N/A - - N/A	Off	Dissolved Lead	mg/L						-	-			
		Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

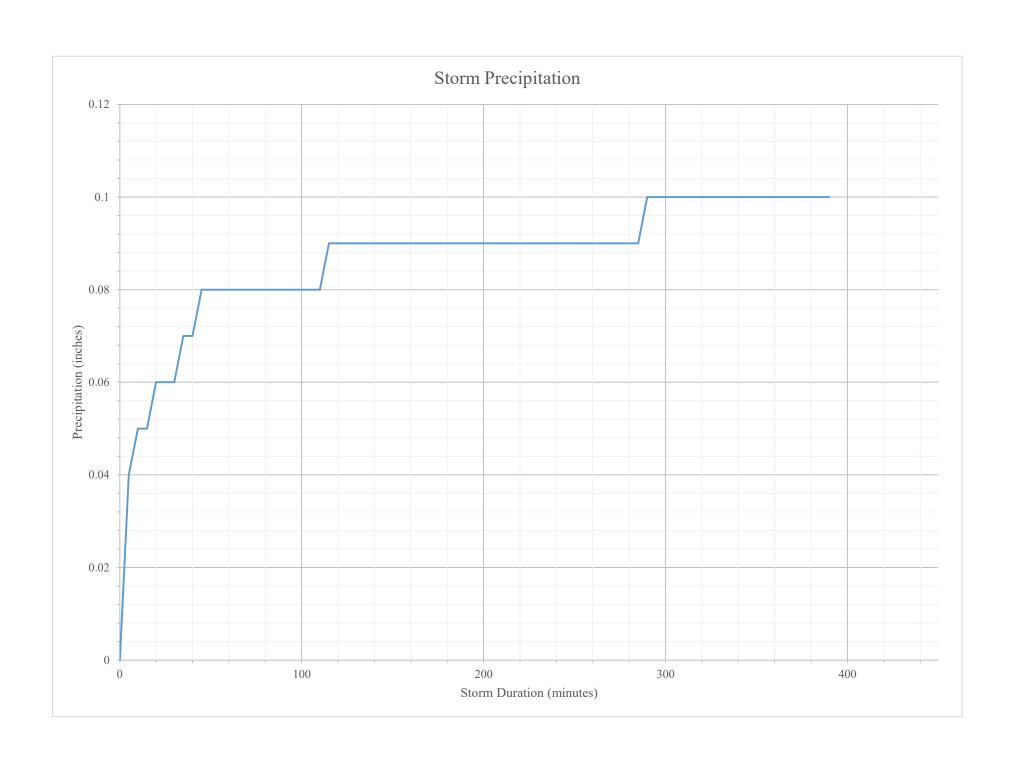


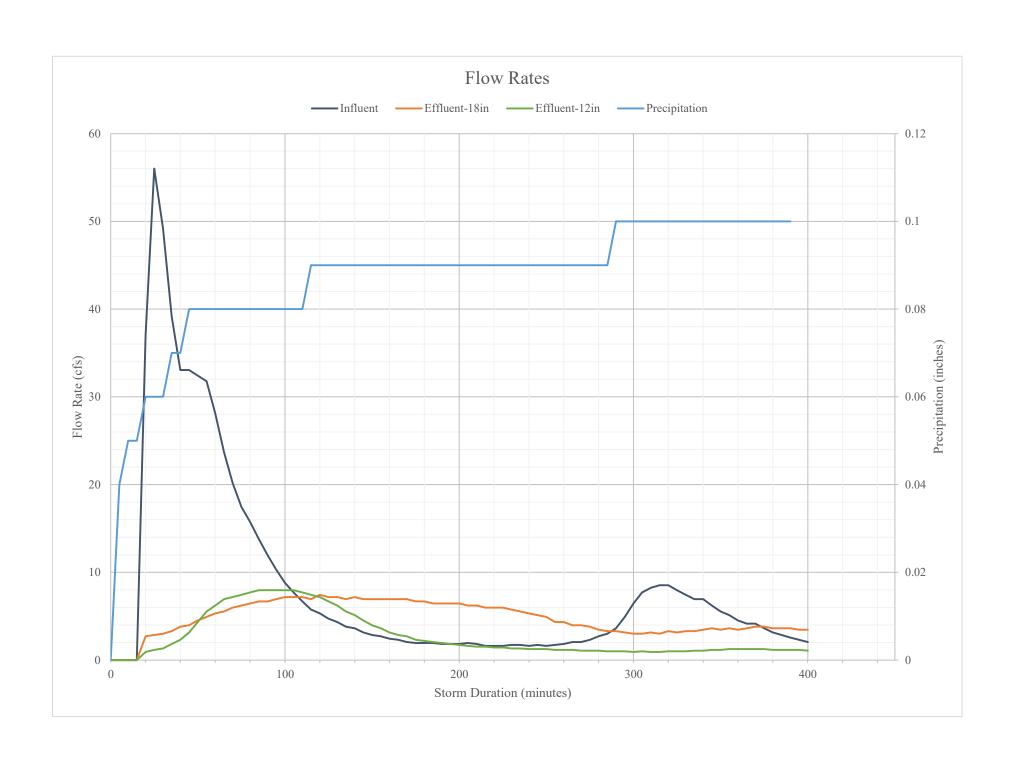


	Paramter	Value	Units	Definition	Notes
	Storm ID	12/19/2020	-	Date storm event started	
Ι Γ	Storm Start Date and Time	12/19/20 8:40 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	12/20/20 4:55 AM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.16	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	8.25	hours	Duration of storm event	
	Storm Average Intensity	0.02	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	63.58	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	224.992	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	116.659	ft ³	Total volume of effluent from start of event to end of event	
Ι Γ	18" Effluent	111.120	ft ³	Total volume of effluent from start of event to end of event	
4 51	Influent	3.398	gpm	Average influent flow rate during storm event	
Average Flow -	12" Effluent	1.762	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	1.678	gpm	Average bypass flow rate during storm evnt	
	Influent	14.333	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	3.949	gpm	Peak effluent flow rate during storm event	
	18" Effluent	2.984	gpm	Peak bypass flow rate during storm event	
	Influent	>45	-		
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	>45	-		
Sample	Influent	3.83	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	4.33	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	4.25	hours		43th anquot if the number of anquots reported exceeds 43
	Influent	96	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	48	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	48	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	67.8%	%		
Sampled -	% of 12 Effluent	65.4%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	68.7%	%		
90th Percentile Flow Rate	Influent	8.939	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 12/19/2020

			Storm Date:			12/19/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	10.5	20	100	2.12	1.43	79.81%	86.38%	1		
	Total Copper	mg/L	0.00262	N/A	N/A	0.00364	0.00391	-38.93%	-49.24%	0.00007		
oo.	Dissolved Copper	mg/L	ND	0.005	0.02	0.0028	0.0033	-	1	0.00007		
Parameters	Total Zinc	mg/L	0.0122	N/A	N/A	0.00246	0.00363	79.84%	70.25%	0.00025		
ame	Dissolved Zinc	mg/L	0.0152	0.02	0.3	0.017	0.017	-11.84%	-11.84%	0.00025		
Par	Total Phosphorus	mg/L	< 0.005	0.1	0.5	0.872	0.292	-	-	0.00505		
	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Required	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Rec	NWTPH-Dx											
, ,	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
ers	PSD											
Screening Parameters	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
araı	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
9	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
·ii	pH		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ree	Orthophosphate	mg/L	0.0476	N/A	N/A	0.257	0.373	-439.92%	-683.61%	N/A		
S	Hardness	mg CaCO3/L	10.9	N/A	N/A	111	150	-918.35%	-1276.15%	1		
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
SIS	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
net	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ıran	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
the	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
0	PO4/P	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

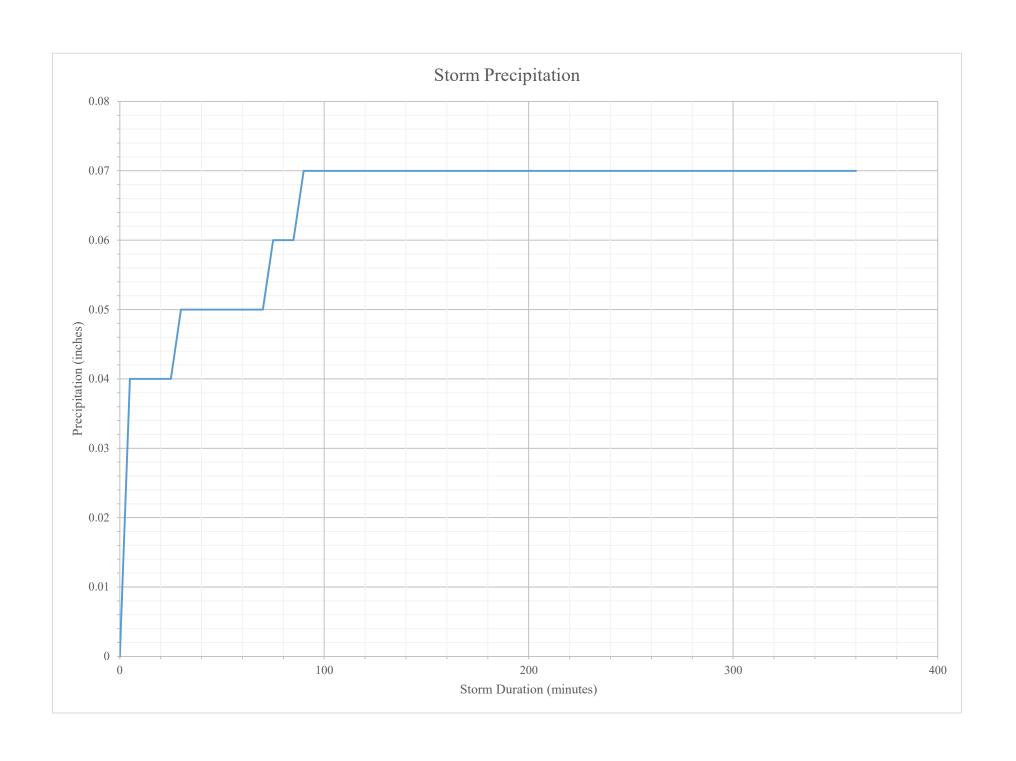


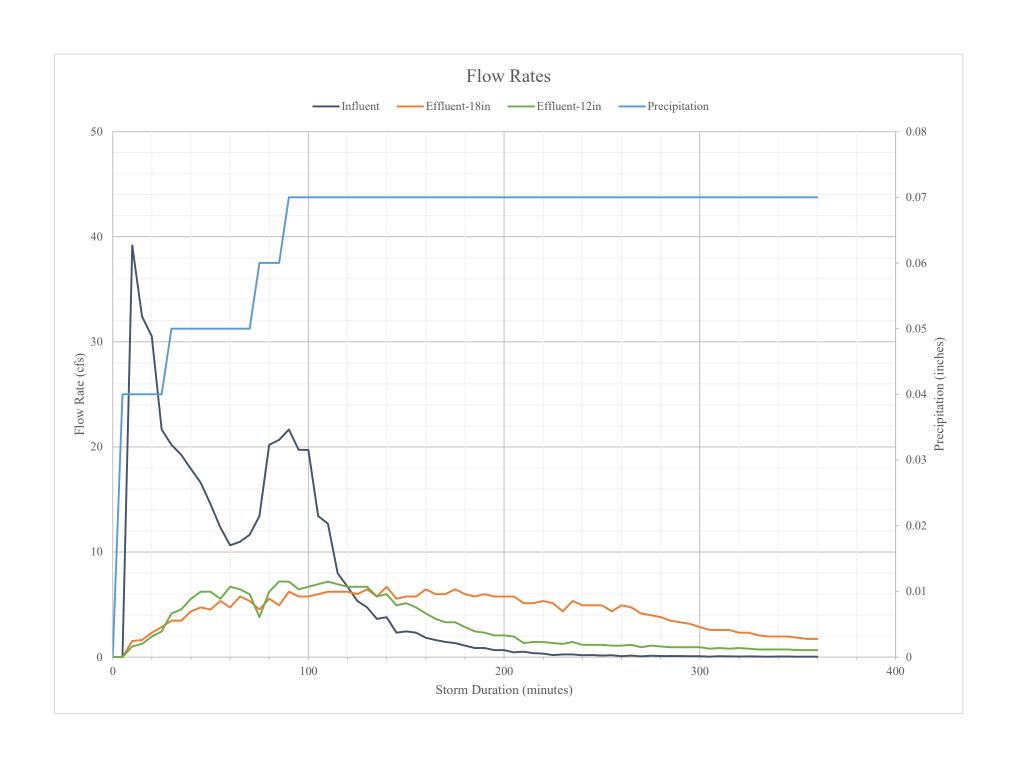


	Paramter	Value	Units	Definition	Notes	
	Storm ID	12/21/2020	-	Date storm event started		
	Storm Start Date and Time	12/21/20 6:15 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain		
	Storm End Date and Time	12/21/20 12:40 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain		
Storm Data	Total Precipitation Depth	0.10	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event		
Storm Data	Storm Duration	6.42	hours	Duration of storm event		
	Storm Average Intensity	0.02	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)		
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr		
	Storm Antecedent Dry Period	25.33	hours	From end of the last rainfall event to start of current rainfall event		
	Influent	121.411	ft ³	Total volume of influent from start of event to end of event		
Total Volume	12" Effluent	39.194	ft ³	Total volume of effluent from start of event to end of event		
	18" Effluent	68.359	ft ³	Total volume of effluent from start of event to end of event		
4 51	Influent	2.358	gpm	Average influent flow rate during storm event		
Average Flow -	12" Effluent	0.761	gpm	Average effluent flow rate during storm event		
Kate	18" Effluent	1.328	gpm	Average bypass flow rate during storm evnt		
	Influent	14.799	gpm	Peak influent flow rate during storm event		
Peak Flow Rate	12" Effluent	2.107	gpm	Peak effluent flow rate during storm event		
	18" Effluent	1.967	gpm	Peak bypass flow rate during storm event		
	Influent	17	-			
Aliquots	12" Effluent	11	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45	
	18" Effluent	19	-			
S1-	Influent	6.00	hours		The duration reflects the time between the first and last aliquots, or the first and	
Sample - Duration -	12" Effluent	5.67	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45	
Duration	18" Effluent	5.75	hours		43th anquot if the number of anquots reported exceeds 43	
	Influent	200	L	Volume of stormwater that pass through the influent before a aliquot is collected		
Threshold	12" Effluent	100	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected		
	18" Effluent	100	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected		
C. V. 1	% of Influent	99.0%	%	·		
Storm Volume	% of 12 Effluent	99.2%	%	Number of aliquots times the threshold volume, divided by the total storm volume		
Sampled	% of 18 Effluent	98.2%	%			
90th Percentile Flow Rate	Influent	7.819	gpm	90th Percentile flow rate from storm start and end time.		

Storm Date: 12/21/2020

	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
TS	SS	mg/L	9	20	100	1.8	1.9	80.00%	78.89%	1		
To	otal Copper	mg/L	0.00274	N/A	N/A	0.00611	0.00747	-122.99%	-172.63%	0.00007		
" Di	issolved Copper	mg/L	0.00232	0.005	0.02	0.00607	0.00743	-161.64%	-220.26%	0.00007		
Parameters id To	otal Zinc	mg/L	0.0125	N/A	N/A	0.00518	0.00639	58.56%	48.88%	0.00025		
ğ Di	issolved Zinc	mg/L	0.0646	0.02	0.3	0.0178	0.015	72.45%	76.78%	0.00025		
To	otal Phosphorus	mg/L	N/A	0.1	0.5	N/A	N/A	-	-	0.00505		
	on	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Required Inc	issolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
\ \overline{\ov	WTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
E PS	SD											
net	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Screening Parameters Light Haman Agents Age	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
P P	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
-∰ pH	Н		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
∑ Or	rthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
S Ha	lardness	mg CaCO3/L	8.91	N/A	N/A	145	115	-1527.38%	-1190.68%	1		
Ca	alcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
<u>∞</u> M:	lagnesium (mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Tk	KN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
E Ni	litrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	ead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ੂੰ Di	issolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
O PC	O4/P	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
To	otal Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

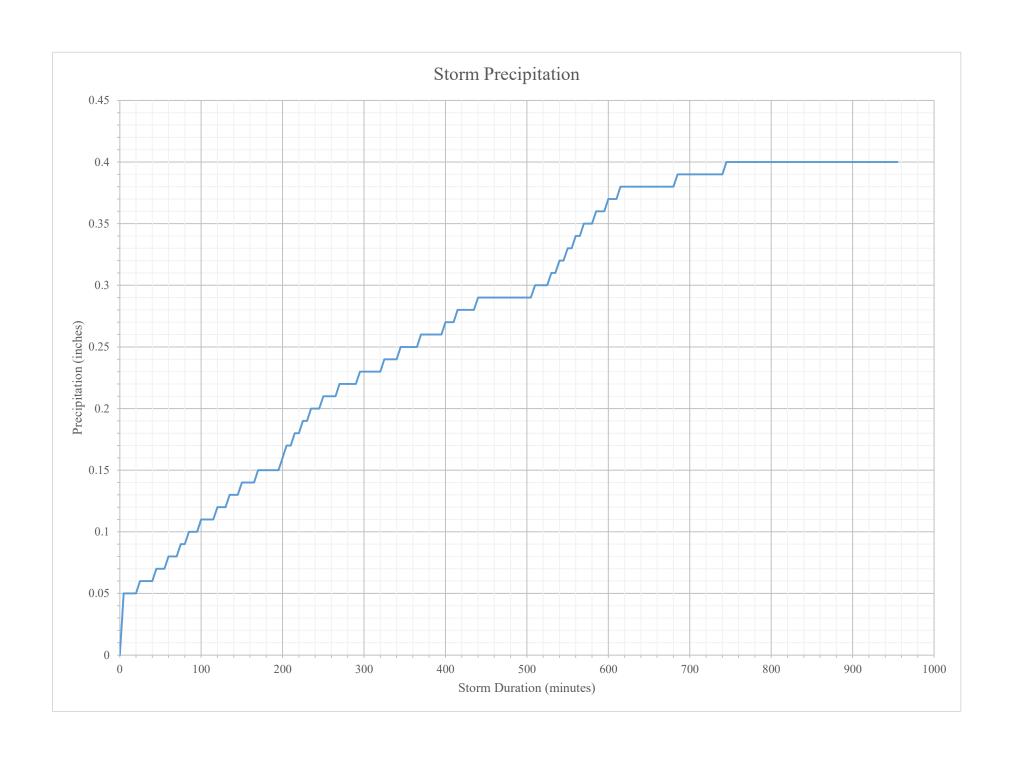


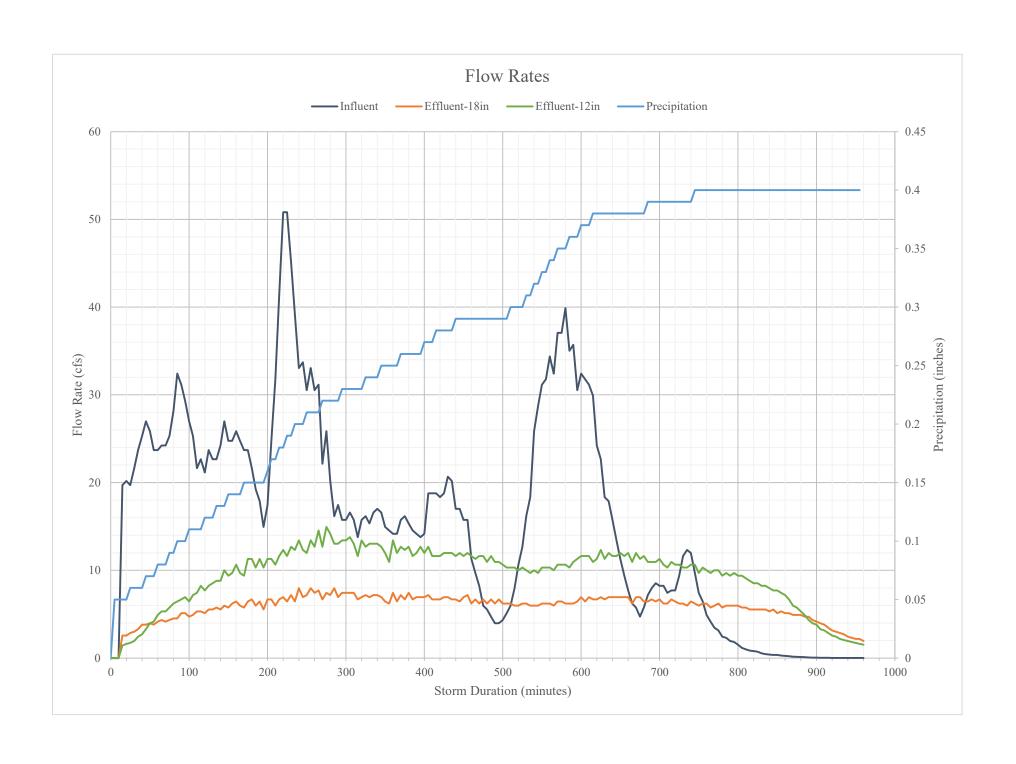


Г	Paramter	Value	Units	Definition	Notes	
	Storm ID	12/22/2020	-	Date storm event started		
	Storm Start Date and Time	12/22/20 12:35 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain		
	Storm End Date and Time	12/22/20 6:30 AM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain		
Storm Data	Total Precipitation Depth	0.07	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event		
Storin Data	Storm Duration	5.92	hours	Duration of storm event		
	Storm Average Intensity	0.01	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)		
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr		
	Storm Antecedent Dry Period	11.92	hours	From end of the last rainfall event to start of current rainfall event		
	Influent	80.104	ft ³	Total volume of influent from start of event to end of event		
Total Volume	12" Effluent	39.231	ft ³	Total volume of effluent from start of event to end of event		
	18" Effluent	56.293	ft ³	Total volume of effluent from start of event to end of event		
Average Flow	Influent	1.687	gpm	Average influent flow rate during storm event		
Rate	12" Effluent	0.826	gpm	Average effluent flow rate during storm event		
Kate	18" Effluent	1.186	gpm	Average bypass flow rate during storm evnt		
	Influent	10.350	gpm	Peak influent flow rate during storm event		
Peak Flow Rate	12" Effluent	1.899	gpm	Peak effluent flow rate during storm event		
	18" Effluent	1.768	gpm	Peak bypass flow rate during storm event		
	Influent	23	-			
Aliquots	12" Effluent	23	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45	
	18" Effluent	33	-			
Sample	Influent	2.58	hours		The duration reflects the time between the first and last aliquots, or the first and	
Duration -	12" Effluent	5.42	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45	
Duration	18" Effluent	5.42	hours		45th anquot if the number of anquots reported exceeds 45	
	Influent	96	L	Volume of stormwater that pass through the influent before a aliquot is collected		
Threshold	12" Effluent	48	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected		
	18" Effluent	48	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected		
Storm Volume	% of Influent	97.4%	%			
Storm Volume -	% of 12 Effluent	99.4%	%	Number of aliquots times the threshold volume, divided by the total storm volume		
Sampieu	% of 18 Effluent	99.4%	%			
90th Percentile Flow Rate	Influent	5.333	gpm	90th Percentile flow rate from storm start and end time.		

Storm Date: 12/22/2020

			Storm Date:			12/22/2020						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	38	20	100	14	19	63.16%	50.00%	1		
	Total Copper	mg/L	0.00269	N/A	N/A	0.00623	0.00799	-131.60%	-197.03%	0.00007		
	Dissolved Copper	mg/L	0.0018	0.005	0.02	0.00615	0.00929	-241.67%	-416.11%	0.00007		
ters	Total Zinc	mg/L	0.0118	N/A	N/A	0.00476	0.0066	59.66%	44.07%	0.00025		
ame	Dissolved Zinc	mg/L	0.0114	0.02	0.3	0.00927	0.0123	18.68%	-7.89%	0.00025		
Required Parameters	Total Phosphorus	mg/L	0.0917	0.1	0.5	0.62	0.779	-576.12%	-749.51%	0.00505		
ed [Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
la jr	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Sec	NWTPH-Dx											
, ,	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
ers	PSD											
Screening Parameters	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
araı	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
- 60 - C-	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
nin	pH		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ree	Orthophosphate	mg/L	0.0305	N/A	N/A	0.338	0.569	-1008.20%	-1765.57%	N/A		
Sc	Hardness	mg CaCO3/L	12.9	N/A	N/A	107	83.2	-729.46%	-544.96%	1		
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ers	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
net	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
r Pa	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
the	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
0	PO4/P	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

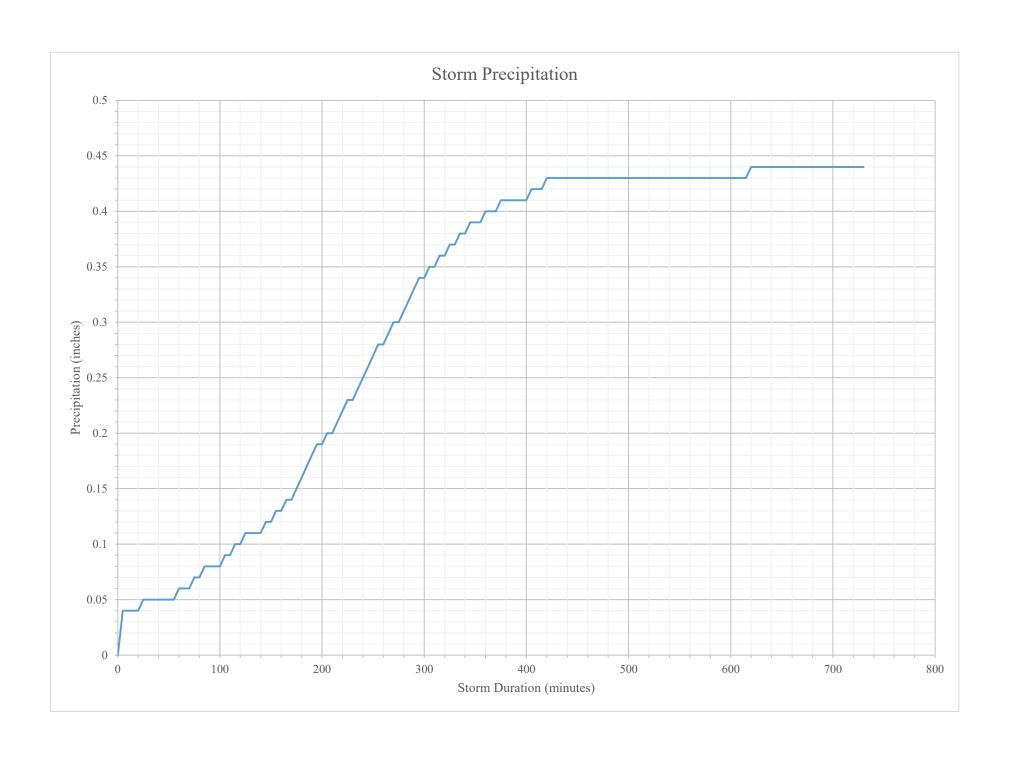


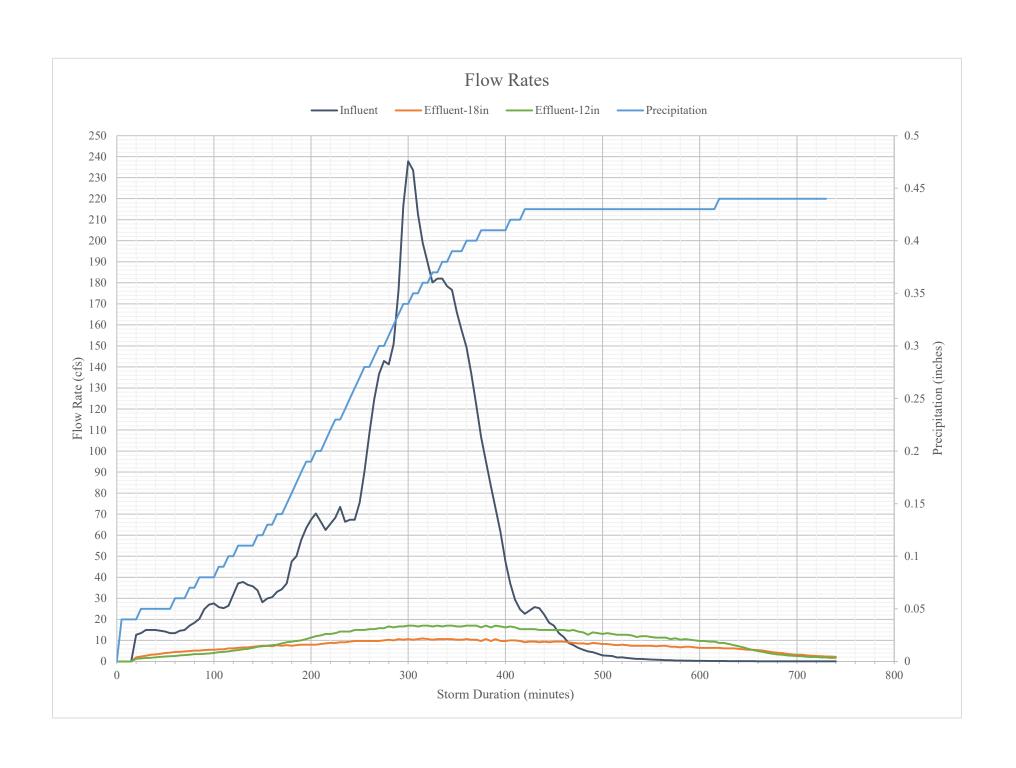


	Paramter	Value	Units	Definition	Notes	
	Storm ID	1/2/2021	-	Date storm event started		
	Storm Start Date and Time	1/2/21 7:10 PM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain		
	Storm End Date and Time	1/3/21 11:00 AM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain		
Storm Data	Total Precipitation Depth	0.40	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event		
Storm Data	Storm Duration	15.83	hours	Duration of storm event		
	Storm Average Intensity	0.03	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)		
	Storm Peak Intensity	2.21	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr		
	Storm Antecedent Dry Period	12.50	hours	From end of the last rainfall event to start of current rainfall event		
	Influent	530.967	ft ³	Total volume of influent from start of event to end of event		
Total Volume	12" Effluent	320.243	ft ³	Total volume of effluent from start of event to end of event		
	18" Effluent	198.313	ft ³	Total volume of effluent from start of event to end of event		
A E1	Influent	4.179	gpm	Average influent flow rate during storm event		
Average Flow Rate	12" Effluent	2.520	gpm	Average effluent flow rate during storm event		
Kate	18" Effluent	1.561	gpm	Average bypass flow rate during storm evnt		
	Influent	13.428	gpm	Peak influent flow rate during storm event		
Peak Flow Rate	12" Effluent	3.949	gpm	Peak effluent flow rate during storm event		
	18" Effluent	2.107	gpm	Peak bypass flow rate during storm event		
	Influent	31	-			
Aliquots	12" Effluent	38	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45	
	18" Effluent	23	-			
Sample	Influent	11.58	hours		The duration reflects the time between the first and last aliquots, or the first and	
Duration	12" Effluent	13.75	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45	
Duration	18" Effluent	1.83	hours		43th anquot if the number of anquots reported exceeds 43	
	Influent	470	L	Volume of stormwater that pass through the influent before a aliquot is collected		
Threshold	12" Effluent	235	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected		
	18" Effluent	235	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected		
Storm Volume	% of Influent	97.0%	%			
	% of 12 Effluent	98.5%	%	Number of aliquots times the threshold volume, divided by the total storm volume		
Sampled	% of 18 Effluent	96.3%	%			
90th Percentile Flow Rate	Influent	8.563	gpm	90th Percentile flow rate from storm start and end time.		

Storm Date: 1/2/2021

Parameter				Storm Date:			1/2/2021						
Total Copper mg/L N/A		Parameter	Units		Minimum	Maximum	12" Effluent	18" Effluent				Flags	Notes
Dissolved Copper mg/L N/A 0.005 0.02 N/A N/A - - 0.00007 Total Zine mg/L N/A N/A N/A N/A N/A N/A - - 0.00025 Total Phosphorus mg/L N/A 0.02 0.3 N/A N/A - - 0.00025 Total Phosphorus mg/L N/A 0.1 0.5 N/A N/A N/A - - 0.00025 Total Phosphorus mg/L N/A N/A N/A N/A N/A N/A - - 0.00025 Total Phosphorus mg/L N/A N/A N/A N/A N/A N/A - - 0.00025 Total Phosphorus mg/L N/A N/A N/A N/A N/A N/A - - 0.011 Dissolved Line mg/L N/A N/A N/A N/A N/A N/A N/A - - 0.011 Dissolved Iron mg/L N/A	TSS	mg/L	13	20	100	3.8	3	70.77%	76.92%	1			
Total Zinc		Total Copper	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.00007		
From mg/L N/A N/		Dissolved Copper	mg/L	N/A	0.005	0.02	N/A	N/A	-	-	0.00007		
From mg/L N/A N/	ters	Total Zinc	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.00025		
For Iron mg/L N/A N/	l m	Dissolved Zinc	mg/L	N/A	0.02	0.3	N/A	N/A	-	-	0.00025		
From mg/L N/A N/	Para	Total Phosphorus	mg/L	N/A	0.1	0.5	N/A	N/A	-	-	0.00505		
Lube Oil mg/kg N/A N/A	등	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Lube Oil mg/kg N/A N/A	<u> </u>	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Lube Oil mg/kg N/A N/A	Seg	NWTPH-Dx											
Diesel mg/kg N/A		Lube Oil	mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.25		
PSD	Mineral Oil	mg/kg	N/A		N/A		N/A	-	-	N/A			
Section Sect			mg/kg	N/A	N/A	N/A	N/A	N/A	-	-	0.05		
Calcium mg/L N/A	ers												
Calcium mg/L N/A	net	>250	μm						-	-			
Calcium mg/L N/A	araı	250 - 62.5	μm		N/A	N/A			-	-	N/A		
Calcium mg/L N/A N/A N/A N/A N/A N/A Magnesium mg/L N/A N/A N/A N/A N/A N/A N/A N/A Magnesium mg/L N/A	g 29	<62.5	μm						-	-			
Calcium mg/L N/A N/A N/A N/A N/A N/A N/A Magnesium mg/L N/A	l ·f	pH							-	-			
Calcium mg/L N/A N/A N/A N/A N/A N/A N/A Magnesium mg/L N/A] [5]		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Magnesium mg/L N/A N/A	Sc		mg CaCO3/L			N/A			-	-	1		
TKN mg/L N/A N/A		Calcium	mg/L						-	-	N/A		
1041 light 10A 10A 10A 10A	SIS	Magnesium	mg/L						-	-			
1041 light 10A 10A 10A 10A	Jete	TKN	mg/L						-	-			
1041 light 10A 10A 10A 10A	ıran		mg/L						-	-	N/A		
1041 ling E 10A 10A 10A 10A 10A	r Pa	Lead	mg/L						-	-			
1041 ling E 10A 10A 10A 10A 10A	the		mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Total Nitrogen mg/L N/A N/A N/A N/A N/A N/A	ō	PO4/P	mg/L	N/A	N/A	N/A		N/A	-	-	N/A		
		Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		

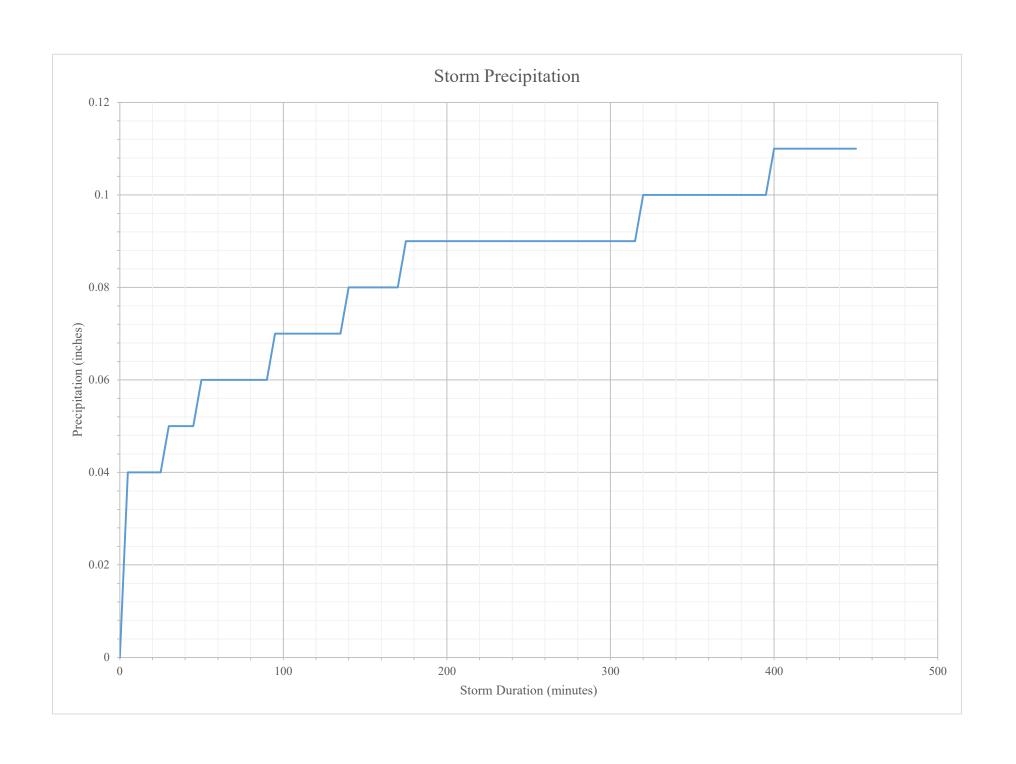


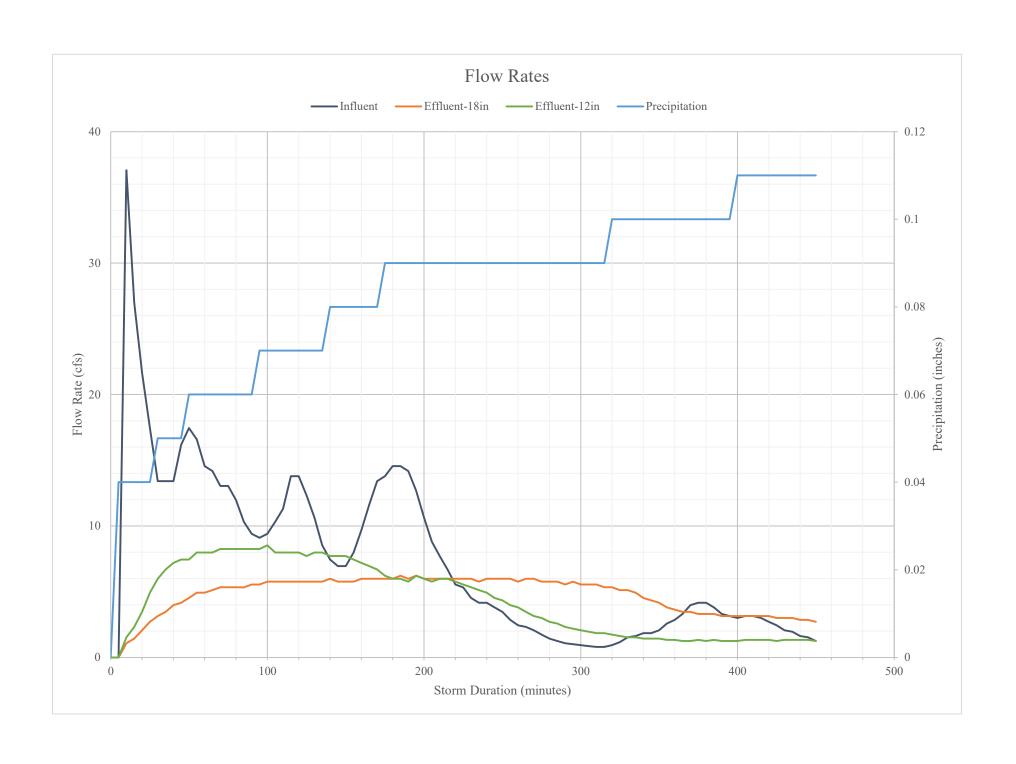


	Paramter	Value	Units	Definition	Notes
	Storm ID	1/4/2021	-	Date storm event started	
	Storm Start Date and Time	1/4/21 11:00 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	1/4/21 11:05 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.44	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	12.08	hours	Duration of storm event	
	Storm Average Intensity	0.04	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	2.93	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	24.00	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	1155.380	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	262.183	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	188.030	ft ³	Total volume of effluent from start of event to end of event	
A E1	Influent	11.915	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	2.704	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	1.939	gpm	Average bypass flow rate during storm evnt	
	Influent	62.830	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	4.495	gpm	Peak effluent flow rate during storm event	
	18" Effluent	2.897	gpm	Peak bypass flow rate during storm event	
	Influent	>45	-		
Aliquots	12" Effluent	>45	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	40	-		
Sample	Influent	4.92	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	7.42	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	10.58	hours		45th anquot if the number of anquots reported exceeds 45
	Influent	260	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	130	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	130	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	35.8%	%		
Sampled -	% of 12 Effluent	78.8%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	97.7%	%		
90th Percentile Flow Rate	Influent	39.686	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 1/4/2021

			Storm Date:			1/4/2021						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	50	20	100	5.4	3.4	89.20%	93.20%	1		
	Total Copper	mg/L	0.00213	N/A	N/A	0.00475	0.00564	-123.00%	-164.79%	0.00007		
80	Dissolved Copper	mg/L	0.00124	0.005	0.02	0.00395	0.00542	-218.55%	-337.10%	0.00007		
Parameters	Total Zinc	mg/L	0.0147	N/A	N/A	0.00368	0.00434	74.97%	70.48%	0.00025		
ame	Dissolved Zinc	mg/L	0.0054	0.02	0.3	0.00224	0.0116	58.52%	-114.81%	0.00025		
Para	Total Phosphorus	mg/L	0.0539	0.1	0.5	0.542	0.831	-905.57%	-1441.74%	0.00505		
	Iron	mg/L	0.496	N/A	N/A	0.818	0.616	-64.92%	-24.19%	0.01		
Required	Dissolved Iron	mg/L	0.0172	N/A	N/A	0.105	0.18	-510.47%	-946.51%	0.01		
§	NWTPH-Dx											
_	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
SIS	PSD											
Screening Parameters	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ırar	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
P ₂	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
<u>:</u>	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
eer	Orthophosphate	mg/L	0.0384	N/A	N/A	0.348	0.515	-806.25%	-1241.15%	N/A		
Sci	Hardness	mg CaCO3/L	12.1	N/A	N/A	18.2	28.3	-50.41%	-133.88%	1		
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
213	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ete	TKN	mg/L	< 0.5	N/A	N/A	< 0.5	< 0.5	-	-	N/A		
ran	Nitrate-Nitrite	mg/L	< 0.1	N/A	N/A	< 0.1	< 0.1	-	-	N/A		
Other Parameters	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
her	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ō	PO4/P	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	ND	N/A	N/A	ND	ND	-	=	N/A		

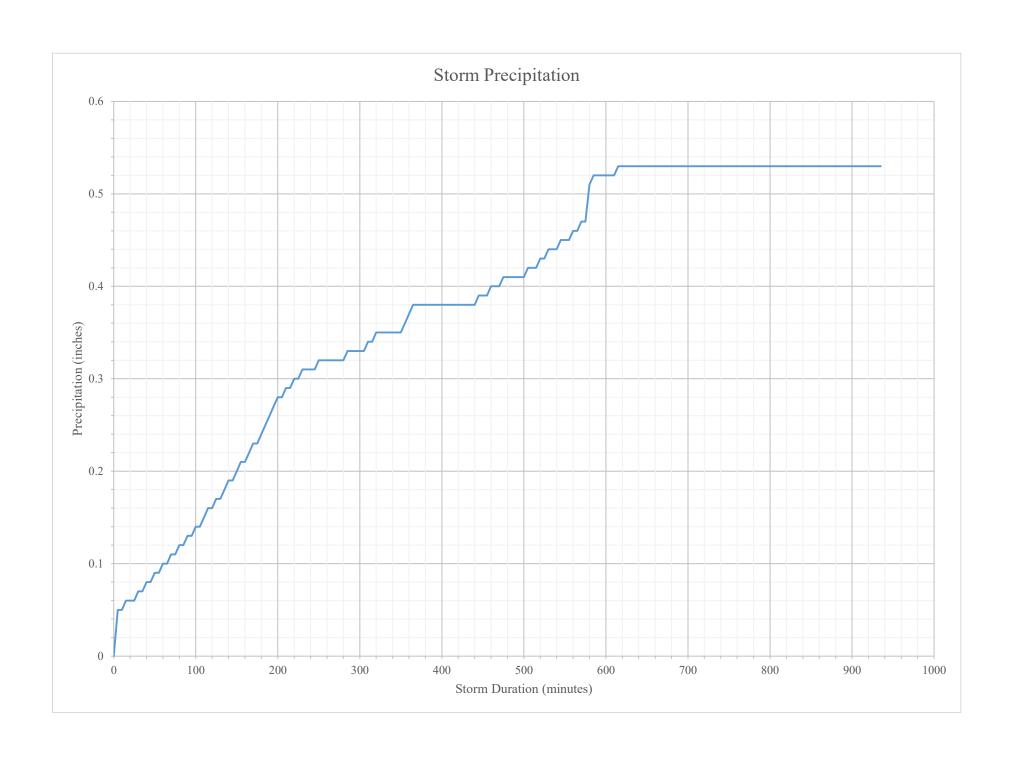


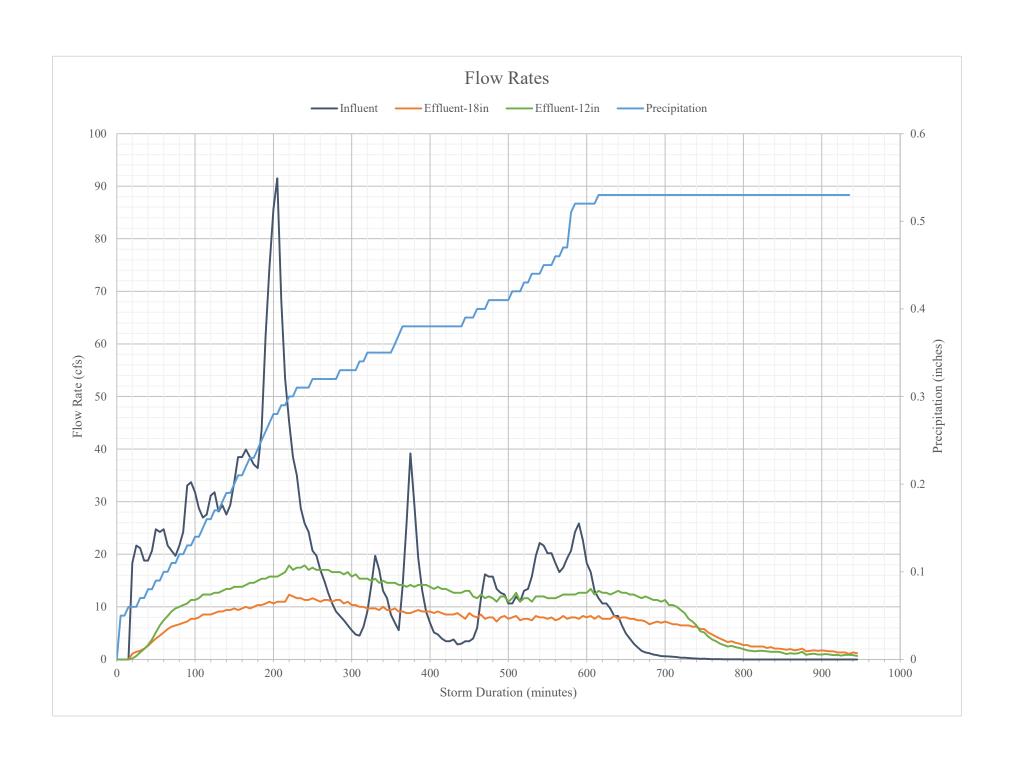


	Paramter	Value	Units	Definition	Notes
	Storm ID	11/22/2018	-	Date storm event started	
	Storm Start Date and Time	1/6/21 9:50 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
Ι Γ	Storm End Date and Time	1/6/21 5:15 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.11	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	7.42	hours	Duration of storm event	
	Storm Average Intensity	0.01	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	0.12	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	34.75	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	117.591	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	70.128	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	75.779	ft ³	Total volume of effluent from start of event to end of event	
A E1	Influent	1.976	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	1.178	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	1.273	gpm	Average bypass flow rate during storm evnt	
	Influent	9.792	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	2.253	gpm	Peak effluent flow rate during storm event	
	18" Effluent	1.643	gpm	Peak bypass flow rate during storm event	
	Influent	15	-		
Aliquots	12" Effluent	18	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	19	-		
Sample	Influent	7.00	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	6.92	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	6.50	hours		45th anquot if the number of anquots reported exceeds 45
	Influent	220	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	110	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	110	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	99.2%	%		
Sampled -	% of 12 Effluent	99.8%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	97.5%	%		
90th Percentile Flow Rate	Influent	3.845	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 1/6/2021

Parameter Units Influent Conc. Influent Conc. Maximum Limit Limi				Storm Date:			1/6/2021						
Total Copper mg/L 0.00234 N/A N/A 0.0058 0.00633 -147.86% -170.51% 0.00007		Parameter	Units		Minimum	Maximum	12" Effluent	18" Effluent		-		Flags	Notes
Dissolved Copper mg/L N/A 0.005 0.02 N/A N/A - - 0.00007		TSS	mg/L	11	20	100	4.33	2.75	60.64%	75.00%	1		
Total Zine mg/L 0.0127 N/A N/A 0.00569 0.00545 55.20% 57.09% 0.00025		Total Copper	mg/L	0.00234	N/A	N/A		0.00633	-147.86%	-170.51%	0.00007		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	80	Dissolved Copper	mg/L	N/A	0.005	0.02	N/A	N/A		1	0.00007		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	ter	Total Zinc	mg/L	0.0127	N/A	N/A	0.00569	0.00545	55.20%	57.09%	0.00025		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	ame	Dissolved Zinc	mg/L						-	1			
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	Par	Total Phosphorus	mg/L	N/A				N/A	-	-	0.00505		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	न्द्र		mg/L	N/A					-	-	0.01		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	<u></u>	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Lube Oil mg/kg ND N/A N/A ND ND - - 0.25	Sec	NWTPH-Dx											
Diesel mg/kg ND N/A N/A ND ND - - 0.05	, ,	Lube Oil	mg/kg	ND				ND	-	-	0.25		
PSD	Mineral Oil	mg/kg						-	-				
September Sep			mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
Hardness mg CaCO3/L N/A ers	PSD												
Hardness mg CaCO3/L N/A net	>250	μm						-	-				
Hardness mg CaCO3/L N/A araı	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A			
Hardness mg CaCO3/L N/A <u> </u>	<62.5	μm	N/A					-	-	N/A			
Hardness mg CaCO3/L N/A i ii	pН							-	-				
Calcium mg/L N/A	l ee	Orthophosphate	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Magnesium mg/L N/A N/A	Sc	Hardness	mg CaCO3/L	N/A	N/A	N/A	N/A	N/A	-	-	1		
TKN mg/L N/A N/A N/A N/A N/A N/A Nitrate-Nitrite mg/L N/A N/A N/A N/A N/A N/A Lead mg/L N/A N/A N/A N/A N/A N/A Dissolved Lead mg/L N/A N/A N/A N/A N/A N/A N/A PO4/P mg/L N/A N/A N/A N/A N/A N/A N/A PO4/P mg/L N/A N/A N/A N/A N/A N/A N/A		Calcium	mg/L						-	-			
1001 Ing E 1001 1001 1001	SIS	Magnesium	mg/L						-	-			
1001 Ing E 1001 1001 1001	nete	TKN	mg/L	N/A					-	-			
1001 Ing E 1001 1001 1001	ıran	Nitrate-Nitrite	mg/L	N/A	N/A	N/A		N/A	-	-	N/A		
1001 Ing E 1001 1001 1001	r Pa	Lead	mg/L						-	-			
1001 Ing E 1001 1001 1001	the		mg/L	N/A					-	-	N/A		
Total Nitrogen mg/L N/A	0	PO4/P	mg/L	<u> </u>					-	-			
		Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		





	Paramter	Value	Units	Definition	Notes
	Storm ID	1/12/2021	-	Date storm event started	
	Storm Start Date and Time	1/12/21 4:00 AM	-	Defines storm event start: 6 hours minimim with ≥ than 0.04" of rain	
	Storm End Date and Time	1/12/21 7:30 PM	-	Defines storm event end: 6 hours minimim with less than 0.04" of rain	
Storm Data	Total Precipitation Depth	0.53	inches	Cumulative rainfall from the start of the qualifying storm event and the end of the qualifying storm event	
Storm Data	Storm Duration	15.50	hours	Duration of storm event	
	Storm Average Intensity	0.03	in/hr	Total rainfall amount divided by total rainfall duration (e.g., inches per hour)	
	Storm Peak Intensity	2.35	in/hr	Maximum precipitation depth per time interval (5 minutes) converted to in/hr	
	Storm Antecedent Dry Period	115.00	hours	From end of the last rainfall event to start of current rainfall event	
	Influent	467.660	ft ³	Total volume of influent from start of event to end of event	
Total Volume	12" Effluent	333.905	ft ³	Total volume of effluent from start of event to end of event	
	18" Effluent	232.068	ft ³	Total volume of effluent from start of event to end of event	
A E1	Influent	4.483	gpm	Average influent flow rate during storm event	
Average Flow Rate	12" Effluent	2.684	gpm	Average effluent flow rate during storm event	
Kate	18" Effluent	1.866	gpm	Average bypass flow rate during storm evnt	
	Influent	24.173	gpm	Peak influent flow rate during storm event	
Peak Flow Rate	12" Effluent	4.726	gpm	Peak effluent flow rate during storm event	
	18" Effluent	3.256	gpm	Peak bypass flow rate during storm event	
	Influent	25	-		
Aliquots	12" Effluent	37	-	Total number of aliquots obtained during qualifying storm event	The maximum of aliquots that can be collected is 45
	18" Effluent	25	-		
Sample	Influent	9.42	hours		The duration reflects the time between the first and last aliquots, or the first and
Duration	12" Effluent	14.25	hours	Time in hours between the collection of the first and last aliquots	45th aliquot if the number of aliquots reported exceeds 45
Duration	18" Effluent	12.42	hours		43th anquot if the number of anquots reported exceeds 43
	Influent	510	L	Volume of stormwater that pass through the influent before a aliquot is collected	
Threshold	12" Effluent	255	L	Volume of stormwater that pass through the 12" effluent before a aliquot is collected	
	18" Effluent	255	L	Volume of stormwater that pass through the 18" effluent before a aliquot is collected	
Storm Volume	% of Influent	96.3%	%		
Sampled -	% of 12 Effluent	99.8%	%	Number of aliquots times the threshold volume, divided by the total storm volume	
Sampled	% of 18 Effluent	97.1%	%		
90th Percentile Flow Rate	Influent	9.432	gpm	90th Percentile flow rate from storm start and end time.	

Storm Date: 1/12/2021

			Storm Date:			1/12/2021						
	Parameter	Units	Influent EMC Measured	Influent Conc. Minimum Limit	Influent Conc. Maximum Limit	12" Effluent	18" Effluent	12" Removal Efficiency	18" Removal Efficiency	Detection Limit (DL)	Flags	Notes
	TSS	mg/L	18	20	100	2.8	2.33	84.44%	87.06%	1		
	Total Copper	mg/L	0.00211	N/A	N/A	0.00341	0.00416	-61.61%	-97.16%	0.00007		
	Dissolved Copper	mg/L	N/A	0.005	0.02	N/A	N/A	-	-	0.00007		
ters	Total Zinc	mg/L	0.0143	N/A	N/A	0.00271	0.00367	81.05%	74.34%	0.00025		
1 2 2	Dissolved Zinc	mg/L	N/A	0.02	0.3	N/A	N/A	-	-	0.00025		
Parameters	Total Phosphorus	mg/L	5.75	0.1	0.5	0.506	0.701	91.20%	87.81%	0.00505		
F -	Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Required	Dissolved Iron	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	0.01		
Reg	NWTPH-Dx											
	Lube Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.25		
	Mineral Oil	mg/kg	ND	N/A	N/A	ND	ND	-	-	N/A		
	Diesel	mg/kg	ND	N/A	N/A	ND	ND	-	-	0.05		
ers	PSD											
Screening Parameters	>250	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
araı	250 - 62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
90 G	<62.5	μm	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
l ·i	pН		N/A	N/A	N/A	N/A	N/A	-	-	N/A		
ree	Orthophosphate	mg/L	0.0491	N/A	N/A	0.362	0.503	-637.27%	-924.44%	N/A		
Sc	Hardness	mg CaCO3/L	ND	N/A	N/A	34.3	44.4	-	-	1		
	Calcium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
SIS	Magnesium	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
nete	TKN	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Lan	Nitrate-Nitrite	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
Other Parameters	Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
the	Dissolved Lead	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
0	PO4/P	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	Total Nitrogen	mg/L	N/A	N/A	N/A	N/A	N/A	-	-	N/A		
	· · · · · · · · · · · · · · · · · · ·										·	

Appendix C. Data Quality Assessment

Appendix C.1 Quality Objectives

This section describes the assessment performed to review the quality of the data collected during the study. The purpose of the assessment was to determine whether measurement performance criteria (MPCs) identified in the study QAPP were met for each of the data quality indicators (DQIs). The DQIs for the project included precision, bias, representativeness, completeness, comparability, and sensitivity. Detailed definitions of each DQI and descriptions for each MPC are included in the study QAPP. This section describes the evaluation of each DQI with respect to the MPCs for the data collected during the study.

Precision

DQI #1: Developing and consistently following SOPs for collecting samples and measuring data will reduce the potential of collecting imprecise data.

MPC #1: An audit will be conducted to verify that sampling staff are following the SOPs. Data will be considered acceptable if the sampling staff are consistently following the SOPs.

Assessment: An audit was performed to verify that sampling staff are following the SOPs. A copy of the audit results is included in Appendix C.4. SOPs were followed unless improvements were made to procedures which included: addition of steps that provided a data quality benefit (i.e. tightening of weir wheels to limit any leaking of flow around the weir seal); revision of steps following installation of equipment or guidance provided by manufacturers, analytical laboratories, or others (i.e. addition of sample blank for dissolved metals); and removal of items that were not necessary to ensure data quality (i.e. disconnect power supply to battery in order to test voltage of battery). The data are, as a result, considered acceptable.

DQI #2: Duplicate analytical testing will be performed for the water quality parameters shown in Table 6.2 of the study QAPP.

MPC #2: If the results of the duplicate sampling meet the respective relative percent difference (RPD) for the parameters listed in Table 6.2 of the study QAPP, the results of the analytical testing will be considered acceptable.

Assessment: Laboratory and field duplicates were obtained during the study. Data which met the RPD as described in Appendix C.5 was considered acceptable. Field duplicates which exceeded the RPD were rejected along with the sample result. Corrective action was taken following the sample to properly collect field duplicates for future events.

DQI #3: Rain gauge and flow measurements will also be assessed.

MPC #3: If the flow measurements and rain gauge data meet the RPD defined in section 6.1 of the study QAPP, that data will be considered acceptable.

Assessment: Flow measurements and rain gauge RPD procedures were revised as described in Appendix C.5. Data is considered acceptable.

Bias

DQI #1: Calibration of instruments, including the pH meter, pressure transducers and ISCO, will occur according to manufacturer's specifications. Buffer solutions will be used to calibrate the pH meter to reduce the potential for bias.

MPC #1: To reduce the potential for biased measurements, the instruments requiring calibration will be calibrated according to the procedures and frequency outlined in Section 8.0 of the study QAPP, per manufacturer's specifications. An audit will be conducted to verify that sampling staff are following the calibration procedures.

Assessment: Instruments were maintained and calibrated during the study according to the SOPs in Section 8.1 of the study QAPP, per manufacturer specifications. An audit was performed to verify the SOPs were followed and can be found in Appendix C.4.

DQI #2: Lack of maintenance at the site can be a source of bias in sample values or measurements. For example, if ISCO tubing is not cleaned regularly, sediment, oils, etc. can accumulate in the tubing and affect sample results. For that reason, manufacturer's recommendations for maintenance frequency and procedures will be followed to reduce the potential for bias.

MPC #2: An audit (Section 12.0 of the study QAPP) will be conducted to verify that sampling staff are following the SOPs outlined in Section 8.0 of the study QAPP (written to match manufacturer's specifications).

Assessment: An audit was performed to verify that sampling staff are following the SOPs. See Precision DQI #1 for further discussion on the audit and SOPs.

DQI #3: SOPs defined in Section 8.0 of the QAPP will be followed when collecting samples and measuring data to limit bias.

MPC #3: An audit (Section 12.0 of the study QAPP) will be conducted to verify that sampling staff are following the SOPs outlined in Section 8.0 of the study QAPP.

Assessment: An audit was performed to verify that sampling staff are following the SOPs. See Precision DQI #1 for further discussion on the audit and SOPs.

DQI #4: Method blanks, matrix spikes, and field duplicates will be analyzed to check for bias.

MPC #4: Sample results will be accepted if results of the method blanks, matrix spikes, and/or field duplicates are below the limits.

Assessment: Samples were accepted if results of the method blanks, matrix spikes, and field duplicates were below the limits.

Representativeness

DQI #1: The location selected for this study is at the downstream end of a parking lot with an expected high number of trip returns.

MPC #1: These conditions reflect the characteristics of a location where a bioretention cell would be installed: an area where high loading of TSS and metals are expected.

Assessment: The bioretention cells were installed and monitored at the downstream end of a parking lot with an expected high number of trip returns. As such, the site is expected to accurately represent a typical site where a bioretention cell would be installed.

DQI #2: Hydrologic conditions at the site should be representative of a range of weather patterns and conditions seen throughout the wet season.

MPC #2: Local stormwater hydrologic conditions are represented by conducting the study over two wet seasons and collecting data from a minimum of 12 qualifying storm events (described in Section 7.5 of the study QAPP).

Assessment: The study was conducted over two and a half wet seasons (2018-2019, 2019-2020, 2020-early 2021) as well as during the dry seasons when rainfall occurred. Data was collected from a total 29 storm events. As a result, the data collected is expected to represent local stormwater hydrologic conditions.

DQI #3: Rainfall data, flow data, and water quality samples should be representative of the site.

MPC #3: Equipment will be set up to achieve representative rainfall, flow, and water quality data as follows:

- The rain gauge will be installed within the drainage basin of the bioretention cells and in a location where no buildings, trees, or other objects obstruct or divert rainfall from entering the rain gage.
- Pressure transducers will be installed upstream of weirs in influent, effluent pipes, which will mimic typical bioretention cell construction.
- Water quality samples will be collected as composite samples. pH measurements will also be taken from the composite samples. The composite samples will capture at least 10 aliquots and 75% of the qualifying rainfall event hydrograph to be representative of water quality during the storm.

Assessment: The rain gauge was located directly next to the monitoring vault at the test site. The pressure transducers were installed upstream of weirs in influent and effluent pipes. The influent, and effluent pipes mimicked bioretention construction. Water quality samples were collected as composite samples which captured at least 75% of the storm event hydrograph. Per TAPE (Ecology, 2018), aliquots as low as 7 for a storm event were accepted if other storm event guidelines, sampling requirements, and QA/QC criteria were met.

DQI #4: Equipment at the site will be installed per manufacturer specifications.

MPC #4: No MPC was listed for this DQI.

Assessment: Equipment at the site was installed per manufacturer specifications.

Completeness

DQI #1: A minimum of 12 qualifying rainfall events (Section 7.5) are required to be sampled for the duration of the study, per TAPE. Additionally, at least 10 aliquots and 75% of the hydrograph must be sampled during the qualifying rainfall event.

MPC #1: The number of rainfall events sampled will be compared to the minimum amount at the end of the project, and additional rainfall events will be sampled as needed. Samples which represent less than 75% of the hydrograph will not be accepted. If samples only consist of 7-9 aliquots, the samples may be accepted if rationale is provided in the TER as to why the sample was used (per TAPE).

Assessment: Water quality samples were collected for 29 events which captured an estimated 75% of the storm event hydrograph at minimum. Per TAPE (Ecology, 2018), aliquots as low as 7 for a storm event were accepted if other storm event guidelines, sampling requirements, and QA/QC criteria were met.

DQI #2: A minimum of 95% of the samples analyzed by the lab must be considered valid prior to the end of the study.

MPC #2: 95% of the samples must be accompanied by method blanks, matrix spikes, lab control spikes, and field duplicate results which are valid. Additionally, the samples must be received and analyzed within the appropriate temperatures and holding times. Temperature will be verified from the results reported by the lab.

Assessment: Approximately 74% of samples from qualifying or potentially qualifying events were initially accompanied by method blanks, matrix spikes, lab control spikes, and field duplicate results. Early lab reports through 12/7/2019 were not accompanied by QA/QC results and as a result corrective action was taken. QA/QC results were requested at a later date for reports missing that data and collected for an additional two events (resulting in 83% of samples accompanied by method blanks, matrix spikes, lab control spikes, and field duplicate results). No QA/QC issues were noted in the two recovered reports. It is expected that the QA/QC results for the reports which were not recovered would have a similar rate of valid method blanks, matrix spikes, lab control spikes, and field duplicate results as the analytical reports received after 12/7/2019 (4% on average), resulting in greater than 95% of the samples analyzed by the lab being accompanied by valid method blanks, matrix spikes, lab control spikes, and field duplicate results.

Samples were received within the appropriate holding times or rejected. An exception was made for samples above 6 degrees Celsius as further analysis indicated that there was not a relationship between the sample results obtained and temperature (see Appendix C.6). Samples above the 6 degrees Celsius were determined to be acceptable.

DQI #3: Define procedures for handling missing data, use appropriate coding for missing data, and report missing data with the results.

MPC #3: Procedures for handling missing data and coding missing data are defined in section 11.0 of the study QAPP. The Final Technical Report for this study will include consideration for how missing data could limit the comparability of the data set.

Assessment: Missing data was not encountered during the study.

DQI #4: Conduct routine maintenance for equipment at the site, in accordance with SOPs outlined in Section 8.0 of the study QAPP, to limit the possibility of missing or invalid data.

MPC #4: An audit (Section 12.0 of the study QAPP) will be conducted to verify that sampling staff are following the SOPs outlined in Section 8.0 of the study QAPP (written to match manufacturer's specifications).

Assessment: An audit was performed to verify that sampling staff are following the SOPs. See Precision DQI #1 for further discussion on the audit and SOPs.

DQI #5: An equipment checklist and Chain of Custody forms will be used to prevent loss of data resulting from missing containers, inoperable delivery and collection apparatus or sample delivery.

MPC #5: No MPC was listed for this DQI.

Assessment: Chain of custody forms were used to prevent the loss of data resulting from missing containers, inoperable delivery and collection apparatus, or sample delivery.

Comparability

DQI #1: The test site is located downstream of a parking area on the Gonzaga University campus with an expected high trip end count.

MPC #1: The process for selecting the study area is defined in section 7.2: the process focused on having a test site that is representative of locations where a bioretention cell would be installed.

Assessment: The biofiltration cells were installed and monitored downstream of a parking area on the Gonzaga University campus. As such, the site is expected to accurately represent a typical site where a bioretention cell would be installed.

DQI #2: Define and consistently follow SOPs for sample collection and field measurements.

MPC #2: SOPs were developed and will be consistently followed during this study.

Assessment: An audit was performed to verify that sampling staff are following the SOPs. See Precision DQI #1 for further discussion on the audit and SOPs.

DQI #3: All data and sample collection will be conducted in accordance with the SOPs outlined in Section 8.0.

MPC #3: An audit (Section 12.0) will be conducted to verify that sampling staff are following the SOPs outlined in Section 8.0.

Assessment: An audit was performed to verify that sampling staff are following the SOPs. See Precision DQI #1 for further discussion on the audit and SOPs.

DQI #4: Standard testing methods will be used to analyze samples submitted to the lab.

MPC #4: Anatek, the laboratory proposed for water quality testing in this study, is certified by Ecology and will follow standard methods approved by the US Environmental Protection Agency (EPA) (APHA et al. 1992, 1998; US EPA 1983, 1984). The methods to be used are listed in Table 9.1. Deviations from methods will be noted on analytical reports.

Assessment: Methods used by Anatek were recorded for each sampling event monitored. The methods were recorded in the QA worksheets, which are located in Appendix C.2. Methods used were standard methods approved by the EPA, and matched or were equivalent methods to those proposed in the study QAPP.

Sensitivity

DQI #1: Analytical results for water quality samples will be reported if they are above the reporting limit.

MPC #1: Reporting limits for water quality parameters are listed in Table 6.2 of the study QAPP. Data reported as below the detection limit will be calculated using the reporting limit shown in Table 9.1 of the study QAPP.

Assessment: Data reported below the detection limit was calculated using the reporting limit shown in the laboratory report. As methods used by the laboratory were standard methods and matched or were equivalent tests to those proposed in the QAPP, detection limits used in the laboratory reports were assumed to be sufficient.

DQI #2: All water quality testing methods selected have detection limits below the expected range of results.

MPC #2: The expected range of results and respective reporting limit were compared in Table 9.1 of the study OAPP.

Assessment: Per the study QAPP (Osborn Consulting, Inc., 2020), the reporting/detection limits for each method were below the expected range of results.

DQI #3: Instruments capable of accurately measuring variables at the site will be used during the study.

MPC #3: The sensitivity of instruments at the site is included with the monitoring equipment specifications in Appendix G of the study QAPP.

Assessment: Per the study QAPP, the instruments used during the study were selected to be capable of accurately measuring variables at the site.

Appendix C.2 Quality Assurance Worksheets

Data Quality As	surance Spreadsheet																						
Project Name	Gonzaga Sample ID: IN07232019, 12EF07232019, 18EF07232019 (No QC included in Lab Report, QC was recovered) 7/24/2019 Lab Report #: 190725050-001, 190725050-002, 190725050-003																						
Sample Date:	7/24/2019		Lab Report #:	190725050-001,	190725050-002, ²	190725050-003																	
Matrix	Parameter	Method	Chain-of- Custody Issues?	Completeness/		Holding Times (days)		Cooler Temperature	Blank	s (mg/L)	Matrix Sp Surrogate R (%)		Lab Co Samples F (%	Recovery		iplicates D (%)	Influent I Duplicates I		Effluent Duplicates I		Flagged	ACTION/NOTES
					Date Collected	Date Analyzed	Reported	Goal	(°C)	Result	Reporting Limit	Reported	Goal	Reported	Goal	RPD	RPD Limit	Reported	Goal	Reported	Goal		
	Total Suspended Solids (TSS)	SM 2540D	No	SM2540D	7/24/19 8:00	7/30/19 12:35	6.19	7	14.4		1		80-120	97	90-110				≤ 25%		≤ 25%		
	Dissolved Copper (Cu)	EPA 200.8 (ICP/MS)	No	EPA 200.8	7/24/19 8:00	8/1/19 12:04	8.17	180	14.4		0.001		70-130	104.6	85-115				≤ 20%		≤ 20%		
	Dissolved Zinc (Zn)	EPA 200.8 (ICP/MS)	No	EPA 200.8	7/24/19 8:00	8/1/19 12:04	8.17	180	14.4		0.001		70-130	102.4	85-115				≤ 20%		≤ 20%		
	Dissolved Iron	EPA 200.8 (ICP/MS)	No	EPA 200.8	7/24/19 8:00	8/1/19 12:04	8.17	180	14.4		0.01		70-130	110	85-115				≤ 20%		≤ 20%		
nwater	Total Zinc (Zn)	EPA 200.8 (ICP/MS)	No	EPA 200.8	7/24/19 8:00	8/1/19 12:07	8.17	180	14.4		0.001		70-130	102.4	85-115				≤ 20%		≤ 20%		
Storm	Total Copper (Cu)	EPA 200.8 (ICP/MS)	No	EPA 200.8	7/24/19 8:00	8/1/19 12:07	8.17	180	14.4		0.001		70-130	104.6	85-115				≤ 20%		≤ 20%		
o o	Hardness as CaCO3	SM 2340B (ICP)	No	EPA 130.2	7/24/19 8:00	8/2/19 9:45	9.07	180	14.4		3		80-120	101	90-110				≤ 20%		≤ 20%		
	Ortho-phosphate (OP)	SM 4500-P G	No	SM4500-P F	7/24/19 8:00	7/25/19 17:25	1.39	2	14.4		0.018		80-120	94.2	85-115				≤ 20%		≤ 20%		
	Total Phosphorus (TP)	SM 4500-P F	No	SM4500-P F	7/24/19 8:00	7/31/19 11:36	7.15	28	14.4		0.005		80-120	104	80-120				≤ 20%		≤ 20%		
	NWTPH-Dx , Diesel	Ecology NWTPH Dx	No	NWTPH-Dx	7/24/19 8:00	8/6/19 9:42	13.07	14	14.4		0.16		70-130	88.4	50-150				≤ 40%		≤ 40%		
	NWTPH-Dx , Lube Oil	Ecology NWTPH Dx	No	NWTPH-Dx	7/24/19 8:00	8/6/19 9:42	13.07	14	14.4		0.4		70-130		70-130				≤ 40%		≤ 40%		
	NWTPH-Dx , Mineral Oil	Ecology NWTPH Dx					0.00	14			0.16		70-130		70-130				≤ 40%		≤ 40%		
ent	Sediment Dry Weight	EPA 1684																					
Sedime	Sediment PSD	ASTM D422																	≤ 25%		≤ 25%		
	pН	S-2.20																					
	Cation Exchange Capacity	S-10.10																					
m m	Maximum Dry Density	ASTM D1557																					
Medi	Saturated Hydraulic Conductivity	ASTM D2434																					
aga	Particle Size Distribution	ASTM D422																					
Gonz	Total Elements (Zn, Cu, Pb, Fe, Al, P, Mg, Ca)	EPA 3050A/6010B																					
	Total Organic Carbon	EPA 415.3																					
	C:N Ratio	EPA 415.3/351.2																					

urance Spreadsheet				I									_									
Gonzaga	9/28/2019 Lab Report #: 190930019-001, 190930019-002 Matrix																					
9/28/2019		Lab Report #:	190930019-001,	190930019-002													1					
Parameter	Method	Chain-of- Custody Issues?	Completeness/		Holding Times (days)		Cooler Temperature	Blanks	(mg/L)			Samples F	Recovery		•					Flagged	ACTION/NOTES
				Date Collected	Date Analyzed	Reported	Goal	(°C)	Result	Reporting Limit	Reported	Goal	Reported	Goal	RPD	RPD Limit	Reported	Goal	Reported	Goal		
Total Suspended Solids (TSS)	SM 2540D	NO	SM 2540D	9/28/19 18:00	10/4/19 11:00	5.71	7	1.5		1		80-120	97	90-110				≤ 25%		≤ 25%		
Dissolved Copper (Cu)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	9/28/19 18:00	10/2/19 17:43	3.99	180	1.5		0.001		70-130	110.8	85-115				≤ 20%		≤ 20%		
Dissolved Zinc (Zn)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	9/28/19 18:00	10/2/19 17:43	3.99	180	1.5		0.001		70-130	103	85-115				≤ 20%		≤ 20%		
Dissolved Iron	EPA 200.8 (ICP/MS)	NO	EPA 200.8	9/28/19 18:00	10/2/19 17:40	3.99	180	1.5		0.01		70-130	111	85-115				≤ 20%		≤ 20%		
Fotal Zinc (Zn)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	9/28/19 18:00	10/2/19 17:37	3.98	180	1.5		0.001		70-130	103	85-115				≤ 20%		≤ 20%		Metals filtered for dissolved
Total Copper (Cu)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	9/28/19 18:00	10/2/19 17:37	3.98	180	1.5		0.001		70-130	110.8	85-115				≤ 20%		≤ 20%		Metals filtered for dissolved
Hardness as CaCO3	SM 2340B (ICP)	NO	EPA 130.2	9/28/19 18:00	10/3/19 10:00	4.67	180	1.5		3		80-120	100	90-110				≤ 20%		≤ 20%		
Ortho-phosphate (OP)	SM 4500-P G	NO	SM4500-PF	9/28/19 18:00	9/30/19 16:34	1.94	2	1.5		0.018		80-120	97.2	80-120				≤ 20%		≤ 20%		
Total Phosphorus (TP)	SM 4500-P F	NO	SM4500-PF	9/28/19 18:00	10/8/19 17:16	9.97	28	1.5		0.005		80-120		90-100				≤ 20%		≤ 20%		
NWTPH-Dx , Diesel	Ecology NWTPH Dx	NO	NWTPH Dx	9/28/19 18:00	10/9/19 4:02	10.42	14	1.5		0.16		70-130	79.1	50-150				≤ 40%		≤ 40%		
NWTPH-Dx , Lube Oil	Ecology NWTPH Dx	NO	NWTPH Dx	9/28/19 18:00	10/9/19 4:02	10.42	14	1.5		0.4		70-130		70-130				≤ 40%		≤ 40%		
NWTPH-Dx , Mineral Oil	Ecology NWTPH Dx					0.00	14			0.16		70-130		70-130				≤ 40%		≤ 40%		
Sediment Dry Weight	EPA 1684																					
Sediment PSD	ASTM D422																	≤ 25%		≤ 25%		
ьН	S-2.20																					
Cation Exchange Capacity	S-10.10																					
Maximum Dry Density	ASTM D1557																					
Saturated Hydraulic Conductivity	ASTM D2434																					
Particle Size Distribution	ASTM D422																					
Total Elements (Zn, Cu, Pb, Fe, Al, P, Mg, Ca)	EPA 3050A/6010B																					
Fotal Organic Carbon	EPA 415.3																					
C:N Ratio	EPA 415.3/351.2																					
	Parameter Total Suspended Solids (TSS) Dissolved Copper (Cu) Dissolved Zinc (Zn) Dissolved Iron Total Zinc (Zn) Total Copper (Cu) Dissolved Iron Total Copper (Cu) Distance (Can) Di	Parameter Method Otal Suspended Solids (TSS) Dissolved Copper (Cu) Dissolved Zinc (Zn) Dissolved Iron EPA 200.8 (ICP/MS) SM 2340B (ICP) SM 4500-P G Distolal Phosphorus (TP) SM 4500-P F Ecology NWTPH Dx DIWTPH-Dx , Diesel Ecology NWTPH Dx DIWTPH-Dx , Mineral Oil Ecology NWTPH Dx Distolment Dry Weight EPA 1684 Distolment PSD ASTM D422 H S-2.20 Distolment Exchange Capacity ASTM D1557 Distolment Elements (Zn, Cu, Pb, Fe, J, P, Mg, Ca) Distol Organic Carbon EPA 415.3	Parameter Method Chain-of-Custody Issues? Otal Suspended Solids (TSS) SM 2540D NO Dissolved Copper (Cu) EPA 200.8 (ICP/MS) NO Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) NO Dissolved Iron EPA 200.8	Nethod	Nethod Chain-of-Custody Issues? Completeness/ Methodology Date Collected	Parameter	Parameter	Parameter	Parameter	Lab Report #: 190930019-001, 190930019-002 190930019-002 190930019-002 190930019-002 1	Parameter	Parameter Method Chain-of-Custody Issues? Professional Profess	Mathing Math	Parameter Par	Parameter Machine Parameter Machine Parameter Machine Parameter Parameter Machine Parameter Machine Parameter P	Parameter Lab Report Lab Report 1993/019-90/1-1993/019-019-019-019-019-019-019-019-019-019-	Parameter Lab Report Lab Report Lab Report Lab Report Lab Report Lab Color Lab Color	Parameter Machen Machen Machen Parameter Parameter	Harmonian Parameter	Parameter Baragori Baragori Chian-de Parameter Chian-de Param	Hammarian and the part of the	Parameter Par

Data Quality Assurance Spreadsheet Project Name Gonzaga Sample ID: IN-11122019, EF12-11122019, EF18-11122019 191220035-001, 191220035-002, 191220035-003 Sample Date: 12/19/2019 Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Holding Times (days) Blanks (mg/L) Surrogate Recovery Samples Recovery ACTION/NOTES Flagged Cooler RPD (%) Duplicates RPD (%) **Duplicates RPD (%)** Chain-of-Completeness/ Method (%) (%) Matrix Temperature Parameter Methodology **Custody Issues?** (°C) RPD Date Collected Date Analyzed Reported RPD Goal Reporting Limit Reported Reported Result Reported Goal Goal Goal Reported Goal Limit 12/26/19 7:45 SM 2540D SM 2540D 12/20/19 9:00 7 2.2 ≤ 25% Total Suspended Solids (TSS) NO 5.95 <1 1 114 80-120 98 90-110 ≤ 25% EPA 200.8 (ICP/MS) NO EPA 200.8 12/20/19 9:00 12/26/19 11:43 180 2.2 ND 0.001 103 70-130 93.8 85-115 ≤ 20% ≤ 20% Dissolved Copper (Cu) 6.11 EPA 200.8 (ICP/MS) Dissolved Zinc (Zn) NO EPA 200.8 12/20/19 9:00 12/26/19 11:43 6.11 180 2.2 ND 0.001 76 70-130 92 85-115 ≤ 20% ≤ 20% Dissolved Iron EPA 200.8 (ICP/MS) NO EPA 200.8 12/20/19 9:00 12/27/19 13:34 7.19 180 2.2 ND 0.01 104.9 70-130 114 85-115 ≤ 20% ≤ 20% ≤ 20% ≤ 20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 12/20/19 9:00 12/26/19 12:00 6.13 180 2.2 ND 0.001 76 70-130 92 85-115 Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 12/20/19 9:00 12/26/19 12:00 6.13 180 2.2 ND 0.001 103 70-130 93.8 85-115 ≤ 20% ≤ 20% ≤ 20% 12/20/19 9:00 12/20/19 15:30 ND ≤ 20% Hardness as CaCO3 SM 2340B (ICP) NO EPA 130.2 0.27 180 2.2 3 100 80-120 100.5 90-110 2.2 ≤ 20% ≤ 20% Ortho-phosphate (OP) SM 4500-P G NO SM4500-PF 12/20/19 9:00 12/20/19 16:15 0.30 2 ND 0.018 98.5 80-120 103 85-115 Total Phosphorus (TP) SM 4500-P F SM4500-PF 12/20/19 9:00 1/3/20 14:06 28 0.005 ≤ 20% ≤ 20% NO 14.21 2.2 80-120 90-100 NO3/N+NO2/N NA NO SM 4500 NO3F 12/20/19 9:00 12/31/19 12:01 11.13 NA 2.2 <0.1 0.05 89.5 70-130 101 80-120 NA NA TKN NA NO 12/20/19 9:00 1/8/20 15:09 2.2 <0.5 0.5 110.5 80-120 90-110 NA NA 19.26 NA 93 NORGO Total Nitrogen NA NO 12/20/19 9:00 1/8/20 16:01 2.2 NA NA 19.29 NA Calculation NWTPH-Dx , Diesel Ecology NWTPH Dx NO NWTPH-Dx 12/20/19 9:00 1/3/20 23:06 14.59 14 2.2 ND 0.16 94.4 70-130 84 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx 12/20/19 9:00 1/3/20 23:06 14.59 14 2.2 ND 0.4 70-130 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx 0.00 14 0.16 70-130 70-130 ≤ 40% ≤ 40% EPA 1684 Sediment Dry Weight Sediment PSD ASTM D422 ≤ 25% ≤ 25% S-2.20 S-10.10 Cation Exchange Capacity ASTM D1557 Maximum Dry Density Media ASTM D2434 Saturated Hydraulic Conductivity Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet Project Name Gonzaga Sample ID: IN-01282010, EF12-01282020, EF18-01282020 WAA0225-01, WAA0225-02, WAA0225-03 Sample Date: 1/28/2020 Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Flagged | ACTION/NOTES Holding Times (days) Blanks (mg/L) Surrogate Recovery Samples Recovery Cooler RPD (%) Duplicates RPD (%) Duplicates RPD (%) Chain-of-Completeness/ Method (%) (%) Matrix Temperature Parameter Methodology **Custody Issues?** (°C) RPD Date Collected Date Analyzed Reported Reported RPD Reported Goal Result Reporting Limit Reported Goal Goal Goal Goal Reported Limit SM 2540D SM 2540D 7 4.2 90-110 Total Suspended Solids (TSS) NO 1/28/20 17:55 2/4/20 15:45 6.91 ND 1 107 80-120 97 9.52 20 ≤ 25% ≤ 25% EPA 200.8 (ICP/MS) NO EPA 200.8 1/28/20 17:55 2/3/20 13:40 5.82 180 4.2 ND 0.001 70-130 105 85-115 ≤ 20% ≤ 20% Dissolved Copper (Cu) EPA 200.8 (ICP/MS) Dissolved Zinc (Zn) NO EPA 200.8 1/28/20 17:55 2/3/20 13:40 5.82 180 4.2 ND 0.001 70-130 101 85-115 ≤ 20% ≤ 20% Dissolved Iron EPA 200.8 (ICP/MS) NO EPA 200.8 1/28/20 17:55 2/3/20 13:40 5.82 180 4.2 ND 0.01 70-130 105 85-115 ≤ 20% ≤ 20% ≤ 20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 1/28/20 17:55 2/3/20 14:58 5.88 180 4.2 ND 0.001 99.9 70-130 103 85-115 ≤ 20% Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 1/28/20 17:55 2/3/20 14:58 5.88 4.2 ND 0.001 90.4 70-130 107 85-115 ≤ 20% ≤ 20% 180 ≤ 20% ND ≤ 20% Hardness as CaCO3 SM 2340B (ICP) NO SM 2340C 1/28/20 17:55 2/3/20 11:40 5.74 180 4.2 3 99.5 80-120 100.5 90-110 0.597 200 ≤ 20% ≤ 20% Ortho-phosphate (OP) SM 4500-P G NO SM 4500-P G 1/28/20 17:55 1/30/20 15:29 1.90 2 4.2 ND 0.018 97.9 80-120 93.9 85-115 SM 4500-P F SM 4500-P F ≤ 20% Total Phosphorus (TP) NO 1/28/20 17:55 2/11/20 15:36 13.90 28 4.2 ND 0.005 103.1 80-120 94.7 90-100 ≤ 20% 1/28/20 17:55 NO3/N+NO2/N SM 4500-NO3 F NO NA 2/7/20 10:51 9.71 NA 4.2 ND 0.5 97.5 70-130 95 80-120 NA NA SM 4500-Norg D TKN NO 1/28/20 17:55 NA NA NA 2/10/20 16:01 NA 4.2 ND 0.1 97.6 90-110 97.2 90-110 12.92 NWTPH-Dx , Diesel Ecology NWTPH Dx NO EPA 8015D 1/28/20 17:55 2/12/20 3:11 14.39 14 4.2 ND 0.16 83.3 70-130 93.6 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO EPA 8015D 1/28/20 17:55 14 4.2 ND 0.4 70-130 70-130 2/12/20 3:11 14.39 ≤ 40% ≤ 40% NWTPH-Dx, Mineral Oil Ecology NWTPH Dx NO EPA 8015D 1/28/20 17:55 2/12/20 3:11 14.39 14 4.2 ND 0.16 70-130 70-130 ≤ 40% ≤ 40% Sediment Dry Weight EPA 1684 Sediment PSD ASTM D422 ≤ 25% ≤ 25% S-2.20 S-10.10 Cation Exchange Capacity **ASTM D1557** Maximum Dry Density **ASTM D2434** Saturated Hydraulic Conductivity Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet Project Name Gonzaga Sample ID: IN-01302020, EF12-01302020, EF18-01302020 1/30/2020 WAA0224-01, WAA0224-02, WAA0224-03 Sample Date: Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Holding Times (days) **ACTION/NOTES** Blanks (mg/L) Surrogate Recovery Samples Recovery Flagged Cooler Duplicates RPD (%) Duplicates RPD (%) RPD (%) Completeness/ Chain-of-(%) (%) Matrix Parameter Method Temperature Custody Issues? Methodology (°C) RPD Date Collected | Date Analyzed Reported Goal Reporting Limit Reported Goal Reported Goal RPD Reported Goal Reported Goal Result Limit SM 2540D NO SM 2540 D 1/30/20 8:30 2/4/20 15:45 5.30 7 5.8 ND 80-120 97 9.52 20 ≤ 25% ≤ 25% Total Suspended Solids (TSS) 1 107 90-110 70-130 ≤ 20% ≤ 20% Dissolved Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 1/30/20 8:30 2/19/20 14:04 20.23 180 5.8 ND 0.001 94.8 85-115 NO 1/30/20 8:30 2/19/20 14:04 20.23 180 ND 70-130 ≤ 20% ≤ 20% EPA 200.8 (ICP/MS) EPA 200.8 5.8 0.001 94.8 85-115 Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 1/30/20 8:30 2/19/20 14:04 20.23 180 5.8 ND 0.01 70-130 85-115 ≤ 20% ≤ 20% Dissolved Iron 101 ≤ 20% ≤ 20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 1/30/20 8:30 2/3/20 14:34 4.25 180 5.8 ND 0.001 99.9 70-130 103 85-115 Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 1/30/20 8:30 2/3/20 14:34 4.25 180 5.8 ND 0.001 90.4 70-130 107 85-115 ≤ 20% ≤ 20% ND ≤ 20% ≤ 20% Hardness as CaCO3 SM 2340B (ICP) NO SM 2340C 1/30/20 8:30 2/3/20 11:00 4.10 180 5.8 99.5 80-120 100.5 90-110 SM 4500-P G NO SM 4500-P G 1/30/20 8:30 1/30/20 15:27 0.29 2 5.8 ND 0.018 97.9 80-120 85-115 0.597 200 ≤ 20% ≤ 20% Ortho-phosphate (OP) 93.9 Total Phosphorus (TP) SM 4500-P F NO SM 4500- P F 1/30/20 8:30 2/11/20 15:28 12.29 28 5.8 ND 0.005 104.2 80-120 98.35 90-100 ≤ 20% ≤ 20% NO3/N+NO2/N NA NO SM 4500-NO3 F 1/30/20 8:30 2/7/20 10:39 8.09 NA 5.8 ND 0.5 97.55 90-110 97.2 90-110 NA NA 2/13/20 16:37 NA NO SM 4500-Norg D 5.8 ND 0.1 97.5 70-130 95 NA TKN 1/30/20 8:30 14.34 NA 80-120 NA NWTPH-Dx , Diesel NO EPA 8015D 14 5.8 ND 83.3 70-130 70-130 ≤ 40% Ecology NWTPH Dx 1/30/20 8:30 2/12/20 0:27 12.66 0.16 93.6 ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO EPA 8015D 1/30/20 8:30 2/12/20 0:27 12.66 14 5.8 ND 0.4 70-130 70-130 ≤ 40% ≤ 40% 70-130 ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx NO EPA 8015D 1/30/20 8:30 2/12/20 0:27 12.66 14 5.8 ND 0.16 70-130 ≤ 40% EPA 1684 Sediment Dry Weight Sediment PSD ASTM D422 ≤ 25% ≤ 25% S-2.20 S-10.10 Cation Exchange Capacity **ASTM D1557** Maximum Dry Density Saturated Hydraulic Conductivity **ASTM D2434** ASTM D422 Particle Size Distribution Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet IN-02232020, EF12-02232020, EF18-02232020 Project Name Gonzaga Sample ID: WAB0557-01, WAB0557-01, WAB0557-01 Sample Date: 2/23/2020 Lab Report #: Matrix Spikes/ Lab Control Samples Lab Duplicates Influent Field Effluent Field **Holding Times (days)** Blanks (mg/L) Surrogate Recovery Flagged **ACTION/NOTES** Cooler Recovery (%) RPD (%) Duplicates RPD (%) Duplicates RPD (%) Chain-of-Completeness/ (%) Matrix Parameter Method Temperature **Custody Issues?** Methodology (°C) RPD Date Collected | Date Analyzed | Reported Goal Result Reporting Limit Reported Goal Reported Goal RPD Reported Goal Reported Goal Limit SM 2540D NO SM 2540D 2/23/20 18:15 2/28/20 16:00 4.91 7 4 ND 111.5 80-120 97.3 90-110 9.125 20 ≤25% ≤25% Total Suspended Solids (TSS) 1 EPA 200.8 (ICP/MS) 180 70-130 ≤20% Dissolved Copper (Cu) NO EPA 200.8 2/23/20 18:15 2/28/20 13:28 4.80 4 ND 0.001 94.3 85-115 ≤20% 2/23/20 18:15 2/28/20 13:28 4.80 180 ND 70-130 85-115 ≤20% ≤20% EPA 200.8 (ICP/MS) NO EPA 200.8 4 0.001 96 Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 2/23/20 18:15 2/28/20 13:28 4.80 180 4 ND 0.01 70-130 85-115 ≤20% ≤20% Dissolved Iron 98.7 180 70-130 ≤20% ≤20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 2/23/20 18:15 2/28/20 14:11 4.83 4 ND 0.001 88.85 93.4 85-115 Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 2/23/20 18:15 2/28/20 14:11 4.83 180 4 ND 0.001 87.2 70-130 94.3 85-115 ≤20% ≤20% SM 2340C 4 0.25 2.06 20 ≤20% ≤20% Hardness as CaCO3 SM 2340B (ICP) NO 2/23/20 18:15 3/3/20 15:15 8.88 180 3 80-120 100.5 90-110 Ortho-phosphate (OP) SM 4500-P G NO SM 4500-P G 2/23/20 18:15 2/25/20 10:02 1.66 2 4 ND 0.018 94.35 80-120 92.7 85-115 ≤20% ≤20% Total Phosphorus (TP) SM 4500-P F NO SM 4500-P F 2/23/20 18:15 3/3/20 10:20 8.67 28 4 ND 0.005 110.5 80-120 101 90-110 ≤20% ≤20% NO3/N+NO2/N NA NO SM 4500-NO3 F 2/23/20 18:15 2/25/20 11:33 1.72 NA 4 ND 0.1 89.55 80-120 96.2 85-115 NA NA ND TKN NA NO SM 4500-Norg D | 2/23/20 18:15 3/3/20 16:16 8.92 NA 4 0.5 106 80-120 102 85-115 NA NA NA Total Nitrogen NA NO Calculation 2/23/20 18:15 3/3/20 16:16 8.92 NA 4 NA NWTPH-Dx , Diesel Ecology NWTPH Dx NO EPA 8015D 2/23/20 18:15 3/6/20 14:28 11.84 14 4 ND 0.16 73.45 70-130 82.4 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx EPA 8015D 2/23/20 18:15 3/6/20 14:28 4 ND 70-130 70-130 ≤ 40% NO 11.84 14 0.4 ≤ 40% NWTPH-Dx, Mineral Oil Ecology NWTPH Dx NO EPA 8015D 2/23/20 18:15 3/6/20 14:28 11.84 14 4 ND 0.16 70-130 70-130 ≤ 40% ≤ 40% EPA 1684 Sediment Dry Weight Sediment PSD ASTM D422 ≤ 25% ≤ 25% S-2.20 Cation Exchange Capacity S-10.10 **ASTM D1557** Maximum Dry Density Saturated Hydraulic Conductivity ASTM D2434 ASTM D422 Particle Size Distribution Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 EPA 415.3/351.2 C:N Ratio

Data Quality Assurance Spreadsheet INF05062020, EFF1205062020, EFF1805062020 Project Name Sample ID: Gonzaga Lab Report #: WAE0230-01, WAE0230-02, WAE0230-03 Sample Date: Matrix Spikes/ **Lab Control** Lab Duplicates Influent Field Effluent Field Holding Times (days) Blanks (mg/L) Surrogate Recovery Samples Recovery ACTION/NOTES Flagged Cooler RPD (%) Duplicates RPD (%) Duplicates RPD (% Chain-of-Completeness/ (%) (%) Matrix Method Temperature Parameter Methodology Custody Issues? (°C) RPD Reported Date Collected | Date Analyzed | Reported Goal Reporting Limit Reported Goal Goal RPD Goal Reported Goal Result Reported Limit Total Suspended Solids (TSS) SM 2540D NO SM 2540D 5/7/20 8:30 5/12/20 14:00 5.23 9.9 ND 84 80-120 96 90-110 0 20 ≤ 25% ≤ 25% EPA 200.8 (ICP/MS) NO EPA 200.8 5/11/20 12:35 180 ND 0.001 70-130 ≤ 20% ≤ 20% Dissolved Copper (Cu) 5/7/20 8:30 4.17 9.9 100.05 96.4 85-115 Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 5/7/20 8:30 5/11/20 12:35 4.17 180 9.9 ND 0.001 99.15 70-130 96.3 85-115 ≤ 20% ≤ 20% EPA 200.8 (ICP/MS) NO EPA 200.8 5/11/20 12:35 180 ND 70-130 85-115 ≤ 20% ≤ 20% 5/7/20 8:30 4.17 9.9 0.01 99.5 111 Dissolved Iron Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 5/7/20 8:30 5/11/20 13:03 4.19 180 9.9 ND 0.001 97.8 70-130 96.2 85-115 ≤ 20% ≤ 20% Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 5/7/20 8:30 5/11/20 13:03 4.19 180 9.9 ND 0.001 96.45 70-130 85-115 ≤ 20% ≤ 20% 5/12/20 10:15 SM 2340B (ICP) NO SM 2340C 5/7/20 8:30 5.07 9.9 ND 3 100.5 80-120 2.53 20 ≤ 20% ≤ 20% Hardness as CaCO3 180 100.5 90-110 SM 4500-P G ND ≤ 20% ≤ 20% NO SM 4500-P G 5/7/20 8:30 5/8/20 11:07 2 9.9 0.018 80-120 103 85-115 Ortho-phosphate (OP) 1 11 Total Phosphorus (TP) SM 4500-P F NO SM 4500-P H 5/7/20 8:30 5/22/20 10:51 9.9 0.005 0.005 15.10 28 103.5 80-120 99.4 90-100 ≤ 20% ≤ 20% SM 4500-NO3 F ND NO3/N+NO2/N NA NO 5/7/20 8:30 5/13/20 14:35 6.25 NA 9.9 0.1 82.35 80-120 95.4 90-110 NA NA SM 4500-Norg D TKN NA NO 5/27/20 13:27 9.9 ND 0.5 91.3 80-120 98.2 85-115 NA 5/7/20 8:30 20.21 NA NA Total Nitrogen NA NO 5/7/20 8:30 5/27/20 13:27 20.21 NA 9.9 NA NA Calculation Modified SSC Method TAPE 2011 / From lab: "There were no NO 5/8/20 0:00 noted anomalies during this PSD (based on ASTM **ASTM D3977** 5/7/20 8:30 0.65 NA D3977097) Method C testing". Ecology NWTPH Dx NWTPH-Dx 5/16/20 1:45 NWTPH-Dx , Diesel NO 70-130 70-130 5/7/20 8:30 8.72 14 9.9 ND 0.16 78.1 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx 5/7/20 8:30 5/16/20 1:45 8.72 14 9.9 ND 0.4 70-130 ND 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx NO NWTPH-Dx 5/7/20 8:30 5/16/20 1:45 8.72 14 9.9 ND 0.16 70-130 70-130 ≤ 40% ≤ 40% Sediment Dry Weight EPA 1684 Sediment PSD ASTM D422 ≤ 25% ≤ 25% S-2.20 S-10.10 Cation Exchange Capacity Maximum Dry Density ASTM D1557 Saturated Hydraulic Conductivity ASTM D2434 Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet INF05202020, EFF12052020, EFF1805202020 Project Name Gonzaga Sample ID: 20S091-01 Sample Date: 5/20/2020 Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Holding Times (days) Blanks (mg/L) Surrogate Recovery Samples Recovery Flagged **ACTION/NOTES** Cooler RPD (%) Duplicates RPD (%) Duplicates RPD (%) Chain-of-Completeness Method (%) (%) Matrix Parameter Temperature Custody Issues? Methodology (°C) RPD RPD Date Collected | Date Analyzed Goal Reporting Limit Reported Goal Reported Goal Goal Goal Result Reported Reported Reported Limit SM 2540D 0.00 7 80-120 90-110 ≤ 25% ≤ 25% Total Suspended Solids (TSS) 1 EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% ≤ 20% Dissolved Copper (Cu) Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% ≤ 20% ≤ 20% Dissolved Iron EPA 200.8 (ICP/MS) 0.00 180 0.01 70-130 85-115 ≤ 20% ≤ 20% EPA 200.8 (ICP/MS) 0.00 180 70-130 Total Zinc (Zn) 0.001 85-115 ≤ 20% Total Copper (Cu) EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% ≤ 20% ≤ 20% ≤ 20% Hardness as CaCO3 SM 2340B (ICP) 0.00 90-110 180 3 80-120 ≤ 20% ≤ 20% SM 4500-P G 0.00 0.018 80-120 85-115 Ortho-phosphate (OP) 2 SM 4500-P F 0.005 80-120 90-100 ≤ 20% ≤ 20% Total Phosphorus (TP) 0.00 28 NO3/N+NO2/N NA 0.00 NA 0.1 80-120 85-115 NA NA TKN NA 0.00 NA 0.5 80-120 85-115 NA NA NA NA Total Nitrogen 0.00 NA NA rom lab: "There Modified SSC Method TAPE 2011 / were no noted PSD (based on ASTM NO **ASTM D3977** 5/20/20 0:00 5/26/20 0:00 6.00 NA anomalies during D3977097) Method C this testing". NWTPH-Dx . Diesel Ecology NWTPH Dx 0.00 14 0.16 70-130 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx 0.00 14 0.4 70-130 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx 0.00 0.16 70-130 70-130 ≤ 40% ≤ 40% 14 EPA 1684 Sediment Dry Weight Sediment PSD ASTM D422 ≤ 25% ≤ 25% рΗ S-2.20 S-10.10 Cation Exchange Capacity ASTM D1557 Maximum Dry Density ASTM D2434 Saturated Hydraulic Conductivity Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet INF05302020, EFF12-05302020, EFF18-05302020 Project Name Gonzaga Sample ID: Sample Date: WAF0004-01,WAF0004-02, WAF0004-03 5/31/2020 Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Holding Times (days) Blanks (mg/L) Surrogate Recovery Samples Recovery Flagged **ACTION/NOTES** Cooler Completeness RPD (%) Duplicates RPD (%) | Duplicates RPD (%) Chain-of-(%) (%) Matrix Parameter Method Temperature Custody Issues? Methodology (°C) RPD Date Collected | Date Analyzed | Reported Goal Result Reporting Limit Reported Goal Reported Goal RPD Reported Goal Reported Goal Limit Lab duplicate RPD exceeded limit. Only test exceeded (by SM 4540D 80-120 90-110 34.95 ≤ 25% ≤ 25% Total Suspended Solids (TSS) SM 2540D NO 5/31/20 16:00 6/5/20 11:00 4.79 ND 99.8 20 5 98 one unrelated sample). Will ccept sample result. ≤ 20% ≤20% EPA 200.8 (ICP/MS) 5/31/20 16:00 6/24/20 14:08 23.92 180 ND 70-130 85-115 Dissolved Copper (Cu) NO EPA 200.8 5 0.001 96.0 96 70-130 ≤20% ≤20% Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 5/31/20 16:00 6/24/20 14:08 23.92 180 5 ND 0.001 97.5 97.8 85-115 Dissolved Iron EPA 200.8 (ICP/MS) EPA 200.8 5/31/20 16:00 6/24/20 14:08 23.92 180 ND 0.01 114.5 70-130 106 85-115 ≤ 20% ≤20% 18.95 ≤ 20% ≤ 20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 5/31/20 16:00 6/19/20 14:53 180 5 ND 0.001 78.1 70-130 98.6 85-115 Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 5/31/20 16:00 6/19/20 14:53 18.95 180 5 ND 0.001 80.5 70-130 96.2 85-115 ≤20% ≤20% SM 2340B (ICP) NO SM 4340C 5/31/20 16:00 6/11/20 9:45 10.74 180 ND 101 ≤20% ≤ 20% Hardness as CaCO3 5 3 80-120 98.8 90-110 0.388 20 SM 4500-P G 0.00 2 0.018 80-120 85-115 ≤20% ≤20% Ortho-phosphate (OP) SM 4500-P F Total Phosphorus (TP) 0.00 28 0.005 80-120 90-100 ≤20% ≤20% NO3/N+NO2/N NA 0.00 NA 0.1 80-120 85-115 NA NA TKN 0.5 NA 0.00 NA 80-120 85-115 NA NA Total Nitrogen NA 0.00 NA NA NA Modified SSC Method PSD (based on ASTM 0.00 NA D3977097) NWTPH-Dx , Diesel Ecology NWTPH Dx NWTPH-Dx 5/31/20 16:00 6/12/20 21:29 12.23 14 ND 0.16 83 70-130 103 70-130 ND 20 ≤ 40% ≤ 40% NO 5 NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx 5/31/20 16:00 6/12/20 21:29 12.23 14 5 ND 0.4 70-130 70-130 ND 20 ≤ 40% ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx NWTPH-Dx 5/31/20 16:00 6/12/20 21:29 12.23 14 70-130 70-130 ND 20 ≤ 40% ≤ 40% NO 5 EPA 1684 Sediment Dry Weight ASTM D422 ≤ 25% ≤ 25% Sediment PSD S-2.20 Cation Exchange Capacity S-10.10 **ASTM D1557** Maximum Dry Density **ASTM D2434** Saturated Hydraulic Conductivity Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) EPA 415.3 Total Organic Carbon C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet Project Name Gonzaga Sample ID: INF092520, EFF12092520, EFF18092520 WAI1018-01, WAI1018-02, WAI1018-03 Sample Date: 9/25/2020 Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Holding Times (days) Blanks (mg/L) Surrogate Recovery Samples Recovery ACTION/NOTES Flagged Cooler RPD (%) Duplicates RPD (%) **Duplicates RPD (%)** Chain-of-Completeness/ (%) (%) Matrix Method Parameter Temperature Methodology Custody Issues? (°C) RPD Date Collected Date Analyzed Reported RPD Reported Goal Result Reporting Limit Reported Goal Goal Goal Reported Goal Reported Limit SM 2540D NO SM 2540D 6.87 7 97.5 20 ≤ 25% 9/25/20 17:30 10/2/20 14:25 1.5 ND 1 80-120 90-110 0 ≤ 25% Total Suspended Solids (TSS) 96.0 EPA 200.8 (ICP/MS) NO EPA 200.8 9/25/20 17:30 10/8/20 11:34 12.75 180 1.5 ND 0.001 92.9 70-130 96.8 85-115 ≤ 20% ≤ 20% Dissolved Copper (Cu) Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 9/25/20 17:30 10/8/20 11:34 12.75 180 1.5 ND 0.001 87.5 70-130 89.9 85-115 ≤ 20% ≤ 20% ≤ 20% ≤ 20% Dissolved Iron EPA 200.8 (ICP/MS) NO EPA 200.8 9/25/20 17:30 10/8/20 11:34 12.75 180 1.5 ND 0.01 87.85 70-130 110 85-115 ≤ 20% ≤ 20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 9/25/20 17:30 10/8/20 12:23 12.79 180 1.5 ND 0.001 70-130 88 85-115 79.6 Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 9/25/20 17:30 10/8/20 12:23 12.79 180 1.5 ND 0.001 70-130 94.8 85-115 ≤ 20% ≤ 20% 92.5 ≤ 20% SM 2340B (ICP) NO SM 2340C ND ≤ 20% Hardness as CaCO3 9/25/20 17:30 10/6/20 7:30 10.58 180 1.5 3 95 80-120 100.0 90-110 2.38 20 80-120 ≤ 20% ≤ 20% Ortho-phosphate (OP) SM 4500-P G 0.00 2 0.018 85-115 SM 4500-P F SM 4500-P H 9/25/20 17:30 0.005 102.5 ≤ 20% ≤ 20% Total Phosphorus (TP) NO 9/30/20 16:15 4.95 28 ND 106.5 80-120 90-100 1.5 NO3/N+NO2/N NA 0.00 NA 0.1 80-120 85-115 NA NA TKN NA 0.00 NA 0.5 80-120 85-115 NA NA Total Nitrogen NA 0.00 NA NA NA Modified SSC Method PSD 0.00 (based on ASTM NA D3977097) NWTPH-Dx , Diesel Ecology NWTPH Dx 0.00 14 0.16 70-130 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx 0.00 14 0.4 70-130 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx 0.00 0.16 70-130 70-130 14 ≤ 40% ≤ 40% EPA 1684 Sediment Dry Weight Sediment PSD ASTM D422 ≤ 25% ≤ 25% рН S-2.20 Cation Exchange Capacity S-10.10 ASTM D1557 Maximum Dry Density Saturated Hydraulic Conductivity ASTM D2434 Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet INF101020, EFF12101020, EFF18101020 Project Name Gonzaga Sample ID: 10/10/2020 WAJ0380-01, WAJ0380-02, WAJ0380-03 Sample Date: Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Holding Times (days) Blanks (mg/L) Surrogate Recovery Samples Recovery Flagged ACTION/NOTES Cooler RPD (%) Duplicates RPD (%) Duplicates RPD (%) Chain-of-Completeness/ (%) (%) Matrix Parameter Method Temperature Custody Issues? Methodology (°C) Date Collected | Date Analyzed | Reported Goal Goal RPD Goal Reported Goal Result Reporting Limit Reported Reported Reported Goal Limit ≤ 25% Total Suspended Solids (TSS) SM 2540D NO SM 4540D 10/10/20 18:30 | 10/16/20 13:28 5.79 7 6.7 ND 87 80-120 95.5 90-110 2.06 20 ≤ 25% 1 EPA 200.8 (ICP/MS) NO 10/10/20 18:30 10/21/20 15:51 180 6.7 ND 70-130 97.8 85-115 ≤ 20% ≤ 20% Dissolved Copper (Cu) EPA 200.8 10.89 0.001 100.5 Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 10/10/20 18:30 10/22/20 15:31 11.88 180 6.7 ND 0.001 96.3 70-130 96.2 85-115 ≤ 20% ≤ 20% ≤ 20% EPA 200.8 (ICP/MS) NO EPA 200.8 10/10/20 18:30 10/22/20 15:31 11.88 180 6.7 ND 0.01 114 70-130 112 85-115 ≤ 20% Dissolved Iron Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 10/10/20 18:30 10/22/20 16:21 11.91 180 6.7 ND 0.001 97.5 70-130 97.4 85-115 ≤ 20% ≤ 20% Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 10/10/20 18:30 10/22/20 16:21 11.91 180 6.7 ND 0.001 102.5 70-130 100 85-115 ≤ 20% ≤ 20% ND ≤ 20% Hardness as CaCO3 SM 2340B (ICP) NO SM 2340C 10/10/20 18:30 | 10/15/20 13:00 80-120 100.4 ≤ 20% 4.77 180 6.7 3 94.1 90-110 0 20 SM 4500-P G SM 4500-P G 10/10/20 18:30 10/12/20 17:51 2 0.018 86.8 85-115 ≤ 20% ≤ 20% NO 1.97 6.7 ND 92.1 80-120 Ortho-phosphate (OP) Total Phosphorus (TP) SM 4500-P F NO SM 4500-P H 10/10/20 18:30 10/21/20 16:17 10.91 28 6.7 ND 0.005 108.5 80-120 104 90-110 ≤ 20% ≤ 20% NO3/N+NO2/N NA NO SM 4500-NO3 F | 10/10/20 18:30 10/23/20 10:32 12.67 NA 6.7 ND 0.1 87.4 80-120 101 85-115 NA NA TKN NA NO SM 4500-Norg D | 10/10/20 18:30 | 10/26/20 16:09 15.90 NA 6.7 ND 0.5 98.25 80-120 104 85-115 NA NA Total Nitrogen NA NO Calculation | 10/10/20 18:30 | 10/26/20 16:09 15.90 NA 6.7 NA NA Modified SSC Method PSD (based on ASTM 0.00 NA D3977097) NWTPH-Dx, Diesel Ecology NWTPH Dx NWTPH-Dx 10/10/20 18:30 10/22/20 0:41 14 6.7 ND 0.16 70-130 97.7 70-130 ND 20 ≤ 40% ≤ 40% NO 11.26 NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx ND 70-130 4.58 10/10/20 18:30 10/22/20 0:41 11.26 6.7 0.4 70-130 20 ≤ 40% 14 ≤ 40% NWTPH-Dx ND 0.16 70-130 70-130 ND Ecology NWTPH Dx NO 10/10/20 18:30 10/22/20 0:41 14 6.7 20 ≤ 40% ≤ 40% NWTPH-Dx, Mineral Oil 11.26 Sediment Dry Weight EPA 1684 ≤ 25% Sediment PSD ASTM D422 ≤ 25% S-2.20 S-10.10 Cation Exchange Capacity Maximum Dry Density **ASTM D1557** Saturated Hydraulic Conductivity **ASTM D2434** ASTM D422 Particle Size Distribution Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality As	ssurance Spreadsheet				1																		
Project Name	Gonzaga		Sample ID:	INF101220, EFF1	2101220, EFF181	01220																	
Sample Date:	10/12/2020)	Lab Report #:	WAJ0488-01, WA	<mark>J0488-02,WAJ04</mark>	88-03																	
Matrix	Parameter	Method	Chain-of- Custody Issues?	Completeness/ Methodology		Holding Times	(days)	ı	Cooler Temperature (°C)	Blank	s (mg/L)	Matrix Sp Surrogate R (%)	ecovery	Samples	ontrol Recovery %)	1	iplicates D (%)	Influent Duplicates		Effluent Duplicates		Flagged	ACTION/NOTES
					Date Collected	Date Analyzed	Reported	Goal	(0)	Result	Reporting Limit	Reported	Goal	Reported	Goal	RPD	RPD Limit	Reported	Goal	Reported	Goal		
	Total Suspended Solids (TSS)	SM 2540D	NO	SM 2540D	10/12/20 14:30	10/16/20 13:28	3.96	7	5.3	ND	1	96	80-120	95.75	90-110	2.06	20		≤ 25%		≤ 25%		
	Dissolved Copper (Cu)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	10/12/20 14:30	10/29/20 14:46	17.01	180	5.3	ND	0.001	97.5	70-130	93.4	85-115				≤ 20%		≤ 20%		
	Dissolved Zinc (Zn)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	10/12/20 14:30	10/29/20 14:46	17.01	180	5.3	ND	0.001	99.3	70-130	98.2	85-115				≤ 20%		≤ 20%		
	Dissolved Iron	EPA 200.8 (ICP/MS)	NO	EPA 200.8	10/12/20 14:30	10/29/20 14:46	17.01	180	5.3	ND	0.01	124	70-130	104	85-115				≤ 20%		≤ 20%		
	Total Zinc (Zn)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	10/12/20 14:30	10/29/20 13:40	16.97	180	5.3	ND	0.001	96.6	70-130	104	85-115				≤ 20%		≤ 20%		
	Total Copper (Cu)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	10/12/20 14:30	10/29/20 13:40	16.97	180	5.3	ND	0.001	92.5	70-130	101	85-115				≤ 20%		≤ 20%		
ater	Hardness as CaCO3	SM 2340B (ICP)	NO	SM 2340C	10/12/20 14:30		2.94	180	5.3	ND	3	94.1	80-120	100.4	90-110	0	20		≤ 20%		≤ 20%		
Stormw	Ortho-phosphate (OP)	SM 4500-P G					0.00	2			0.018		80-120		85-115				≤ 20%		≤ 20%		
S	Total Phosphorus (TP)	SM 4500-P F	NO	SM 4500-P H	10/12/20 14:30	10/21/20 16:25	9.08	28	5.3	ND	0.005	108.5	80-120	104	90-110				≤ 20%		≤ 20%		
	NO3/N+NO2/N	NA	NO	SM 4500-NO3 F	10/12/20 14:30	10/23/20 10:49	10.85	NA	5.3	ND	0.1	87.4	80-120	101	85-115				NA		NA		
	TKN	NA	NO	SM 4500-Norg D	10/12/20 14:30	11/4/20 10:39	22.84	NA	5.3	ND	0.5	106.1	80-120	109	85-115				NA		NA		
	Total Nitrogen	NA	NO	Calculation	10/12/20 14:30	11/4/20 10:39	22.84	NA	5.3										NA		NA		
	PSD	Modified SSC Method (based on ASTM D3977097)					0.00	NA															
	NWTPH-Dx , Diesel	Ecology NWTPH Dx	NO	NWTPH-Dx	10/12/20 14:30	10/22/20 5:14	9.61	14	5.3	ND	0.16	83.9	70-130	97.7	70-130	ND	20		≤ 40%		≤ 40%		
	NWTPH-Dx , Lube Oil	Ecology NWTPH Dx	NO	NWTPH-Dx	10/12/20 14:30	10/22/20 5:14	9.61	14	5.3	ND	0.4		70-130		70-130	4.58	20		≤ 40%		≤ 40%		
	NWTPH-Dx , Mineral Oil	Ecology NWTPH Dx	NO	NWTPH-Dx	10/12/20 14:30	10/22/20 5:14	9.61	14	5.3	ND	0.16		70-130		70-130	ND	20		≤ 40%		≤ 40%		
ent	Sediment Dry Weight	EPA 1684																					
Sedime	Sediment PSD	ASTM D422																	≤ 25%		≤ 25%		
	pH	S-2.20																					
	Cation Exchange Capacity	S-10.10																					
	Maximum Dry Density	ASTM D1557																					
Media	Saturated Hydraulic Conductivity	ASTM D2434																					
aga	Particle Size Distribution	ASTM D422																					
Gonza	Total Elements (Zn, Cu, Pb, Fe, Al, P, Mg, Ca)	EPA 3050A/6010B																					
	Total Organic Carbon	EPA 415.3																					
	C:N Ratio	EPA 415.3/351.2																					
L	1																						

Data Quality Assurance Spreadsheet INF11052020, EFF1211052020, EFF1811052020 Project Name Gonzaga Sample ID: Sample Date: WAK0231-01, WAK0231-02, WAK0231-03 11/6/2020 Lab Report #: Matrix Spikes/ Lab Control Samples Lab Duplicates Influent Field Effluent Field **Holding Times (days)** Blanks (mg/L) Surrogate Recovery Flagged **ACTION/NOTES** Cooler Duplicates RPD (%) | Duplicates RPD (%) Recovery (%) RPD (%) Chain-of-Completeness/ (%) Matrix Parameter Method Temperature Custody Issues? Methodology (°C) RPD Date Collected | Date Analyzed | Reported Goal Result Reporting Limit Reported Goal Reported Goal RPD Reported Goal Reported Goal Limit Total Suspended Solids (TSS) SM 2540D NO SM 2540D 11/6/20 10:00 11/9/20 10:00 3.00 7 ND 80-120 90-110 3.82 20 ≤25% ≤ 25% 6.5 98 96.3 5.22 180 70-130 85-115 ≤20% ≤ 20% Dissolved Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 11/6/20 10:00 11/11/20 15:23 6.5 ND 0.001 91.1 86.3 EPA 200.8 (ICP/MS) EPA 200.8 11/6/20 10:00 11/20/20 15:23 14.22 180 ND 0.001 70-130 ≤20% ≤ 20% NO 6.5 90.7 87 85-115 Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 11/6/20 10:00 11/11/20 15:23 5.22 180 ND 0.01 98.4 70-130 85-115 ≤ 20% ≤ 20% Dissolved Iron 6.5 ≤20% ≤ 20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 11/6/20 10:00 11/20/20 16:18 14.26 180 6.5 ND 0.001 90.75 70-130 101 85-115 Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 11/6/20 10:00 11/20/20 16:18 14.26 180 6.5 ND 0.001 92.375 70-130 103 85-115 ≤20% ≤ 20% SM 2340 C ND 5.13 20 ≤20% ≤ 20% Hardness as CaCO3 SM 2340B (ICP) NO 11/6/20 10:00 11/11/20 14:00 5.17 180 6.5 100 80-120 101 90-110 SM 4500-P G NO SM 4500-P G 11/6/20 10:00 11/6/20 15:15 0.22 2 6.5 ND 0.018 110.5 80-120 103 85-115 ≤20% ≤20% Ortho-phosphate (OP) Matrix spike recovery was high; Total Phosphorus (TP) SM 4500-P F NO SM 4500-P H 11/6/20 10:00 11/24/20 15:26 18.23 28 ND 0.005 137.5 80-120 108 90-110 ≤20% ≤ 20% the associated blank spike recovery was acceptable NO3/N+NO2/N NA 0.00 NA 0.1 80-120 85-115 NA NA NA TKN NA 0.00 0.5 80-120 85-115 NA NA Total Nitrogen NA NA NA 0.00 NA Modified SSC Method NA PSD (based on ASTM 0.00 D3977097) NWTPH-Dx , Diesel Ecology NWTPH Dx NO NWTPH-Dx 11/6/20 10:00 11/18/20 23:29 12.56 14 6.5 ND 0.16 85.7 70-130 70-130 ND 20 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx NWTPH-Dx 11/6/20 10:00 11/18/20 23:29 14 ND 0.4 ND 70-130 ND 20 ≤ 40% NO 12.56 6.5 70-130 ND ≤ 40% NWTPH-Dx 70-130 ND 20 Ecology NWTPH Dx 11/6/20 10:00 11/18/20 23:29 14 ND 0.16 70-130 ≤ 40% ≤ 40% NWTPH-Dx, Mineral Oil NO 12.56 6.5 Sediment Dry Weight EPA 1684 Sediment PSD ASTM D422 ≤ 25% ≤ 25% S-2.20 Cation Exchange Capacity S-10.10 **ASTM D1557** Maximum Dry Density **ASTM D2434** Saturated Hydraulic Conductivity ASTM D422 Particle Size Distribution Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet INF11132020, EFF1211132020, EFF1811132020, INF11132020-2, EFF1211132020-2, EFF1811132020-2 Project Name Gonzaga Sample ID: Sample Date: 11/13/2020 Lab Report #: WAK0521-01, WAK0521-02, WAK0521-03, WAK0521-07, WAK0521-08, WAK0521-09 12" Effluent Field Matrix Spikes/ Lab Duplicates Lab Control Samples Influent Field 18" Effluent Field Holding Times (days) Cooler Blanks (mg/L) **Surrogate Recovery Duplicates RPD** ACTION/NOTES Flagged Chain-of-Completeness/ Duplicates RPD (%) Recovery (%) RPD (%) **Duplicates RPD (%)** Matrix Method Temperature Parameter (%) (%) Custody Issues? Methodology (°C) Date Collected | Date Analyzed | Reported Goal Result Reporting Limit Reported Goal Reported Goal RPD Reported Goal Reported Goal Reported Goal Limit 12" effluent field 11/13/20 17:30 | 11/20/20 14:00 Total Suspended Solids (TSS) SM 2540D NO SM 2340D 6.85 4.7/5.8 ND 96.8 80-120 99.3 90-110 2.13 20 14.29 ≤ 25% 42.83 ≤25% 6.45 ≤ 25% duplicate RPD exceeds goal Dissolved Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 11/13/20 17:30 | 11/30/20 11:31 16.75 180 4.7/5.8 ND 0.001 98.6 70-130 103 85-115 ≤20% ≤ 20% ≤20% EPA 200.8 (ICP/MS) NO EPA 200.8 11/13/20 17:30 11/30/20 11:31 16.75 180 85-115 ≤ 20% ≤20% ≤20% Dissolved Zinc (Zn) 4.7/5.8 ND 0.001 94.2 70-130 102 Dissolved Iron EPA 200.8 (ICP/MS) 0.00 180 0.01 70-130 85-115 ≤20% ≤ 20% ≤20% 18" effluent field Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 11/13/20 17:30 11/24/20 14:27 10.87 180 4.7/5.8 ND 0.001 95.4 70-130 97.9 85-115 4.58 ≤ 20% 2.77 ≤20% 32.11 ≤20% duplicate RPD exeeds goal Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 11/13/20 17:30 11/24/20 14:27 180 4.7/5.8 ND 0.001 94.4 70-130 85-115 0.35 ≤ 20% 1.62 ≤20% ≤20% 10.87 99.7 3.46 SM 2340B (ICP) NO SM 2340C 11/13/20 17:30 | 11/23/20 10:00 Hardness as CaCO3 9.69 180 4.7/5.8 ND 92.1 80-120 90-110 3.82 10.36 ≤ 20% 1.69 ≤20% 1.98 ≤20% 3 101.5 20 SM 4500-P G 85-115 ≤ 20% ≤20% ≤20% Ortho-phosphate (OP) 0.00 2 0.018 80-120 Influent and 12" effluent field Total Phosphorus (TP) SM 4500-P F NO SM 4500-P H 11/13/20 17:30 11/25/20 10:50 11.72 28 4.7/5.8 ND 0.005 115.5 80-120 94.9 90-100 98.97 ≤20% 98.87 ≤ 20% 0.82 ≤ 20% duplicates RPD exceeds goal NO3/N+NO2/N 0.1 NA 0.00 NA 80-120 85-115 NA NA NA TKN NA 0.00 NA 0.5 80-120 85-115 NA NA NA Total Nitrogen NA 0.00 NA NA NA NA Modified SSC Method PSD 0.00 (based on ASTM NA D3977097) NWTPH-Dx, Diesel NO NWTPH-Dx 11/13/20 17:30 | 11/25/20 23:45 4.7/5.8 0.16 85.7 70-130 0.971 70-130 ND 20 ≤ 40% ≤ 40% < 40% Ecology NWTPH Dx 12.26 14 ND NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx 11/13/20 17:30 11/25/20 23:45 14 ND 0.4 ND 70-130 ND 70-130 ND 20 ≤ 40% ≤ 40% ≤ 40% NWTPH-Dx, Mineral Oil Ecology NWTPH Dx NO NWTPH-Dx 11/13/20 17:30 11/25/20 23:45 12.26 14 4.7/5.8 ND 0.16 70-130 70-130 ND 20 ≤ 40% ≤ 40% ≤ 40% Sediment Dry Weight EPA 1684 Sediment PSD ASTM D422 ≤ 25% ≤ 25% ≤ 25% S-2.20 S-10.10 Cation Exchange Capacity ASTM D1557 Maximum Dry Density ASTM D2434 Saturated Hydraulic Conductivity Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet INF11172020, EFF1211172020, EFF1811172020 Project Name Gonzaga Sample ID: WAK0567-01, WAK0567-02, WAK0567-03 Sample Date: 11/16/2020 Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Flagged | ACTION/NOTES Holding Times (days) Blanks (mg/L) Surrogate Recovery Samples Recovery Cooler RPD (%) Duplicates RPD (%) Duplicates RPD (%) Chain-of-Completeness/ Method (%) (%) Matrix Parameter Temperature Methodology **Custody Issues?** (°C) RPD RPD Date Collected | Date Analyzed | Reported | Goal Reporting Limit Goal Goal Result Reported Reported Goal Reported Reported Goal Limit SM 2540D SM 2540D 11/17/20 10:00 | 11/20/20 14:00 7 6.8 ND 80-120 20 ≤ 25% Total Suspended Solids (TSS) NO 3.17 1 96.8 99.3 90-110 2.13 ≤ 25% EPA 200.8 (ICP/MS) NO EPA 200.8 11/17/20 10:00 | 11/30/20 11:58 13.08 180 6.8 ND 0.001 98.6 70-130 103 85-115 ≤ 20% ≤ 20% Dissolved Copper (Cu) Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 11/17/20 10:00 | 11/30/20 11:58 13.08 180 6.8 ND 0.001 94.2 70-130 102 85-115 ≤ 20% ≤ 20% ≤ 20% ≤ 20% Dissolved Iron EPA 200.8 (ICP/MS) 0.00 180 0.01 70-130 85-115 11/17/20 10:00 | 11/24/20 14:41 ≤ 20% ≤ 20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 7.20 180 6.8 ND 0.001 95.4 70-130 90.6 85-115 Total Copper (Cu) EPA 200.8 (ICP/MS) EPA 200.8 11/17/20 10:00 | 11/24/20 14:41 7.20 180 6.8 ND 0.001 70-130 90.3 85-115 ≤ 20% ≤ 20% ≤ 20% ≤ 20% Hardness as CaCO3 SM 2340B (ICP) 0.00 180 3 80-120 90-110 0.018 80-120 85-115 ≤ 20% ≤ 20% Ortho-phosphate (OP) SM 4500-P G 0.00 2 SM 4500-P F SM 4500-P H 11/17/20 10:00 11/25/20 11:58 28 0.005 115.5 80-120 ≤ 20% ≤ 20% Total Phosphorus (TP) NO 8.08 6.8 ND 94.9 90-100 NO3/N+NO2/N NA 0.00 NA 0.1 80-120 85-115 NA NA TKN NA 0.00 NA 0.5 80-120 85-115 NA NA Total Nitrogen NA 0.00 NA NA NA Modified SSC Method PSD (based on ASTM 0.00 NA D3977097) NWTPH-Dx , Diesel Ecology NWTPH Dx NO NWTPH-Dx 11/17/20 10:00 11/26/20 3:25 8.73 14 6.8 ND 0.16 70-130 97.8 70-130 ND 20 ≤ 40% ≤ 40% 98.8 NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx | 11/17/20 10:00 | 11/26/20 3:25 8.73 14 6.8 ND 0.4 ND 70-130 ND 70-130 ND 20 ≤ 40% ≤ 40% NWTPH-Dx 11/17/20 10:00 0.16 ≤ 40% ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx 11/26/20 3:25 8.73 14 6.8 ND 70-130 70-130 ND 20 EPA 1684 Sediment Dry Weight ≤ 25% ≤ 25% ASTM D422 Sediment PSD S-2.20 Cation Exchange Capacity S-10.10 ASTM D1557 Maximum Dry Density Saturated Hydraulic Conductivity ASTM D2434 ASTM D422 Particle Size Distribution Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

	Assurance Spreadsheet		Ia=											1											
Project Name	Gonzaga		Sample ID:	INF11182020, EI	<u> </u>	<u> </u>		<u> </u>	<u> </u>	811182020-2															
Sample Date:	11/19/2020		Lab Report #:	WAK0682-01, W	AKU682-02, WAI 	10682-03, WAK06	082-04, WAK	10682-05, W	VARU682-06			1					Г		ı			ı			
Matrix	Parameter	Method	Chain-of- Custody Issues?	Completeness/ Methodology		Holding Times (days)		Cooler Temperature (°C)	Blan	ks (mg/L)	Matrix Sp Surrogate R (%)	ecovery	Samples	Control Recovery %)	Lab Dupl RPD ((%)	Influent Duplicates		12" Efflue Duplicates		18" Efflue Duplicates		Flagged	ACTION/NOTES
					Date Collected	Date Analyzed	Reported	Goal	(-)	Result	Reporting Limit	Reported	Goal	Reported	Goal	I RPD I	RPD Limit	Reported	Goal	Reported	Goal	Reported	Goal		
	Total Suspended Solids (TSS)	SM 2540D	NO	SM 2540D	11/19/20 9:30	11/20/20 14:00	1.19	7	3.5/3.4	ND	1	96.8	80-120	99.3	90-110	2.13	20	17.4	≤ 25%	20.0	≤ 25%	31.6	≤ 25%		18" Effluent field duplicate RPD exceeds goal
	Dissolved Copper (Cu)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	11/19/20 9:30	12/1/20 12:45	12.14	180	3.5/3.4	ND	0.001	100.8	70-130	99.3	85-115			6.6	≤ 20%	4.6	≤ 20%	3.9	≤ 20%		
	Dissolved Zinc (Zn)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	11/19/20 9:30	12/1/20 12:45	12.14	180	3.5/3.4	ND	0.001	98.6	70-130	97.9	85-115			2.7	≤20%	0.2	≤ 20%	3.3	≤ 20%		
	Dissolved Iron	EPA 200.8 (ICP/MS)					0.00	180			0.01		70-130		85-115				≤20%		≤ 20%		≤ 20%		
	Total Zinc (Zn)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	11/19/20 9:30	12/2/20 15:03	13.23	180	3.5/3.4	ND	0.001	96.8	70-130	102.0	85-115			3.3	≤20%	15.4	≤ 20%	1.2	≤ 20%		
	Total Copper (Cu)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	11/19/20 9:30	12/2/20 15:03	13.23	180	3.5/3.4	ND	0.001	95.6	70-130		85-115			1.6	≤20%	13.7	≤ 20%	0.9	≤ 20%		
	Hardness as CaCO3	SM 2340B (ICP)	NO	SM 2340C	11/19/20 9:30	11/23/20 10:00	4.02	180	3.5/3.4	ND	3	92.1	80-120	101.5	90-110	3.82	20	6.7	≤ 20%	5.7	≤ 20%	7.1	≤ 20%		
Stormwater	Ortho-phosphate (OP)	SM 4500-P G	NO	SM 4500-P G	11/19/20 9:30	11/23/20 9:28		2	3.5/3.4	ND	0.018	100.9	80-120		85-115			13.4	≤20%	1.3	≤ 20%	2.0	≤ 20%		Initial analysis was within holding time, reanalysis for the required dilution was pa holding time. Because other lab QC tests met limits, will accept result.
	Total Phosphorus (TP)	SM 4500-P F	NO	SM 4500-P H	11/19/20 9:30	12/7/20 14:33	18.21	28	3.5/3.4	ND	0.005	114.5	80-120	105.0	90-110			87.0	≤ 20%	10.3	≤ 20%	17.3	≤ 20%		Influent field duplicate RPD exceeds goal
	NO3/N+NO2/N	NA					0.00	NA			0.1		80-120		85-115				NA		NA		NA		
	TKN	NA					0.00	NA			0.5		80-120		85-115				NA		NA		NA		
	Total Nitrogen	NA					0.00	NA											NA		NA		NA		
	PSD	Modified SSC Method (based on ASTM D3977097)					0.00	NA																	
	NWTPH-Dx , Diesel	Ecology NWTPH Dx	NO	NWTPH-Dx	11/19/20 9:30	11/26/20 8:00	6.94	14	3.5/3.4	ND	0.16	98.8	70-130	97.8	70-130	ND	20	0	≤ 40%	0	≤ 40%	0	≤ 40%		
	NWTPH-Dx , Lube Oil	Ecology NWTPH Dx	NO	NWTPH-Dx	11/19/20 9:30	11/26/20 8:00	6.94	14	3.5/3.4	ND	0.4	ND	70-130	ND	70-130	ND	20	0	≤ 40%	0	≤ 40%	0	≤ 40%		
	NWTPH-Dx , Mineral Oil	Ecology NWTPH Dx	NO	NWTPH-Dx	11/19/20 9:30	11/26/20 8:00	6.94	14	3.5/3.4	ND	0.16		70-130		70-130	ND	20	0	≤ 40%	0	≤ 40%	0	≤ 40%		
ī	Sediment Dry Weight	EPA 1684																							
Sedime	Sediment PSD	ASTM D422																	≤ 25%		≤ 25%		≤ 25%		
	pH	S-2.20																							
	Cation Exchange Capacity	S-10.10																							
	Maximum Dry Density	ASTM D1557																							
Media	Saturated Hydraulic Conductivity	ASTM D2434																							
aga	Particle Size Distribution	ASTM D422																							
Gonz	Total Elements (Zn, Cu, Pb, Fe, Al, P, Mg, Ca)	EPA 3050A/6010B																							
	Total Organic Carbon	EPA 415.3																							
	C:N Ratio	EPA 415.3/351.2																							

INF12192020, EFF1212192020, EFF1812192020, INF12192020-DI, EFF1212192020-DI, EFF1812192020-DI, INF12192020-02, EFF1212192020-Gonzaga Project Name Sample ID: 12/19/2020 WAL0676-01, WAL0676-02, WAL0676-03, WAL0676-04, WAL0676-05, WAL0676-06 Sample Date: Lab Report #: Matrix Spikes/ Lab Control 12" Effluent Field 18" Effluent Field Lab Duplicates Influent Field Blanks (mg/L) Surrogate Recovery Samples Recovery Holding Times (days) Duplicates RPD ACTION/NOTES Cooler Flagged RPD (%) Duplicates RPD (% **Duplicates RPD (%)** Chain-of-Completeness (%) Matrix Method Parameter Temperature Custody Issues? Methodology (°C) RPD Date Collected | Date Analyzed | Reported Goal Result Reporting Limit Reported Goal Reported Goal RPD Reported Goal Reported Goal Reported Goal Limit 18" effluent results were 1.43 and <2. Will accept results as Total Suspended Solids (TSS) SM 2540D NO SM 2540D 12/20/20 12:30 12/23/20 9:15 2.86 0.7/0.7/1.4 ND 80-120 95.0 90-110 2.33 ≤ 25% 6% ≤ 25% ≤ 25% 90.0 20 7% 33% other two field duplicates met RPD limits 12/20/20 12:30 ≤ 20% ≤20% Dissolved Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 1/4/21 11:51 14.97 180 0.7/0.7/1.4 ND 0.001 96.2 70-130 112.0 85-115 ≤20% EPA 200.8 (ICP/MS) NO EPA 200.8 12/20/20 12:30 1/4/21 11:51 14.97 180 0.7/0.7/1.4 ND 0.001 70-130 110.0 85-115 ≤ 20% ≤20% ≤ 20% Dissolved Zinc (Zn) 76.8 EPA 200.8 (ICP/MS) Dissolved Iron 0.00 180 0.01 70-130 85-115 ≤ 20% ≤20% ≤ 20% ≤20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 12/20/20 12:30 1/5/21 13:05 16.02 180 0.7/0.7/1.4 ND 0.001 96.6 70-130 97.1 85-115 ≤ 20% ≤ 20% EPA 200.8 (ICP/MS) Total Copper (Cu) NO EPA 200.8 12/20/20 12:30 1/5/21 13:05 16.02 180 0.7/0.7/1.4 ND 0.001 97.6 70-130 99.0 85-115 ≤ 20% ≤20% ≤ 20% Hardness as CaCO3 SM 2340B (ICP) NO SM 2340C 12/20/20 12:30 | 12/22/20 13:30 2.04 180 0.7/0.7/1.4 ND 101.0 80-120 102.0 90-110 2.67 20 ≤ 20% ≤20% ≤20% 3 Note from the lab: "Sample Stor EFF1212212020 w-orthop Ortho-phosphate (OP) SM 4500-P G NO SM 4500-P G 12/20/20 12:30 12/22/20 11:42 1.97 2 0.7/0.7/1.4 ND 0.018 80-120 106.5 85-115 ≤ 20% ≤ 20% ≤20% received empty - poured from Total Phosphorus (TP) SM 4500-P F SM 4500-P H 12/20/20 12:30 12/28/20 13:06 NO 8.02 0.7/0.7/1.4 ND 0.005 92.9 103.0 90-110 ≤20% 28 80-120 ≤ 20% ≤20% NO3/N+NO2/N NA NA 0.1 80-120 NA NA NA 0.00 85-115 TKN NA 0.00 NA 0.5 80-120 85-115 NA NA NA NA NA NA Total Nitrogen 0.00 NA NA Modified SSC Method PSD (based on ASTM 0.00 NA D3977097) NWTPH-Dx, Diesel Ecology NWTPH Dx NO NWTPH-Dx 12/20/20 12:30 | 12/30/20 15:50 14 5.3 ND 0.16 70-130 70-130 ND 20 0 ≤ 40% ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx 12/20/20 12:30 12/30/20 15:50 10.14 14 5.3 ND 0.4 ND 70-130 ND 70-130 ND 20 0 ≤ 40% 0 ≤ 40% 0 ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx NO NWTPH-Dx 12/20/20 12:30 | 12/30/20 15:50 10.14 14 5.3 ND 0.16 70-130 70-130 ND 20 0 ≤ 40% ≤ 40% 0 ≤ 40% 0 Sediment Dry Weight EPA 1684 Sediment PSD ASTM D422 ≤ 25% ≤ 25% ≤ 25% S-2.20 Cation Exchange Capacity S-10.10 Maximum Dry Density **ASTM D1557**

Data Quality Assurance Spreadsheet

ASTM D2434

ASTM D422

EPA 3050A/6010B

FPA 415 3

EPA 415.3/351.2

Saturated Hydraulic Conductivity
Particle Size Distribution

Total Elements (Zn, Cu, Pb, Fe,

Al, P, Mg, Ca)

Total Organic Carbon

C:N Ratio

Data Quality Assurance Spreadsheet Project Name NF12212020, EFF1212212020, EFF1812212020, INF12212020-2, EFF1212212020-2, EFF1812212020-2 Gonzaga Sample ID: WAL0675-01, WAL0675-02, WAL0675-03, WAL0675-04, WAL0675-05, WAL0675-06 12/21/2020 Sample Date: Lab Report #: Matrix Spikes/ Lab Control 18" Effluent Field Lab Duplicates Influent Field 12" Effluent Field Holding Times (days) Blanks (mg/L) Samples Recovery ACTION/NOTES Surrogate Recovery Flagged Cooler RPD (%) Duplicates RPD (%) | Duplicates RPD (%) | Duplicates RPD (%) Chain-of-Completeness/ Matrix Method Temperature (%) (%) Parameter Custody Issues? Methodology (°C) RPD Date Collected | Date Analyzed | Reported Goal Goal Goal Goal Result Reporting Limit Reported Goal Reported Goal Reported Reported Reported Limit Total Suspended Solids (TSS) SM 2540D NO SM 2540D 12/21/20 13:00 12/23/20 9:15 1.84 0.7 90.0 80-120 95.0 90-110 2.33 20 ≤ 25% ≤ 25% ≤ 25% ND Influent field duplicate RPD EPA 200.8 (ICP/MS) NO 180 70-130 ≤ 20% 5.2 ≤ 20% 1.2 ≤ 20% Dissolved Copper (Cu) EPA 200.8 12/21/20 13:00 1/4/21 11:28 13.94 0.7 ND 0.001 96.2 112.0 85-115 32.6 exceeds goal Influent and 12" effluent field EPA 200.8 (ICP/MS) NO EPA 200.8 12/21/20 13:00 1/4/21 11:28 180 0.7 ND 0.001 76.8 70-130 110.0 85-115 97.4 ≤ 20% 25.3 ≤ 20% 11.3 ≤ 20% Dissolved Zinc (Zn) 13.94 duplicates RPD exceeds goal 70-130 ≤ 20% ≤ 20% ≤ 20% Dissolved Iron EPA 200.8 (ICP/MS) 0.00 180 0.01 85-115 EPA 200.8 12/21/20 13:00 1/5/21 12:58 85-115 ≤ 20% ≤ 20% ≤ 20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO 15.00 180 0.7 ND 0.001 96.6 70-130 97.1 Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 12/21/20 13:00 1/5/21 12:58 15.00 180 0.7 ND 0.001 97.6 70-130 99.0 85-115 ≤ 20% ≤ 20% ≤ 20% Hardness as CaCO3 SM 2340B (ICP) NO SM 2340C 12/21/20 13:00 12/22/20 13:30 1.02 180 0.7 ND 101.0 80-120 102.0 90-110 2.67 20 ≤ 20% ≤20% ≤ 20% SM 4500-P G 0.00 2 0.018 80-120 85-115 ≤ 20% ≤ 20% ≤ 20% Ortho-phosphate (OP) SM 4500-P F 28 0.005 90-100 ≤ 20% Total Phosphorus (TP) 0.00 80-120 ≤ 20% ≤ 20% NO3/N+NO2/N NA 0.00 NA 0.1 80-120 NA NA NA 85-115 TKN NA 0.00 NA 0.5 80-120 85-115 NA NA NA NA Total Nitrogen 0.00 NA NA NA NA Modified SSC Method PSD (based on ASTM 0.00 D3977097) NWTPH-Dx, Diesel Ecology NWTPH Dx NWTPH-Dx 12/21/20 13:00 12/30/20 7:28 8.77 14 0.7 ND 0.16 98.9 70-130 109.0 70-130 ND 20 ≤ 40% ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx 12/21/20 13:00 12/30/20 7:28 14 ND 0.4 ND 70-130 ND 70-130 ND 20 ≤ 40% ≤ 40% ≤ 40% 8.77 0.7 NWTPH-Dx , Mineral Oil Ecology NWTPH Dx NO NWTPH-Dx 12/21/20 13:00 12/30/20 7:28 8.77 14 0.7 ND 0.16 70-130 70-130 ND 20 ≤ 40% ≤ 40% ≤ 40% EPA 1684 Sediment Dry Weight Sediment PSD ASTM D422 ≤ 25% ≤ 25% ≤ 25% S-2.20 Cation Exchange Capacity S-10.10 ASTM D1557 Maximum Dry Density **ASTM D2434** Saturated Hydraulic Conductivity ASTM D422 Particle Size Distribution Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet Project Name Gonzaga Sample ID: INF12222020, EFF1212222020, EFF181812222020 Sample Date: 12/22/2020 Lab Report #: WAL0704-01, WAL0704-02, WAL0704-03 Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Flagged | ACTION/NOTES Holding Times (days) Blanks (mg/L) Surrogate Recovery Samples Recovery Cooler RPD (%) Duplicates RPD (%) Duplicates RPD (%) Chain-of-Completeness/ (%) (%) Matrix Parameter Method Temperature Methodology Custody Issues? (°C) RPD Goal RPD Date Collected | Date Analyzed | Reported Goal Result Reporting Limit Reported Goal Goal Reported Goal Reported Reported Limit SM 2540D SM 2540D 7 ≤ 25% Total Suspended Solids (TSS) NO 12/22/20 11:30 12/23/20 9:15 0.91 5.3 ND 80-120 95.0 90-110 2.33 20 ≤ 25% 90.0 EPA 200.8 (ICP/MS) NO EPA 200.8 12/22/20 11:30 1/4/21 12:14 13.03 180 5.3 ND 0.001 92.1 70-130 112.0 85-115 ≤ 20% ≤ 20% Dissolved Copper (Cu) EPA 200.8 (ICP/MS) Dissolved Zinc (Zn) NO EPA 200.8 12/22/20 11:30 1/4/21 12:14 13.03 180 5.3 ND 0.001 76.8 70-130 110.0 85-115 ≤ 20% ≤ 20% Dissolved Iron EPA 200.8 (ICP/MS) 0.00 180 0.01 70-130 85-115 ≤ 20% ≤ 20% 1/5/21 13:31 ≤ 20% Total Zinc (Zn) EPA 200.8 (ICP/MS) NO EPA 200.8 12/22/20 11:30 14.08 180 5.3 ND 0.001 96.6 70-130 97.1 85-115 ≤ 20% EPA 200.8 (ICP/MS) NO EPA 200.8 12/22/20 11:30 1/5/21 13:31 14.08 5.3 ND 0.001 97.6 70-130 99.0 85-115 ≤ 20% ≤ 20% Total Copper (Cu) 180 ND ≤ 20% ≤ 20% Hardness as CaCO3 SM 2340B (ICP) NO SM 2340C 12/22/20 11:30 12/22/20 13:30 0.08 180 5.3 3 101.0 80-120 102.0 90-110 2.67 20 Note from the lab: SM 4500-P G NO SM 4500-P G 12/22/20 11:30 12/23/20 13:51 1.10 2 5.3 ND 0.018 105.0 80-120 94.5 85-115 ≤ 20% ≤ 20% EFF1212212020 w-Ortho-phosphate (OP) orthop received empty poured from TSS" Total Phosphorus (TP) SM 4500-P F NO SM 4500-P H 12/22/20 11:30 1/7/21 14:14 16.11 28 5.3 ND 0.005 95.8 80-120 108.0 90-110 ≤ 20% ≤ 20% NO3/N+NO2/N NA 0.00 NA 0.1 80-120 85-115 NA NA TKN NA 0.00 NA 0.5 80-120 85-115 NA NA NA 0.00 NA NA NA Total Nitrogen Modified SSC Method PSD (based on ASTM 0.00 NA D3977097) 70-130 NWTPH-Dx , Diesel Ecology NWTPH Dx NWTPH-Dx 12/22/20 11:30 | 12/30/20 15:50 8.18 14 5.3 ND 0.16 98.9 109.0 70-130 ND 20 ≤ 40% ≤ 40% Ecology NWTPH Dx NWTPH-Dx 12/22/20 11:30 | 12/30/20 15:50 14 ND 0.4 ND 70-130 ND 70-130 ND 20 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil NO 8.18 5.3 NWTPH-Dx , Mineral Oil NWTPH-Dx 12/30/20 15:50 14 0.16 70-130 70-130 ND 20 ≤ 40% ≤ 40% Ecology NWTPH Dx NO 12/22/20 11:30 8.18 5.3 ND Sediment Dry Weight EPA 1684 Sediment PSD ASTM D422 ≤ 25% ≤ 25% S-2.20 S-10.10 Cation Exchange Capacity Maximum Dry Density ASTM D1557 Saturated Hydraulic Conductivity **ASTM D2434** Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet INF01022021, EFF1201022021, EFF1801022021 Project Name Gonzaga Sample ID: WBA0053-01, WBA0053-02, WBA0053-03 Sample Date: 1/3/2021 Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Blanks (mg/L) Samples Recovery ACTION/NOTES Holding Times (days) Cooler Surrogate Recovery Flagged Chain-of-Completeness/ RPD (%) Duplicates RPD (%) Duplicates RPD (%) Matrix Method Temperature Parameter (%) (%) Custody Issues? Methodology (°C) RPD Reported RPD Date Collected | Date Analyzed | Reported Goal Result Reporting Limit Goal Reported Goal Reported Goal Reported Goal Limit Chain of custody note: "Sample ID's 1/8/21 12:50 Total Suspended Solids (TSS) SM 2540D NO SM 2540D 1/3/21 11:50 5.04 7 2.3 ND 99.5 80-120 96.8 90-110 3.85 20 ≤ 25% ≤ 25% do not match COC" Dissolved Copper (Cu) EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% ≤ 20% ≤ 20% Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% EPA 200.8 (ICP/MS) 0.01 70-130 85-115 ≤ 20% ≤ 20% Dissolved Iron 0.00 180 Total Zinc (Zn) EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% ≤ 20% Total Copper (Cu) EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% ≤ 20% 80-120 ≤ 20% Hardness as CaCO3 SM 2340B (ICP) 0.00 180 3 90-110 ≤ 20% SM 4500-P G 0.00 0.018 80-120 85-115 ≤ 20% ≤ 20% Ortho-phosphate (OP) 2 Total Phosphorus (TP) SM 4500-P F 28 0.005 0.00 80-120 90-100 ≤ 20% ≤ 20% NO3/N+NO2/N NA 0.00 NA 0.1 80-120 85-115 NA NA TKN NA 0.00 NA 0.5 80-120 85-115 NA NA Total Nitrogen NA 0.00 NA NA NA Modified SSC Method PSD (based on ASTM 0.00 NA D3977097) NWTPH-Dx , Diesel 0.16 Ecology NWTPH Dx 0.00 70-130 70-130 ≤ 40% ≤ 40% 14 Ecology NWTPH Dx 14 0.4 70-130 70-130 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil 0.00 NWTPH-Dx , Mineral Oil Ecology NWTPH Dx 14 0.16 70-130 70-130 ≤ 40% ≤ 40% 0.00 Sediment Dry Weight EPA 1684 Sediment PSD ASTM D422 ≤ 25% ≤ 25% S-2.20 Cation Exchange Capacity S-10.10 Maximum Dry Density ASTM D1557 ASTM D2434 Saturated Hydraulic Conductivity Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) **Total Organic Carbon** EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality A	ssurance Spreadsheet													-									
Project Name	<u> </u>		Sample ID:	INF01042021, EFF																			
Sample Date:	1/4/2021	1	Lab Report #:	WBA0048-01, WBA	0048-02, WBA00	048-03														1			
Matrix	Parameter	Method	Chain-of- Custody Issues?	Completeness/ Methodology		Holding Times (days)		Cooler Temperature	Blar	ıks (mg/L)	Matrix S Surrogate (%	Recovery	Lab C Samples (%	Recovery	1	uplicates D (%)	Influent Duplicates		Effluent Duplicates		Flagged	ACTION/NOTES
					Date Collected	Date Analyzed	Reported	Goal	(°C)	Result	Reporting Limit	Reported	Goal	Reported	Goal	RPD	RPD Limit	Reported	Goal	Reported	Goal		
	Total Suspended Solids (TSS)	SM 2540D	NO	SM 2540 D	1/4/21 7:45	1/8/21 12:50	4.21	7	5.3	ND	1	99.5	80-120	97.3	90-110	3.85	20		≤ 25%		≤ 25%		
	Dissolved Copper (Cu)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	1/4/21 7:45	1/20/21 13:41	16.25	180	5.3	ND	0.001	107.5	70-130	102.0	85-115				≤ 20%		≤ 20%		
	Dissolved Zinc (Zn)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	1/4/21 7:45	1/15/21 12:19	11.19	180	5.3	ND	0.001	98.3	70-130	97.3	85-115				≤ 20%		≤ 20%		
	Dissolved Iron	EPA 200.8 (ICP/MS)	NO	EPA 200.8	1/4/21 7:45	1/15/21 12:19	11.19	180	5.3	ND	0.01	107.5	70-130	107.0	85-115				≤ 20%		≤ 20%		
	Total Zinc (Zn)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	1/4/21 7:45	1/11/21 13:36	7.24	180	5.3	ND	0.001	97.0	70-130	99.5	85-115				≤ 20%		≤ 20%		
	Total Copper (Cu)	EPA 200.8 (ICP/MS)	NO	EPA 200.8	1/4/21 7:45	1/20/21 13:44	16.25	180	5.3	ND	0.001	98.8	70-130	104.0	85-115				≤ 20%		≤ 20%		
ater	Hardness as CaCO3	SM 2340B (ICP)	NO	SM2340C	1/4/21 7:45	1/14/21 0:00	9.68	180	5.3	ND	3	103.0	80-120	102.5	90-110	0.00	20		≤ 20%		≤ 20%		
Stormw	Ortho-phosphate (OP)	SM 4500-P G	NO	Sm 4500-P G	1/4/21 7:45	1/5/21 14:21	1.28	2	5.3	ND	0.018	98.8	80-120		85-115				≤ 20%		≤ 20%		
Ø	Total Phosphorus (TP)	SM 4500-P F	NO	SM 4500-P H	1/4/21 7:45	1/11/21 17:05	7.39	28	5.3	ND	0.005	120.0	80-120	90.1	90-100				≤ 20%		≤ 20%		
	NO3/N+NO2/N	NA	NO	SM 4500-NO3 F	1/4/21 7:45	1/12/21 0:00	7.68	NA	5.3	ND	0.1	92.0	80-120	106.5	85-115				NA		NA		
	TKN	NA	NO	SM 4500-Norg C	1/4/21 7:45	1/14/21 17:01	10.39	NA	5.3	ND	0.5	85.4	80-120	110.0	85-115				NA		NA		
	Total Nitrogen	NA	NO	Calculation	1/4/21 7:45	1/14/21 17:01	10.39	NA	5.3										NA		NA		
	PSD	Modified SSC Method (based on ASTM D3977097)					0.00	NA															
	NWTPH-Dx , Diesel	Ecology NWTPH Dx	NO	NWTPH-Dx	1/4/21 7:45	1/8/21 23:09	4.64	14	5.3	ND	0.16	105.5	70-130	105.0	70-130	ND	20		≤ 40%		≤ 40%		
	NWTPH-Dx , Lube Oil	Ecology NWTPH Dx	NO	NWTPH-Dx	1/4/21 7:45	1/8/21 23:09	4.64	14	5.3	ND	0.4	ND	70-130	ND	70-130	ND	20		≤ 40%		≤ 40%		
	NWTPH-Dx , Mineral Oil	Ecology NWTPH Dx	NO	NWTPH-Dx	1/4/21 7:45	1/8/21 23:09	4.64	14	5.3	ND	0.16		70-130		70-130	ND	20		≤ 40%		≤ 40%		
ţ	Sediment Dry Weight	EPA 1684																					
Sedime	Sediment PSD	ASTM D422																	≤ 25%		≤ 25%		
	pH	S-2.20																					
	Cation Exchange Capacity	S-10.10																					
_	Maximum Dry Density	ASTM D1557																					
Media	Saturated Hydraulic Conductivity	ASTM D2434																					
aga	Particle Size Distribution	ASTM D422																					
Gonze	Total Elements (Zn, Cu, Pb, Fe, Al, P, Mg, Ca)	EPA 3050A/6010B																					
	Total Organic Carbon	EPA 415.3																					
	C:N Ratio	EPA 415.3/351.2																					
	0.14 1.0010	L1 A 7 10.0/00 1.2																					

Data Quality Assurance Spreadsheet Project Name Gonzaga Sample ID: INF01062021, EFF1201062021, EFF1801062021 WBA0198-01, WBA0198-02, WBA0198-03 Sample Date: 1/7/2021 Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Holding Times (days) Samples Recovery ACTION/NOTES Blanks (mg/L) **Surrogate Recovery** Flagged Cooler RPD (%) Duplicates RPD (%) Duplicates RPD (%) Chain-of-Completeness/ Method (%) (%) Matrix Parameter Temperature Methodology **Custody Issues?** RPD Date Collected | Date Analyzed | Reported | RPD Goal Reporting Limit Goal Result Reported Reported Goal Reported Goal Reported Goal Limit SM 2540D NO SM 2540D 1/7/21 9:15 1/11/21 10:10 4.04 7 0.4 ND 1 86.0 80-120 97.0 5.61 ≤ 25% ≤ 25% Total Suspended Solids (TSS) 90-110 20 EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% ≤ 20% Dissolved Copper (Cu) Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% ≤ 20% ≤ 20% ≤ 20% Dissolved Iron EPA 200.8 (ICP/MS) 0.00 180 0.01 70-130 85-115 Total Zinc (Zn) 1/7/21 9:15 1/15/21 13:10 ≤ 20% ≤ 20% EPA 200.8 (ICP/MS) NO EPA 200.8 8.16 180 0.4 ND 0.001 96.6 70-130 96.6 85-115 Total Copper (Cu) EPA 200.8 (ICP/MS) EPA 200.8 1/7/21 9:15 1/15/21 13:10 8.16 180 0.4 ND 0.001 70-130 102.0 85-115 ≤ 20% ≤ 20% ≤ 20% ≤ 20% Hardness as CaCO3 SM 2340B (ICP) 0.00 180 3 80-120 90-110 ≤ 20% 0.018 80-120 85-115 ≤ 20% Ortho-phosphate (OP) SM 4500-P G 0.00 2 SM 4500-P F 0.00 28 0.005 80-120 ≤ 20% Total Phosphorus (TP) 90-100 ≤ 20% NO3/N+NO2/N NA 0.00 NA 0.1 80-120 85-115 NA NA TKN NA 0.00 NA 0.5 80-120 85-115 NA NA Total Nitrogen NA 0.00 NA NA NA Modified SSC Method PSD (based on ASTM 0.00 NA D3977097) NWTPH-Dx , Diesel Ecology NWTPH Dx NO NWTPH-Dx 1/7/21 9:15 1/9/21 7:20 1.92 14 0.4 ND 0.16 105.5 70-130 105.0 70-130 ND 20 ≤ 40% ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx 1/7/21 9:15 1/9/21 7:20 1.92 14 0.4 ND 0.4 ND 70-130 ND 70-130 ND 20 ≤ 40% ≤ 40% ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx NWTPH-Dx ≤ 40% 1/7/21 9:15 1/9/21 7:20 1.92 14 0.4 ND 0.16 70-130 70-130 ND 20 EPA 1684 Sediment Dry Weight ≤ 25% ≤ 25% ASTM D422 Sediment PSD S-2.20 Cation Exchange Capacity S-10.10 ASTM D1557 Maximum Dry Density Saturated Hydraulic Conductivity ASTM D2434 Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Data Quality Assurance Spreadsheet ING01122021, EFF1201122021, EFF1801122021 Project Name Gonzaga Sample ID: WBA0341-01, WBA0341-02, WBA0341-03 Sample Date: 1/13/2021 Lab Report #: Matrix Spikes/ Lab Control Lab Duplicates Influent Field Effluent Field Flagged | ACTION/NOTES Samples Recovery Holding Times (days) Blanks (mg/L) Surrogate Recovery Cooler RPD (%) Duplicates RPD (%) Duplicates RPD (%) Chain-of-Completeness Matrix Parameter Method Temperature Custody Issues? Methodology (°C) RPD Date Collected | Date Analyzed | Reported Goal Result Reporting Limit Reported Goal Reported Goal Reported Goal Reported Goal Limit Total Suspended Solids (TSS) SM 2540D SM 2540D 1/13/21 8:00 1/15/21 13:16 2.22 7 0.3 ND 92.0 80-120 94.3 90-110 8.93 20 ≤ 25% ≤ 25% ≤ 20% Dissolved Copper (Cu) EPA 200.8 (ICP/MS) 0.00 180 0.001 70-130 85-115 ≤ 20% ≤ 20% 180 85-115 ≤ 20% Dissolved Zinc (Zn) EPA 200.8 (ICP/MS) 0.00 0.001 70-130 Dissolved Iron EPA 200.8 (ICP/MS) 0.00 180 0.01 70-130 85-115 ≤ 20% ≤ 20% EPA 200.8 (ICP/MS) EPA 200.8 1/13/21 8:00 1/20/21 14:00 180 ND 0.001 70-130 85-115 ≤ 20% ≤20% Total Zinc (Zn) NO 7.25 0.3 92.4 96.0 Total Copper (Cu) EPA 200.8 (ICP/MS) NO EPA 200.8 1/13/21 8:00 1/20/21 14:00 7.25 180 0.3 ND 0.001 93.5 70-130 99.0 85-115 ≤ 20% ≤ 20% 20 ≤ 20% ≤ 20% Hardness as CaCO3 SM 2340B (ICP) NO SM 2340C 1/13/21 8:00 1/14/21 8:55 1.04 180 0.3 ND 3 103.0 80-120 102.5 90-110 0.00 1/14/21 10:16 2 0.3 0.018 ≤ 20% ≤ 20% Ortho-phosphate (OP) SM 4500-P G NO SM 4500-P G 1/13/21 8:00 1.09 ND 99.1 80-120 110.0 85-115 SM 4500-P H SM 4500-P F NO 1/13/21 8:00 1/25/21 15:47 12.32 28 0.3 ND 0.005 116.0 80-120 109.5 90-110 ≤ 20% ≤ 20% Total Phosphorus (TP) NO3/N+NO2/N NA 0.00 NA 0.1 85-115 NA NA 80-120 TKN 85-115 NA NA 0.5 NA NA 0.00 80-120 NA 0.00 NA NA Total Nitrogen NA Modified SSC Method PSD (based on ASTM 0.00 NA D3977097) NWTPH-Dx 1/21/21 13:21 ≤ 40% NWTPH-Dx , Diesel Ecology NWTPH Dx NO 1/13/21 8:00 8.22 14 0.3 ND 0.16 70-130 96.4 70-130 ND 20 ≤ 40% NWTPH-Dx , Lube Oil Ecology NWTPH Dx NO NWTPH-Dx 1/13/21 8:00 1/21/21 13:21 8.22 14 0.3 ND 0.4 70-130 ND 70-130 ND 20 ≤ 40% ≤ 40% NWTPH-Dx , Mineral Oil Ecology NWTPH Dx NO NWTPH-Dx 1/13/21 8:00 1/21/21 13:21 8.22 14 0.3 ND 0.16 70-130 70-130 ND 20 ≤ 40% ≤40% Sediment Dry Weight EPA 1684 Sediment PSD ASTM D422 ≤ 25% ≤25% S-2.20 S-10.10 Cation Exchange Capacity Maximum Dry Density ASTM D1557 Saturated Hydraulic Conductivity **ASTM D2434** Particle Size Distribution ASTM D422 Total Elements (Zn, Cu, Pb, Fe, EPA 3050A/6010B Al, P, Mg, Ca) Total Organic Carbon EPA 415.3 C:N Ratio EPA 415.3/351.2

Appendix C.3 Field Forms

Monthly Maintenance Field Forms

Au) indication of Chroneger Empering during site hispection (surrounding area, pipes, cables, writing, cords, tabing, monitoring equipment): Maintenance Activities	9		et on them	new inform 10.250 new into other	DQ.	
gertampering during site haspection (surrounding area, pipes, cables, wiring, cords, tubing, Mortan (surrounding area, pipes, cables, wiring, cords, tubing, cords, tu	10: 0.01	readin	4 -0.368171Xa	reading raw: 0.255 initial infortie		V pT calibr
Comparing during site haspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):						Clean catch basin and HVF on up-turned elbow (as needed)
Segrampering during site hispection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):			ml	Y N Pulled 300 mL, got	<	ISCO volumetric verification (performed quarterly)
Pare: Chock Proceding area, pipes, cables, wiring, cords, tubing, monitoring equipment):	100				<	ISCO pump capabilities
Place Color Calibration Calibration Calibration Color Calibration Cali					,	Deflate ISCO controller pad (as needed)
Date: C5/05					Indicato	PT #3 Humidity Indicator Check
Time: 15 Septempering during site hispection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):				48/100	Indicato	PT #2 Humidity Indicator Check
partiampering during site hispection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment): Activity Performed? Notes (circle text as appropriate):				yellow	Indicato	PT #1 Humidity Indicator Check
					Indicato	ISCO Internal Humidity Indicator check
Notes (circle text as appropriate): Activity Performed? Notes (circle text as appropriate): Activity Performed? Notes (circle text as appropriate): O Hornor H					<	Check tubing, bulkhead caps, and cable attachments
Time: 7 Sagetampering during site haspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):				×	不家人	ISCO suction tubing check
Mate: 0.76/0.5				Y	lucut, might repl.	
Mate: 0.703 Party Mate Mate: 0.703 Mate: 0.705				Y	_	ISCO head tubing check
Date: C76/05 Collibration Calibration				Y (X) Reset level of gage? Y	Debris r	Rain gage internal part cleanliness and level (quarterly)
					()	Check voltage of battery
ge/tampering during site hispection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment): Notes (circle text as appropriate):				Y W Mounts cleaned? Y	PTs clea	Pressure transducers (PT) and mounts cleaning (quarterly)
ge/tampering during site hispection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment): Activity Performed? Notes (circle text as appropriate): Order Order Order		.000		New eff offset: -0,655		
New inf reading: O. 363 Initial inf reading: O. 363 New inf reading: O. 365 New inf read		0,001	1	Intial eff offset: - William		A A DOUGHA A A MALDONNA (A A) CHILDINICH
age/tampering during site hispection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment): Nothing Notes (circle text as appropriate):		800	New inf reading: 0,	New inf offset: -0, 365		Pressure Transducer (PT) Calibration
age/tampering during site hispection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment): Mothing hated Activity Performed? Notes (circle text as appropriate):				2		Adjust weir fit in pipe (as needed)
age/tampering during site hispection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment): Time: 5.35 Activity Performed? Notes (circle text as appropriate):				N	Debris r	Debris/Obstruction Removal from piping
Time: 5.35				ircle text as appropriate):	9299000000 p. 100000	Maintenance Activities
Time: 3.35				s, wiring, cords, tubing, monitoring equipment):	ı (surrounding area, pipes, cable	Any indication of destruction of des
		9090	56.00			Taylor, Kenn, Megan

Field staff names:		Date: 09/73/2020	Ofor
in'	area, pipes, cables, wi	ng equipment):	
Maintenance Activities	Activity Performed?	Activity Performed? Notes (circle text as appropriate):	
Debris/Obstruction Removal from piping	<	Debris removed? N	
Visit Report		Start Visit Report 🖂 End Visit Report 🗆	
	7	C/8 Initial	18-02-0
	34		0
	*	Intial eff offset: 0,655	Initial eff reading: _ O. O. W.
τικορικο τιαπομικονί (τ τ) σαποτατιστ	4	New eff raw reading: 100 679 New eff offset: 0,649 New eff reading:	0,000
	N	624.0	0.003
	7	New eff raw reading: 0,257 New eff offset: _ 0, 257 New eff reading: 0000	0,000
Pressure transducers (PT) and mounts cleaning (quarterly	,	PTs cleaned? Y N Mounts cleaned? Y N	
Check voltage of battery	<	Measured voltage: \3.\	
Rain gage internal part cleanliness and level (quarterly)		Debris removed? Y N Reset level of gage? Y N	
ISCO head tubing check		Tubing replaced? Y N	
ISCO pump tubing check		Tubing replaced? Y N	
ISCO suction tubing check		Tubing replaced? Y N	
Check tubing, bulkhead caps, and cable attachments			
	influent	Indicator Color and Percent: 12 W Y Desiccant replaced?	d? Y N
ISCO Internal Humidity Indicator check	121	Indicator Color and Percent: 2006 C30 Desiccant replaced?	47 Y N
	7	Indicator Color and Percent: KINC ~ 10	d? Y N
PT #1 Humidity Indicator Check	\$	Indicator Color: CYONOP, Desiccant replaced?	d? Y N
PT #2 Humidity Indicator Check	CAN C	Indicator Color: ON ON ON Desiccant replaced?	d? Y N
PT #3 Humidity Indicator Check	<	Indicator Color: 6000000000000000000000000000000000000	d? Y N
Deflate ISCO controller pad (as needed)	NA	Unscrew Flow Meter Cable or connector cap on back of the controller	
ISCO pump capabilities	2		
ISCO volumetric verification (performed quarterly)		Service needed? Y N	
Adjust weir fit in pipe (as needed)			
Clean catch basin inlet grate and grates on the end of the flow split pipes	<		

Field staff names:				Date: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	toan
Mican, Kenin, laylor				Time: 2:41	en
Any indication of damage/tampering during site inspection (surroun	ding area, pipes, cables, wi	ring, cords, tubing, monitoring equ	ipment):	0.11	1
Maintenance Activities	Activity Performed?	Notes (circle text as appropriate):			
Debris/Obstruction Removal from piping		Debris removed? N	Lemored secliment t	LIVOUR GARAGE	nahade.
Visit Report		Start Visit Report	End Visit Report	CONT WOLVE	14via
	influent		nitial inf offset: -0.364	Initial inf reading:	-0.076
	(11/10-01)	New inf raw reading: 0.764 N	ew inf offset: -0.263	New inf reading:	100.0
Pressure Transducer (PT) Calibration	13" -158	Intial eff raw reading of the August	Rial eff offset: -0.649	Initial eff reading:	
	19, 0428	New eff raw reading: 0,65 \ N	ew eff offset: - 0.651	New eff reading:	
	13,	Intial eff raw reading: 00,764 In	ntial eff offset-0.257	Initial eff reading:	
	10	New eff raw reading: 0.357 N	lew eff offset: -0,357	New eff reading:	0.000
Pressure transducers (PT) and mounts cleaning (quarterly			founts cleaned? Y (N)		
Check voltage of battery		Measured voltage: 13.1 V			
Rain gage internal part cleanliness and level (quarterly)		Debris removed? Y N R	eset level of gage? Y N		
SCO head tubing check		Tubing replaced? Y N	KINK		
SCO pump tubing check	0	Tubing replaced? Y	Kink		
ISCO suction tubing check	V	Tubing replaced? Y			
Check tubing, bulkhead caps, and cable attachments					
	1/	Indicator Color and Percent:	40 Blue	Desiccant replaced?	Y (N)
ISCO Internal Humidity Indicator check	V	Indicator Color and Percent:	20 Ave	Desiccant replaced?	YN
	V	Indicator Color and Percent:	40 Rlue	Desiccant replaced?	YW
PT #1 Humidity Indicator Check	V	Indicator Color: Yellow		Desiccant replaced?	YW
PT #2 Humidity Indicator Check	V,	Indicator Color: Yellaw		Desiccant replaced?	YW
PT #3 Humidity Indicator Check		Indicator Color: Yellow		Desiccant replaced?	Y
Deflate ISCO controller pad (as needed)	NA		er Cable or connector cap on ba	ack of the controller	
SCO pump capabilities	747				
SCO volumetric verification (performed quarterly)		Service needed? Y N			
Adjust weir fit in pipe (as needed)					
Clean catch basin inlet grate and grates on the end of the flow split pipes					

field staff names:				Date: 11/1/2030
Megan + Kalera				Time: 9:30 AM
Any indication of damage/tampering during site inspection (surroundin	g area, pipes, cables, wi	ring, cords, tubing, monitoring e	quipment):	
Maintenance Activities	Activity Performed?	Notes (circle text as appropriat	re):	
Debris/Obstruction Removal from piping		Debris removed? Y N		The second second
Visit Report	V	Start Visit Report	End Visit Report	0.006
	-15	Initial inf raw reading:	Initial inf offset: - www.	Initial infreading: - willey
	TIVE	New inf raw reading: 0.362	New inf offset: - 0. 762	New inf reading: 0.000
Pressure Transducer (PT) Calibration	131,	Intial eff raw reading: 0, 590	Intial eff offset: - 0,651	Initial eff reading: - 0,061
Pressure Transducer (P1) Cambration	(1.	New eff raw reading: 0.633	New eff offset: -0.623	New eff reading: 0,000
	13"	Intial eff raw reading ()	Intial eff offset: - 0, 757	Initial eff reading: -0.05}
	10	New eff raw reading: 0 206	New eff offset: - 0 , 706	New eff reading: 0.000
Pressure transducers (PT) and mounts cleaning (quarterly	,	PTs cleaned? Y N	Mounts cleaned? Y N	
Check voltage of battery	V	Measured voltage:	13.2	
Rain gage internal part cleanliness and level (quarterly)		Debris removed? Y N	Reset level of gage? Y N	
ISCO head tubing check TNF	V.	Tubing replaced? Y	KINK	-1 -100
ISCO pump tubing check		Tubing replaced? Y N	Kink	
ISCO suction tubing check 13"		Tubing replaced? Y N		
Check tubing, bulkhead caps, and cable attachments	A STATE OF THE PARTY OF THE PAR			" In a second se
	INV	Indicator Color and Percent: 4	O Blue white	Desiccant replaced? Y N
ISCO Internal Humidity Indicator check	12 V	Indicator Color and Percent:	20 BIVE	Desiccant replaced? Y (N)
	18 V	Indicator Color and Percent:	10 Blue	Desiccant replaced? Y N
PT #1 Humidity Indicator Check	V.	Indicator Color: 90100	Lune	Desiccant replaced? Y
PT #2 Humidity Indicator Check	V,	Indicator Color: Yellol	w/white	Desiccant replaced? Y N
PT #3 Humidity Indicator Check	V	Indicator Color: 42110	1/white	Desiccant replaced? Y
Deflate ISCO controller pad (as needed)	Not needed	Unscrew Flow M	Meter Cable or connector cap on ba	ack of the controller
ISCO pump capabilities	V	Page 1		No. of the last of
ISCO volumetric verification (performed quarterly)		Service needed? Y N		23
	C. F. C.			
Adjust weir fit in pipe (as needed)				

Teld staff names:		Date: 3/14/ 3030
Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):	g area, pipes, cables, wi	
No		
Maintenance Activities	Activity Performed?	Notes (circle text as appropriate):
Debris/Obstruction Removal from piping	5	Debris removed? (Y) N
Visit Report	<	Start Visit Report 🗅 🗸
	, , ,	Ja Initial
	Tat C	New inf raw reading: 0 341 New inf offset: -0,341 New inf reading: 0.000
Pressure Transducer (PT) Calibration		Initial eff reading:
The state of the s	2	New eff raw reading: 0,653 New eff offset: -0,653 New eff reading: 0.000
	10" \	Intial eff raw reading: 0.366 Intial eff offset: -0, 306 Initial eff reading: 0.066
	-	New eff raw reading: 0355 New eff offset: -0, 355 New eff reading: 0.005
Pressure transducers (PT) and mounts cleaning (quarterly		PTs cleaned? Y N Mounts cleaned? Y N
Check voltage of battery	<	Measured voltage: 13.1 V
Rain gage internal part cleanliness and level (quarterly)		Debris removed? Y N Reset level of gage? Y N
ISCO head tubing check	5	Tubing replaced? Y N
ISCO pump tubing check	<	Tubing replaced? Y 🔊
ISCO suction tubing check	<	Tubing replaced? Y (L)
Check tubing, bulkhead caps, and cable attachments	<	
	<	Indicator Color and Percent: UD Bluish white Desiccant replaced? Y
ISCO Internal Humidity Indicator check	<	Indicator Color and Percent: 70 Blue Desiccant replaced? Y W
	<	Indicator Color and Percent: 40 Black h white Desiccant replaced? Y
PT #1 Humidity Indicator Check	(Indicator Color: 48 110 Wilh White Desiccant replaced? Y (V)
PT #2 Humidity Indicator Check		Indicator Color: 48/10 With White Desiccant replaced? Y
PT #3 Humidity Indicator Check	<	
Deflate ISCO controller pad (as needed)	N/A	Unscrew Flow Meter Cable or connector cap on back of the controller
ISCO pump capabilities		In Performed bubblished during pre-storm maint
SCO volumetric verification (performed quarterly)		
Adjust weir fit in pipe (as needed)		
lean eateh basin inlet grate and grates on the end of the flow split nines		

					1
Field staff names:	2			Date: / / / - 1	
ing during site inspection	area, pipes, cables, wii	ing, cords, tubing, monitoring equi			
Maintenance Activities	Activity Performed?	Activity Performed? Notes (circle text as appropriate):			
Debris/Obstruction Removal from piping	۷.,	Debris removed? (Y) N			•
Visit Report	<.	Start Visit Report	End Visit Report 🏻		•
	-	11-1	Initial inf offset: - 1 341	Initial inf reading:	0.033
	TAR	New inf raw reading:	4	New inf reading:	
Decours Throad-one (DT) Collination	17.1	59	Intial eff offset: -0, 654	Initial eff reading: 🕦 🖧 🕻	•
riessure itansqueet (r1) Canoranon		75.	New eff offset: -0,655	New eff reading: ()	-
	1.5.1		Intial eff offset: -6. 255	Initial eff reading:	0.010
		33	New eff offset: → U. 1.2	New eff reading:	
Pressure transducers (PT) and mounts cleaning (quarterly)	all control and the same of th	PTs cleaned? Y N Mo	Mounts cleaned? Y N		
Check voltage of battery	france (Measured voltage: 13,1			
Rain gage internal part cleanliness and level (quarterly)			Reset level of gage? Y N		
ISCO head tubing check		Tubing replaced? Y (N			
ISCO pump tubing check	-	Tubing replaced? Y Ñ			
ISCO suction tubing check	4.	Tubing replaced? Y N	KINKS IN TUN	4	
Check tubing, bulkhead caps, and cable attachments			l		
	人以茶	Indicator Color and Percent:	elsepinie	Desiccant replaced? Y	
ISCO Internal Humidity Indicator check	7	Indicator Color and Percent: 5116		Desiccant replaced? Y	
	4 3	Indicator Color and Percent: Wh	te. Treplane	Desiccant replaced? Y	
PT #1 Humidity Indicator Check		Indicator Color: 34 + 8 / (8)	(e)lale	Desiccant replaced? Y N	
PT #2 Humidity Indicator Check	1-	Indicator Color: White /rep	Mala	Desiccant replaced? Y (N)	
PT #3 Humidity Indicator Check	4		place	Desiccant replaced? Y (N)	
Deflate ISCO controller pad (as needed)		Unscrew Flow Meter	Unscrew Flow Meter Cable or connector cap on back of the controller	ck of the controller	
ISCO pump capabilities					
ISCO volumetric verification (performed quarterly)	۷.	Service needed? Y			<u> </u>
Adjust weir fit in pipe (as needed)	۷.				
Clean catch basin inlet grate and grates on the end of the flow split pipes					

Pre-Storm Maintenance Field Forms

	,	
Field staff names:		Date: 9/27/Pesse
Magan taylor term		Time: U: 00
Any indication of damage/tampering during si	te inspection (surroundi	Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):
	e F	
Maintenance Activities	Activity Performed?	Notes (circle text as appropriate):
Debris/Obstruction Removal from piping (as needed)		Debris removed? Ø N
Sample tubing placement checked	<	
Grab sample taken to verify pump function		
Sample jars placed in ISCOs, with ice packs		
Data logger and ISCO set to sample		DL set? (Y) N ISCO set? (Y) N
Threshold values set		Threshold value: 4N: 118 1 12 18 18 59 L
Weir wheels tightened	<	
Clean catch basin and HVF on up-turned elbow (as needed)	<	
0.000		

Field staff names: MOODO +	6MA	Date: 10/09/3630
Any indication of damage/tampering during sit	e inspection (surround	Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):
No		
	Activity Performed?	Activity Performed? Notes (circle text as appropriate):
Debris/Obstruction Removal from piping (as needed)	<	Debris removed? 💮 N
Grab Sample taken to verify pump function	\	
Sample tubing placement checked	7	Kink in laket pupper tuloing
Sample jars placed in ISCOs, with ice packs as needed	5	
Data logger and ISCO set to sample	<	DL set? (y N ISCO set? (y) N
Threshold values set	/	Inf Threshold value: 392 12" Threshold value: 196 18" Threshold value: 196
Weir wheels tightened		
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)	<	Was clean, no major debnis

Jonzaga 10/9/2020

	Clean catch basin inlet grate and grates i and
	Weir wheels tightened
Inf Threshold value: 474 12" Threshold value: 323 18" Threshold value: 337	Threshold values set
DL set? N ISCO set? YN	Data logger and ISCO set to sample
	Sample jars placed in ISCOs, with ice packs as needed
	Sample tubing placement checked
	Grab Sample taken to verify pump function
Debris removed? Y N	Debris/Obstruction Removal from piping (as needed)
formed? Notes (circle text as appropriate):	Maintenance Activities Activity Performed?
Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):	Any indication of damage/tampering during sile inspecti
Time: 10/10/2000 PM	Field staff names: Kevin F, Megan E.

Field staff names: Kevin F					1111	Date: 16/17/2070
Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment): N 10	te inspection (surrounding) \mathbb{N}/\mathfrak{O}	ing area, pipes, cables,	wiring, cords,	tubing, monitoring ec	quipment):	
Maintenance Activities	Activity Performed? Notes (circle text as appropriate):	Notes (circle text as a	ppropriate):			
Debris/Obstruction Removal from piping (as needed)	Yes	Debris removed?	Y N	Novisible	debris	debis to remove
Grab Sample taken to verify pump function	0					
Sample tubing placement checked	Ves					
Sample jars placed in ISCOs, with ice packs as needed	Ves					
Data logger and ISCO set to sample	le S	DL set?	N (A)	ISCO set?	N (B)	
Threshold values set	Yes	Inf Threshold value:	1300	12" Threshold value: 2/4		18" Threshold value: 21 9
Weir wheels tightened	Z;					
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)						

KEVIN T ME 9 AM	CIND			Time: 0: 45 01 M
Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment): No	tte inspection (surround	ing area, pipes, cables, wiring, cor	ds, tubing, monitoring equipment	
Maintenance Activities	Activity Performed?	Activity Performed? Notes (circle text as appropriate):	e):	
oval from piping (as		Debris removed? Y N		
Grab Sample taken to verify pump function	//			
Sample tubing placement checked	\sim			
Sample jars placed in ISCOs, with ice packs as needed	/			
Data logger and ISCO set to sample		DL set? (Y) N	ISCO set? (Y N	
Threshold values set	7	Inf Threshold value: 356	12" Threshold value: 178	18" Threshold value: 178
Weir wheels tightened				
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)	/	Na necled	,	

Diald stace								
Field staff names: Kevin Flanagar	- 1 - 11 -	5 0 11 1				Date:	11/4/202	0
nevill 1 innagai	1, 194101 Hot	+Man Ballera				Time.		-
Any indication of damage/tampering during s	ite inspection (surround	ing area nines cables	wiring gord	a tubina manita	ming agricument)	1	5.50	
C 1 mg mmg	the hispection (surround)	ing area, pipes, cautes,	, wiring, cord	s, tubing, momic	ring equipment).			
	N 2							
Maintenance Activities	Activity Performed?	Notes (circle text as	appropriate)	:		-		
Debris/Obstruction Removal from piping (as needed)	\ /	Debris removed?	§ N		N 1 .			
	¥ √			NO	Debri			
Grab Sample taken to verify pump function	J							
Sample tubing placement checked	1							
Sample jars placed in ISCOs, with ice packs as needed	/			,				
Data logger and ISCO set to sample	1	DL set?	Ŷ N	ISCO set?	Ø N			
Threshold values set	\/	Inf Threshold value:	332	12" Threshold	value: 166	18" Th	reshold value:	166
Weir wheels tightened	4			•		1		
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)			24					

field staff names: Megan + K	oela			Date: 1111 7000
Any indication of damage/tampering during s		ling area, pipes, cables, wiring, cor	ds, tubing, monitoring equipment	
Maintenance Activities	Activity Performed?	Notes (circle text as appropriat	e):	
Debris/Obstruction Removal from piping (as needed)	V	Debris removed? Y N		
Grab Sample taken to verify pump function	V			
Sample tubing placement checked	V			mail Office
Sample jars placed in ISCOs, with ice packs as needed		Morrosonan	Morrax	
Data logger and ISCO set to sample	V	DL set? Y N	ISCO set? Y N	
Threshold values set	V	Inf Threshold value: 262	12" Threshold value: \3\	18" Threshold value: 131
Weir wheels tightened	,			
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)				

Field staff names: Taylor		Date: (1/13/3020) Time: (6:30 pm
Any indication of damage/tampering during si	te inspection (surround	Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):
Maintenance Activities	Activity Performed?	Notes (circle text as appropriate):
Debris/Obstruction Removal from piping (as needed)	<	Debris removed? Y (N)
Grab Sample taken to verify pump function		
Sample tubing placement checked	•	
Sample jars placed in ISCOs, with ice packs as needed		
Data logger and ISCO set to sample	1	DL set? Y N ISCO set? Y N
Threshold values set	<	Inf Threshold value: 460 12" Threshold value: 330 18" Threshold value: 330
Weir wheels tightened		
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)		

		0202 (51/1)
Field staff names: MIGON + TOY lov	Taylor	Time: 1:30 ON
Any indication of damage/tampering during si	te inspection (surround	Any indication of damage/thanpering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):
None		
Maintenance Activities	Activity Performed?	Notes (circle text as appropriate):
Debris/Obstruction Removal from piping (as needed)	<	Debris removed? Y (N)
Grab Sample taken to verify pump function	>	
Sample tubing placement checked	<	
Sample jars placed in ISCOs, with ice packs as needed	<	
Data logger and ISCO set to sample	<	DL set? W ISCO set? W N
Threshold values set	/	Inf Threshold value: 18 12" Threshold value: 59 18" Threshold value: 59
Weir wheels tightened		
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)		

					Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)
					Weir wheels tightened
18" Threshold value: SWA 71	113 113 12" Threshold value: 71		Inf Threshold value:	\	Threshold values set
	ISCO set? Y N	SI N	DL set?		Data logger and ISCO set to sample
				<	Sample jars placed in ISCOs, with ice packs as needed
				<	Sample tubing placement checked
				<	Grab Sample taken to verify pump function
		× ②	Debris removed?	<	Debris/Obstruction Removal from piping (as needed)
		appropriate):	Notes (circle text as	Activity Performed? Notes (circle text as appropriate):	Maintenance Activities
					None
	ubing, monitoring equipment):	, wiring, cords, to	ding area, pipes, cables	ite inspection (surround	Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment
Time: 11:30 av				Keyn + megan	Field staff names:

					Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)
					Weir wheels tightened
18" Threshold value: 4 &	12" Threshold value: 48	96	Inf Threshold value:	/	Threshold values set
	ISCO set? 🚫 N	N S	DL set?	V	Data logger and ISCO set to sample
				/	Sample jars placed in ISCOs, with ice packs as needed
				<	Sample tubing placement checked
				<	Grab Sample taken to verify pump function
		Y (V)	Debris removed?	<	needed) (as
		Notes (circle text as appropriate):	Notes (circle tex	Activity Performed?	Maintenance Activities
					None
	s, tubing, monitoring equipment):	bles, wiring, cords	ding area, pipes, ca	ite inspection (surround	Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):
Date: 11/25/2020				1,001E	Field staff names: MEGON + Nicole

Field staff names: KOWN + MOGAN	regan	Date: 13/16/3030 Time:
Any indication of damage/tampering during s	te inspection (surround	Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):
Maintenance Activities	Activity Performed?	Notes (circle text as appropriate):
Debris/Obstruction Removal from piping (as needed)	<	Debris removed? Y N
Grab Sample taken to verify pump function	4	
Sample tubing placement checked	_	
Sample jars placed in ISCOs, with ice packs as needed		
Data logger and ISCO set to sample		DL set? (N ISCO set? N
Threshold values set	<	Inf Threshold value: 108 12" Threshold value: 54 18" Threshold value: 54
Weir wheels tightened		
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)		

Field staff names: Megan + Kpvin	PUN	Date: 13/17/3030
any indication of damage/dampering during s	ite inspection (surround	Any indication of damage dampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):
	Activity Performed?	Notes (circle text as appropriate):
Debris/Obstruction Removal from piping (as needed)		
Grab Sample taken to verify pump function	5	
Sample tubing placement checked	<	
Sample jars placed in ISCOs, with ice packs as needed	<	
Data logger and ISCO set to sample		DL set? Y N ISCO set? Y N
Threshold values set	5	Inf Threshold value: 96 12" Threshold value: 48 18" Threshold value: 48
Weir wheels tightened		
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)		

Field staff names: Kevin Flanagan	and Taylor Hoffm	an-Ballard			_	Date: 12/20/2020
Any indication of damage/tampering during s			s, wiring, cord	s, tubing, monitoring equ		Time: 12:30 PM
Maintenance Activities	Activity Performed?	Notes (circle text as	appropriate)):		
Debris/Obstruction Removal from piping (as needed)	/	Debris removed?	Y N			
Grab Sample taken to verify pump function						
Sample tubing placement checked	/					
Sample jars placed in ISCOs, with ice packs as needed	/					
Data logger and ISCO set to sample	/	DL set?	Y N	ISCO set?	N	
Threshold values set	V	Inf Threshold value:	200	12" Threshold value:	100 1	8" Threshold value: 100
Weir wheels tightened						
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)						

Field staff names: Kevin Flanagan	and Taylor Hoffm	nan-Ballard			Date: 12/21/2020
Any indication of damage/tampering during s			s, wiring, cord	s, tubing, monitoring equipment	Time: 3:30 PM
Maintenance Activities	Activity Performed?	Notes (circle text as	appropriate)):	
Debris/Obstruction Removal from piping (as needed)	/	Debris removed?	Y N		
Grab Sample taken to verify pump function					
Sample tubing placement checked	/				
Sample jars placed in ISCOs, with ice packs as needed	/				
Data logger and ISCO set to sample	V ,	DL set?	Y N	ISCO set? Y N	
Threshold values set	V	Inf Threshold value:	96	12" Threshold value: 48	18" Threshold value: 48
Weir wheels tightened					
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)					

Field staff names: Taylor Hoffman-I	Ballard				Date: 1/2/2021	_
Any indication of damage/tampering during s		ling area, pipes, cables	, wiring, cord	s, tubing, monitoring equipment)	Time: 10:30 AM	1
Maintenance Activities	Activity Performed?	Notes (circle text as	appropriate)	:		
Debris/Obstruction Removal from piping (as needed)		Debris removed?	Y (N)			
Grab Sample taken to verify pump function						
Sample tubing placement checked	/					
Sample jars placed in ISCOs, with ice packs as needed	V					
Data logger and ISCO set to sample	V ,	DL set?	Y N	ISCO set? Y N		
Threshold values set	V	Inf Threshold value:	470	12" Threshold value: 235	18" Threshold value:	235
Weir wheels tightened						
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)						

Field staff names: Taylor Hoffman-Ballard					Date: 1/3/2021	
Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):						
Maintenance Activities	Activity Performed?	Notes (circle text as	appropriate)):		
Debris/Obstruction Removal from piping (as needed)		Debris removed?	Y N			
Grab Sample taken to verify pump function						
Sample tubing placement checked	/					
Sample jars placed in ISCOs, with ice packs as needed	V					
Data logger and ISCO set to sample	V ,	DL set?	Y N	ISCO set? Y N		
Threshold values set	V	Inf Threshold value:	260	12" Threshold value: 130	18" Threshold value:	130
Weir wheels tightened						
Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)						

Pre-Storm Maintenance Form - Gonzaga Bioretention

		10/04	Courling	7.600		Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)
		0/e+		+ ceccusting	20	Weir wheels tightened
18" Threshold value: 110	12" Threshold value: 0		7. F. 1. 1.	Inf Threshold value: るんの		Threshold values set
	set? ② N	ISCO set?	N (A)	DL set?	~	Data logger and ISCO set to sample
					<u> </u>	Sample jars placed in ISCOs, with ice packs as needed
					V	Sample tubing placement checked
	(Grab Sample taken to verify pump function
	ICE covering inlet		×	Debris removed?	アン	Debris/Obstruction Removal from piping (as needed)
		riate):	as approp	Notes (circle text as appropriate):	Activity Performed?	Maintenance Activities
					0	
	ng, monitoring equipment):	, cords, tubii	les, wiring,	ling area, pipes, cab	site inspection (surround	Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring
Time: 1 (b): (50)					LANN	Kevin Managan
Date: 1/5/21						Field staff names:

Pre-Storm Maintenance Form - Gonzaga Bioretention

				Clean catch basin inlet grate and grates i and HVF on up-turned elbow (as needed)
			<	Weir wheels tightened
18" Threshold value: 255	12" Threshold value: 25 5	Inf Threshold value: 5/0	II \	Threshold values set
	ISCO set? & N	DL set? (ŷ N]	ם	Data logger and ISCO set to sample
			\	Sample jars placed in ISCOs, with ice packs as needed
			1	Sample tubing placement checked
			<u> </u>	Grab Sample taken to verify pump function
		Debris removed? (Y) N	d J	Debris/Obstruction Removal from piping (as needed)
		Activity Performed? Notes (circle text as appropriate):	Activity Performed? N	Maintenance Activities
				20
	, tubing, monitoring equipment):	area, pipes, cables, wiring, cords,	ite inspection (surrounding	Any indication of damage/tampering during site inspection (surrounding area, pipes, cables, wiring, cords, tubing, monitoring equipment):
- 1			Taulin	Keyin A PO Taulin
Date: ///)			>	Field staff names:

Appendix C.4 Field Audit

Gonzaga BSM Thickness Effectiveness Study Audit

	Storm Selection and Tracking	Notes Overall for SOP:	
Step #	Standard Operating Procedure (SOP)	Yes/No/Modified	If No or Modified, explain:
1	Using the local weather forecast, identify the likelihood of storm meeting TAPE guidelines and using the qualitative classification system of "Unlikely", "Marginal", or "Likely".	Modified	Taking probabillity into account sampled when predicted storm was .1 or greater
2	If deemed "Unlikely", the storm was not sampled. If deemed "Marginal" or "Likely", project manager used best judgement whether to prepare for the storm.	Modified	See above, D5
3	If the storm was selected for monitoring, a bottle request was submitted to the lab.	Yes	
4	If the storm was selected for monitoring, the actual rain gauges at the test site were monitored remotely to understand when it is time to collect samples.	Yes	Monitored NWS Airport rain gauge.
	Storm Monitoring Equipment Maintenance (every month unless otherwise noted)	Notes Overall for SOP:	
Step #	Standard Operating Procedure (SOP)	Yes/No/Modified	If No or Modified, explain:
1	Open the sump, catch basins, manhole and monitoring equipment vault and visually inspect site for damage or tampering.	Yes	
2	Inspect catchbasin, pipes, tees, and weirs for debris and clean as needed.	Yes	
3	Disconnect power supply and test voltage of battery for greater than 10.3 volts.	Modified	Didn't need to disconnect to test power supply.
4	Insert USB and start visit report.	Yes	
5	Inspect rain gauge every three months for levelness and cleanliness.	Yes	
6	Inspect ISCO suction tubing, head tubing, and pump tubing for wear and tear.	Yes	
7	Check humidity indicators for ISCO and PTs and replace dessicant as needed.	Yes	
8	Check ISCO controller pad. If the controller pad is inflated, remove bulkhead screw to relieve pressure behind the pad.	Yes	
9	Check pump capabilities of ISCOs and calibrate volume pumped as nescessary or every 3 months.	Yes	
10	End visit report and remove USB. Secure the sump, manhole, and monitoring equipment vault.	Yes	

Prepari	ng Stormwater Monitoring Equipment for Storm Sampling (before every storm unless otherwise noted)	Notes Overall for SOI	2: #5, #8 & #10 moved to monthly maintenance based on experience.
Step #	Standard Operating Procedure (SOP)	Yes/No/Modified	If No or Modified, explain:
1	Open the sump, catch basins, manhole and monitoring equipment vault and visually inspect site for damage or tampering.	Yes	
2	Insert USB and start visit report.	Yes	
3	Inspect pipes, tees, weirs and connections for debris.	Yes	
4	Collect a water surface elevation measurement from the reference point on the control tee. Subtract the measurement from the reference elevation. Compare this value to the to measurement collected by the data logger to identify any instrument drift.	Modified	Used the data logger measurement and visually monitored for difference.
5	Remove debris and any water from pipe tees, weirs, elbows and connections using a vacuum.	Modified	moved to monthly maintenance based on experience
6	Inspect ISCO pump tubing for wear and tear (i.e. kinks and bellies) and replace as needed. Clean ISCO tubing that was not replaced using a triple rinse of 10% HNO3 acid solution, liquinox soap solution, then lastly a triple rinse of DI water.	Modified	Replaced tubing as needed as opposed to cleaning.
7	Access influent autosampler; place clean suction tubing in carboy of DI water and place clean pump tubing over one bottle provided by the lab for rinsate blank. Set ISCO to "Pump Forward" and fill bottle so that no airspace is remaining when cap is replaced. Once both rinsate bottles are filled, place bottles in a cooler and fill out Chain of Custody for rinsate samples.	Modified	Rinsate samples conducted 3 times. Conducted pre-monitoring, during monitoring and p
8	Adjust weirs and pipe tees to a level position and note in form if weirs or tees were not level.	Yes	Weirs were tightened. Moved to monthly maintenance based on experience.
9	Inspect PTs for cleanliness; if PTs and/or mounts are dirty, remove PT and remove material gently.	Modified	Didn't need to remove PT. Rinsed with ample water.
10	Fill control tee with clean water and use data logger to get a current PT reading. Set PT reading to zero if no change in water surface elevation occurs.	Modified	moved to monthly maintenance based on experience
11	Place sample jars in ISCO, and set ISCOs to sample. Set the data logger value Sampl_enabl to 0 and set threshold values on the data logger.	Yes	
12	Ensure all tubing is connected properly, bulkhead caps are secured, and that all cables are properly attached.	Yes	
13	End visit report, and secure the sump, manhole, and monitoring equipment vault.	Yes	

14	Obtain pH probe at office and inspect cable and electrode for	Yes			
17	damage or buildup. Clean as necessary.	1 CS			
	Stormwater Sample Collection and Processing (following each storm event)	Notes Overall for SOP			
Step #	Standard Operating Procedure (SOP)	Yes/No/Modified	If No or Modified, explain:		
1	Place sample bottles in refrigerator before leaving for the site to keep cool.	Yes			
2	Open the sump, catch basins, manhole and monitoring equipment vault and visually inspect site for damage or tampering.	Yes			
3	Insert USB and start visit report.	Yes			
4	Check ISCO to visually check that the amount of water collected correlates to the number of aliquots reported to have been collected by the ISCO.	Yes			
5	Pour some sample into a beaker for a pH test. Record pH and temperature on field form.	Yes	pH tested at Lab.		
6	Move composite samples to cooler and repeat for other samples.	Yes			
7	End visit report, and secure the sump, manhole, and monitoring equipment vault.	Yes			
8	At the office, transfer composite samples to laboratory-specified bottles and filter samples for dissolved metals and orthophosphate.	Yes	Filtered as needed.		
9	Using a filter and syringe, filter 50 mL of DI water into the dissolved metals blank bottle.	Yes			
10	Place a new filter on the syringe, fill the syringe with 50mL of sample, and waste the 50mL to rinse the filter. Collect an additional 50mL of sample and filter into the sample bottle. Repeat until the sample bottle is filled; repeat process for remaining dissolved metals and orthophosphate bottles.	Modified	Do not waste the 50mL to rinse the filter, per Lab.		
11	Fill remaining bottles, place the filled bottles into a cooler, and fill out the Chain of Custody. Measure the temperature in the cooler and record on Chain of Custody.	Modified	Lab measures and records the temp on CoC		
12	Deliever samples to Anatek under 6 deg C.	Yes			
	Monitoring Equipment Data Download (following each storm event)	Notes Overall for SOP			
Step #	Standard Operating Procedure (SOP)	Yes/No/Modified	If No or Modified, explain:		
1	Open the sump, catch basins, manhole and monitoring equipment vault and visually inspect site for damage or tampering.	Yes			

2	Insert USB and download data.	Yes	
3	Remove USB and secure the sump, manhole, and monitoring equipment vault.	Yes	
	Falling Head Test	Notes Overall for SOP	;
Step #	Standard Operating Procedure (SOP)	Yes/No/Modified	If No or Modified, explain:
1	Contact Gonzaga Plant Services and make arrangements for Plant Services to turn on fire hydrant located north of test site.	Yes	
2	Connect fire hose and turn on hydrant. Spray parking lot and fill bioretention cells with water until water has ponded 12 inches above the cell surface. Use yardsticks to verify 12 inches have ponded.	Yes	
3	Allow time for the media to saturate, then re-fill the cells to just above 6 inches. Once water level reaches 6 inches, start the timer.	Yes	
4	Record the time for the water to drop 1 inch. Continue recording until Ksat is stable and doesn't change more than 10% for three intervals.	Yes	
5	Secure the sump, manhole, and monitoring equipment vault.	Yes	

Appendix C.5 Deviations from QAPP

TECHNICAL EVALUATION REPORT

BIORETENTION SOIL MEDIA THICKNESS STUDY

Revision #	Section and Page	Original Instructions	Suggested Revision	Reason for Deviation
1	Section 6.1; page 21	Precision for laboratory duplicates will be \pm 40 percent relative percent difference (RPD) for oils (NWTPH-Dx), \pm 25 percent for TSS, and 20 percent for all other water quality parameters (Table 6.1).	Precision for laboratory duplicates will be 20 percent for all water quality parameters (Table 6.1).	Text was revised to be consistent with analytical laboratory's (Anatek) RPD limits.
2	Section 6.1; page 21	Rain gauge and flow measurement precision will be assessed at the beginning and end of the study. The rain gage precision will be assessed by pouring a known quantity of water into the tipping bucket two times. Precision for the rain gage measurements will be \pm 20 percent RPD. Precision for flow will be assessed by comparing repeated pressure measurements with a known depth of water over each of the respective pressure transducers. Precision for pressure transducer measurements will be \pm 20 percent RPD.	Rain gauge and flow measurement precision will be assessed as needed throughout the study. The rain gauge precision will be checked against nearby rain gauges. Precision for the rain gage measurements will be \pm 20 percent RPD. Precision for flow will be assessed by comparing repeated pressure measurements with a known depth of water over each of the respective pressure transducers. Precision for pressure transducer measurements will be \pm 20 percent RPD.	Nearby rain gauges and weather stations provide a check to determine whether the rain gauge is operating properly and whether maintenance is needed for the rain gauge. Precision for flow is assessed each time the pressure transducers are calibrated; depth measurements are accepted for calibration only if differences between measurements are equal to or less than ± 0.001 .
3	Section 6.2; page 21	Rinsate blank values will not exceed two times the reporting limit.	Rinsate blank values will not exceed 1/10th of composite sample concentrations to be considered unacceptably affected.	Per 2018 TAPE Guidance Manual, composite sample concentrations greater than 10 times the result of rinsate blanks are considered unacceptably affected.
4	Section 8.1.1, page 35	Whether to monitor an upcoming storm event is based upon the qualitative classification system of "Unlikely", "Marginal", or "Likely". The minimum rainfall amount to monitor is 0.15 inches.	Lowed the minimum rainfall amount to 0.08-0.10 inches. If the sum product of probability and rainfall amounts over the duration of the storm is greater than or equal to 0.08 inches, set up the site to monitor the storm event.	Multiplying the probability of rainfall by the predicted rainfall amount forecasted on the NWS Spokane Station website provided more accurate estimates of whether a storm could be successfully monitored. In this case, successfully monitored means the storm depth was predicted to gather at least 10 aliquots for influent and effluent and capture 75% of the hydrograph.
5	Section 8.1.2, page 36	Disconnect power to battery to check the voltage of the battery.	Delete "Disconnect power to battery"	Power did not need to be disconnected to check the voltage of the batteries.
6	Section 8.1.2, page 36	Once every three months, unplug the rain gage from the data logger. Remove cover from rain gage and check instrument for levelness and cleanliness of internal parts. Clear any debris carefully. Note any discrepancies and reset level of rain gage platform if needed. Replace cover on rain gage and plug rain gage back in to the data logger.	If nearby rain gauges indicate there is a discrepancy in the rain gauge readings, unplug the rain gage from the data logger. Remove cover from rain gage and check instrument for levelness and cleanliness of internal parts. Clear any debris carefully. Note any discrepancies and reset level of rain gage platform if needed. Replace cover on rain gage and plug rain gage back in to the data logger.	During the study, nearby rain gauges were used to check the readings of the rain gauge at the site. If consistent differences begin to arise, maintenance would then be performed.
7	Section 8.1.3, page 39	Before starting to clean, collect a water surface elevation measurement from the reference point on the control tee. Record the measurement and reference elevation on the Pre-Storm Event Maintenance Checklist in the assigned space. Assign a + or – value to your reading if there is any uncertainty due to debris, blockage, etc. Subtract the measurement from the reference elevation to determine water surface elevation and record the value on the form. Compare this value to the measurement collected by the data logger to identify any prior instrument drift.	Delete this step from SOP.	The water depth recorded by the pressure transducer was occasionally checked with a tape measure or similar device during calibration. No difference was ever observed.
8	Section 8.1.3, page 40	Inspect the pump, suction, and head tubing for the ISCO. If kinks or bellies are observed in the tubing, replace the tubing. Clean any ISCO tubing that was not replaced.	Inspect the pump, suction, and head tubing for the ISCO. If kinks or bellies are observed in the tubing, replace the tubing.	Replacement of tubing appears to be the best way to reduce contamination and is safer than lowering a solution of nitric acid above someone's head into a manhole.

TECHNICAL EVALUATION REPORT

BIORETENTION SOIL MEDIA THICKNESS STUDY

Revision #	Section and Page	Original Instructions	Suggested Revision	Reason for Deviation
9	Section 8.1.3, Steps 7-11	Steps 7-11 cover collection of rinsate blanks.	Remove steps from Section 8.1.3, place in separate SOP.	Rinsate blank samples are taken three times during the project as opposed to before every storm event.
10	Section 8.1.3, page 40	Use a level to check position of weirs and pipe tees. Adjust to a level position as needed, and note if weirs or tees were not level on the Pre-Storm Event Maintenance Checklist.	Move step to Section 8.1.2, and change to "tighten weirs".	Weirs do not move once they are installed, but the gasket can become loose enough to allow water to leak underneath the gasket. Tightening the weirs once per month appeared to solve that issue.
11	Section 8.1.3, Steps 14-15	Steps 14-15 cover calibration of the pressure transducer zero-depth reading.	Move step to Section 8.1.2.	After the study had begun, and following some analysis of the data, it appeared that calibrating the pressure transducers once per month was sufficient. These steps could be moved to Section 8.1.2.
12	Section 8.1.3, Steps 22-35	Steps 21-34 cover maintenace of the pH meter.	Move step to Section 8.1.5.	It is preferable to maintain and calibrate the pH meter immediately before taking pH measurements.
13	Section 8.1.5, Steps 7-10	Steps cover pH reading performed in the field.	Revise to indicate pH measurement is done at the office.	It was significantly easier to take pH measurements in the office immediately after sample collection rather than in the field.
14	Section 8.1.5, page 44	None	Add a step covering collection of a metals blank for use at the lab if dissolved metals sample is filtered at OCI.	Per instructions from the lab, a blank is needed prior to collecting any sample through one of the 0.45 micron filters.
15	Section 8.1.5, page 44	None	Add a step which describes how to fill the cooler with ice when samples are ready for transport to Anatek.	During the study, the analytical laboratory (Anatek) recommended we place a layer of ice into the cooler, place the samples above that layer, and then fill the rest of the cooler to the brim with ice. This ensures samples arrive at approximately 2 degrees Celsius at the lab.
16	Section 8.1.6	Section covers data download from monitoring site.	Add the steps from this SOP to Section 8.1.5.	Data was downloaded at the same time as samples were collected. A separate trip to the site was not made to download the data.

Appendix C.6 Identification of Quality Assurance Issues & Recommended Solutions

A common quality assurance issue identified during the study was related to the temperature of the samples once they arrived at the laboratory. The samples could be surrounded in ice packs and stored in the freezer for up to the past 24 hours, but still be recorded above the maximum temperature of 6 degrees Celsius. Upon discussion with the lab, corrective action was taken. The corrective action adjusted how samples were transported to the laboratory. Instead of ice packs, ice was used in the cooler. First, a shallow layer of ice was placed in the bottom of the cooler before samples were put into the cooler. The samples were then placed on top of the layer of ice. Once the samples were in the cooler it was filled to the rim with ice. This resulted in samples being measured at a consistent temperature of 2 degrees Celsius at the lab.

Results of samples were plotted against temperature to observe whether temperature influenced the sample concentrations. A consistent relationship was not identified for TSS, dissolved copper, or dissolved zinc. The plots for TSS, dissolved copper, and dissolved zinc are shown in Figures C6.1, C.6.2, and C.6.3.

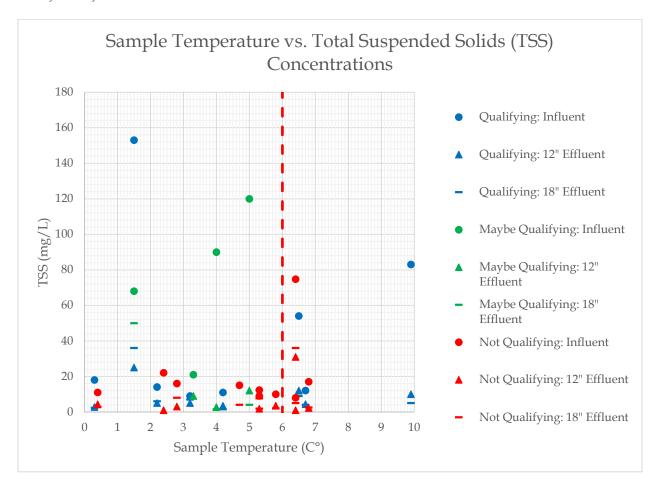


Figure C.6.1 Storm Sample Temperature vs. TSS Concentration

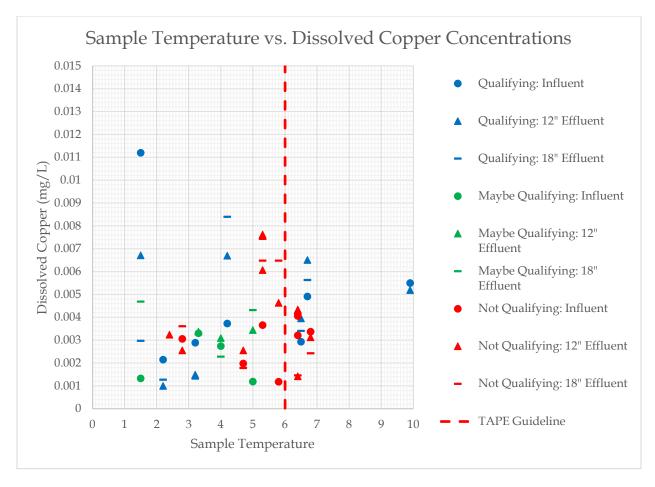


Figure C.6.2 Storm Sample Temperature vs. Dissolved Copper Concentration

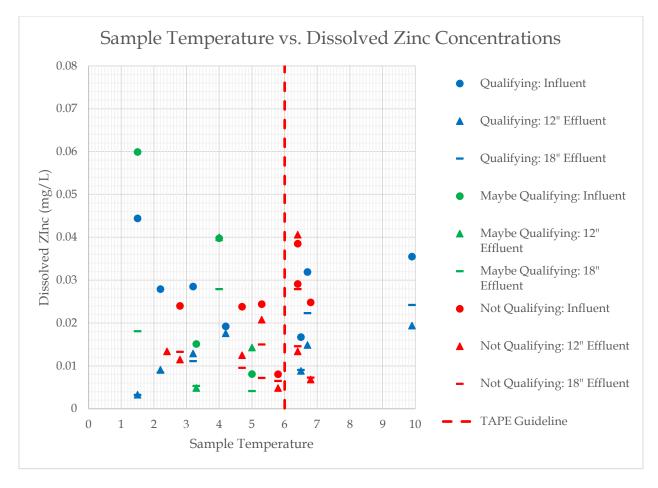
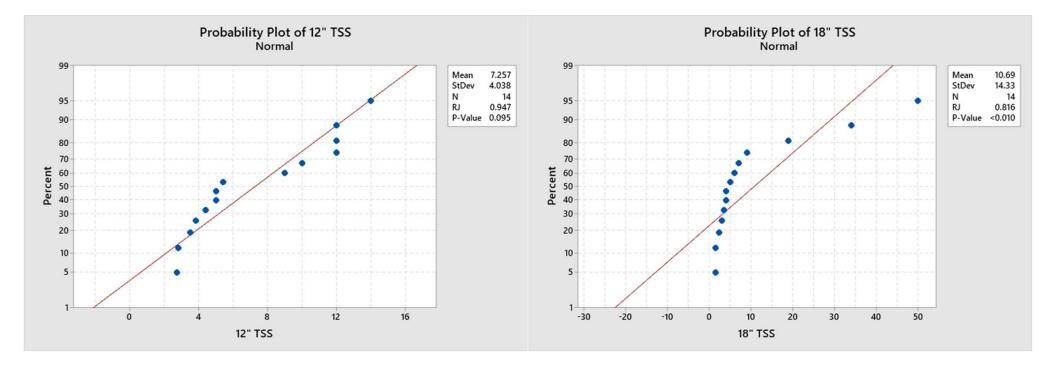


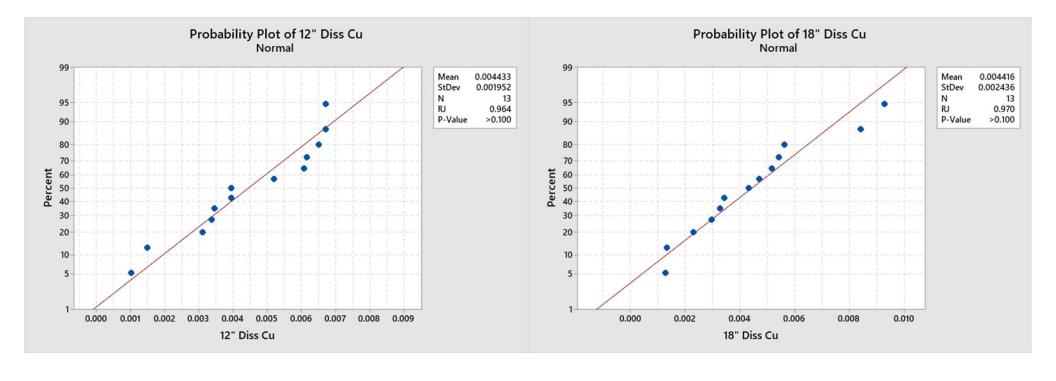
Figure C.6.2 Storm Sample Temperature vs. Dissolved Zinc Concentration

No other quality assurance issues were identified during the study.

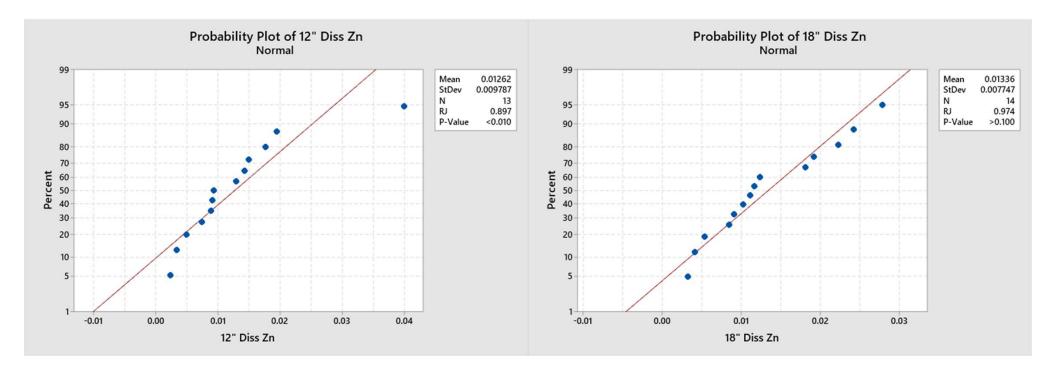
Appendix D. Statistical and Data Analysis

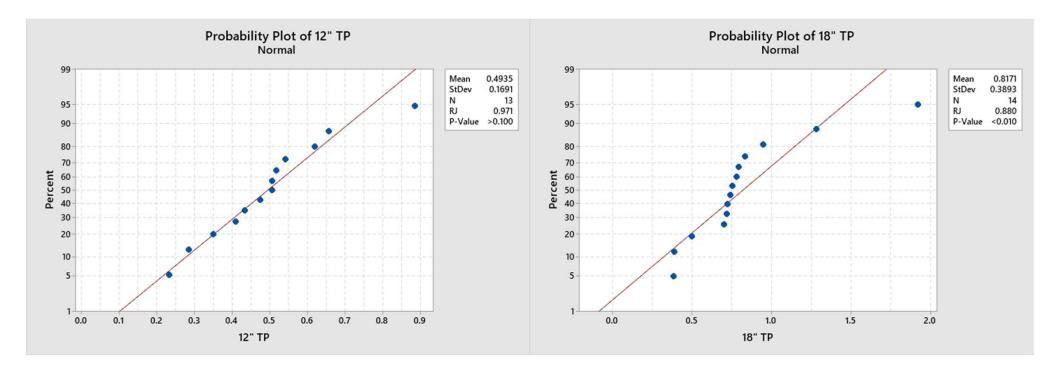
Appendix D.1 Statistical Comparison of Influent and Effluent


Statistical Results


Data Distribution Overview

- Results of Normality Test:
 - Normally Distributed
 - Dissolved Copper 12" and 18" Effluent Concentrations
 - Dissolved Zinc 18" Effluent Concentrations
 - Total Phosphorus 12" Effluent Concentrations
 - Non-Normally Distributed
 - TSS 12" and 18" Effluent Concentrations
 - Dissolved Zinc 12" Effluent Concentrations
 - Total Phosphorus 18" Effluent Concentrations


Data Distribution TSS Normality


Data Distribution Dissolved Cu Normality

Data Distribution Dissolved Zn Normality

Data Distribution Total Phosphorus Normality

Statistically Significant Difference Overview

- Two Sample T-Test and Mann-Whitney Test used
 - T-Test used for pairs of normally distributed data
 - Dissolved Cu 12" and 18" effluent concentrations
 - Mann-Whitney Test used for remaining data pairs

Statistically Significant Difference Overview

- Results:
 - No statistically significant difference between:
 - TSS 12" and 18" effluent concentrations
 - Dissolved Cu 12" and 18" effluent concentrations
 - Dissolved Zn 12" and 18" effluent concentrations
 - Statistically significant difference between:
 - Total Phosphorus 12" and 18" effluent concentrations

Statistically Significant Difference TSS Concentrations

OSBORN CONSULTING INCORPORATED

Mann-Whitney: 12" TSS, 18" TSS

Descriptive Statistics

Sample	Ν	Median	
12" TSS	15	5.4	
18" TSS	15	5.0	

Estimation for Difference

	CI for	Achieved
Difference	Difference	Confidence
1	(-4.3, 5)	95.35%

Test

Null hypothesis	H_0 : $\eta_1 - \eta_2 = 0$
Alternative hypothesis	H_1 : $\eta_1 - \eta_2 \neq 0$

Method	W-Value	P-Value
Not adjusted for ties	243.50	0.663
Adjusted for ties	243.50	0.663

OSBORN CONSULTING INCORPORATED

Statistically Significant Difference Dissolved Cu Concentrations

Two-Sample T-Test and CI: 12" Diss Cu, 18" Diss Cu

Descriptive Statistics

Sample	N	Mean	StDev	SE Mean
12" Diss Cu	13	0.00443	0.00195	0.00054
18" Diss Cu	13	0.00442	0.00244	0.00068

Estimation for Difference

	95% CI for
Difference	Difference
0.000017	(-0,001779, 0.001812)

Test

Null hypothesis H_0 : $\mu_1 - \mu_2 = 0$ Alternative hypothesis H_1 : $\mu_1 - \mu_2 \neq 0$ T-Value DF P-Value

0.02 22 0.985

Statistically Significant Difference Dissolved Zn Concentrations

OSBORN CONSULTING INCORPORATED

Mann-Whitney: 12" Diss Zn, 18" Diss Zn

Descriptive Statistics

7_	Sample	N	Median
	12" Diss Zn	13	0.00927
	18" Diss Zn	14	0.01135

Estimation for Difference

		Achieved
Difference	CI for Difference	Confidence
-0.0016300	(-0.0079600, 0.0047100)	95.06%

Test

Null hypot	hesis	$H_0: \eta_1 - \eta_2 = 0$
Alternative	hypothesis	H_1 : $\eta_1 - \eta_2 \neq 0$
W-Value	P-Value	
172.00	0.645	

Statistically Significant Difference Total Phosphorus Concentrations

OSBORN CONSULTING INCORPORATED

Mann-Whitney: 12" TP, 18" TP

Descriptive Statistics

	Sample	N	Median
3	12" TP	13	0.505
	18" TP	14	0.745

Estimation for Difference

			Achieved
	Difference	CI for Difference	Confidence
ē	-0.266	(-0.429, -0.103000)	95.06%

Test

Null hypothe	esis	$H_0: \eta_1 - \eta_2 = 0$
Alternative h	ypothesis	H_1 : $\eta_1 - \eta_2 \neq 0$
W-Value	P-Value	
126.00	0.007	

Appendix D.2 Pollutant Effluent Concentrations and Removal Efficiencies

	TAPE Qualifying Parameters	Units	TAPE Guideline								
		Storm ID		2	8	9	12	15	16	19	26
	,			12/16/2018	12/19/2019	1/28/2020	5/6/2020	9/25/2020	10/10/2020	11/5/2020	1/2/2021
			Qualified?	Y	Y	Y	Y	Y	Y	Y	Y
	Total Storm Depth	inches	0.15"	0.41	0.44	0.42	0.23	0.08	0.27	0.27	0.4
Storm Data	Total Storm Duration	hours	1 hour	20.42	8.25	12.75	9.75	6.08	8.67	9.42	15.83
Storm Data	Storm Average Intensity	in/hr		0.020	0.053	0.033	0.024	0.013	0.031	0.029	0.025
	Storm Peak Intensity	in/hr	Range of rainfall intensities	0.120	0.360	0.120	2.738	0.120	0.240	3.352	2.212
	Storm Antecedent Dry Period	hours	6 hrs w/ <0.04" rainfall before the storm start	64.33	159.08	15.17	74.08	29.17	352.08	41.58	12.50
	Influent	ft ³		243.175	1113.728	90.927	192.103	47.905	421.263	203.803	530.967
Total Volume		ft ³									
Total Volume	12in Effluent		none	178.824	240.007	28.930	131.125	35.279	127.844	118.835	320.243
	18in Effluent	ft ³		151.759	392.860	12.190	104.421	34.247	134.703	133.903	198.313
	Influent	gpm		2.032	19.836	123.496	2.672	1.352	11.249	4.010	4.179
Average Flow Rate	12in Effluent	gpm	Range	1.108	3.630	4.545	1.690	0.723	1.874	1.615	2.520
	18in Effluent	Sin Effluent gpm Influent gpm		0.939	5.621	1.239	1.370	0.702	1.975	1.820	1.561
		gpm		9.792	60.596	353.844	31.793	11.322	54.635	12.989	13.428
Peak Flow Rate	12in Effluent	gpm	Range	1.482	5.997	8.016	5.852	2.726	6.979	4.163	3.949
	18in Effluent	gpm		1.299	33.132	1.799	4.383	2.179	4.495	3.642	2.107
	Influent	-		27	35	45	19	8	30	17	31
Aliquots	12in Effluent	-	10 aliquots minimum	40	19	45	26	12	18	20	38
	18in Effluent	-			18	21	12	19	22	23	
	Influent	hours		13.25	2.83	3.67	5.08	1.08	3.83	3.92	11.58
Sample Duration		hours	36 hours maximum	18.00	7.67	5.92	6.25				13.75
	18in Effluent	hours		17.92	7.50	9.58	8.33				1.83
	% of Influent	%		98.08%	78.84%	100.00%	97.16%				96.96%
Storm Volume Sampled	% of 12in Effluent	%	75% of storm for the first 24 hours	98.80%	99.30%	100.00%	97.39%				98.53%
	% of 18in Effluent	%		98.96%	98.98%	100.00%	98.78%	95.34%	97.69%	96.37%	96.31%
90th Percentile Flow Rate	Influent	gpm	none	3.164	55.705	323.847	7.373	4.360	24.819	9.980	8.563
<u> </u>	TSS D: 1 1C		≥20 mg/L	,	14	11	83	3.17 4.75 6.42 4.17 6.25 6.42 90.88% 98.64% 97.86% 92.55% 97.51% 98.72% 95.34% 97.69% 96.37%	13		
Influent Concentration —	Dissolved Cu	mg/L	0.005-0.02 mg/L	0.00289 0.0285	0.00215 0.0279	0.00373	0.0055 0.0355				
 	Dissolved Zn	mg/L	0.02-0.03 mg/L	0.0285	0.0279	0.0192 0.105	0.0353				
	Total Phosphorus TSS	mg/L	0.1-0.5 mg/L	5	U.19 5	3.5	10	25	4.4	12	3.8
	Dissolved Cu	mg/L mg/L	≥20 mg/L 0.005-0.02 mg/L	0.00149	0.001	0.0067	0.00519	0.00671	0.00651	0.00395	3.0
12" Effluent Concentration	Dissolved Zn	mg/L mg/L	0.003-0.02 mg/L 0.02-0.03 mg/L	0.00149	0.001	0.0007	0.00319	0.00327	0.00631	0.00393	
	Total Phosphorus	mg/L mg/L	0.02-0.03 mg/L 0.1-0.5 mg/L	0.0129	0.409	0.516	0.505	0.433	0.475	0.00883	
	Total Phosphorus TSS		0.1-0.3 mg/L ≥20 mg/L	7	6	1.5	5	36	4	9	3
	Dissolved Cu	mg/L	≥20 mg/L 0.005-0.02 mg/L	0.00132	0.00127	0.0084	J	0.00297	0.00563	0.00341	J
18" Effluent Concentration	Dissolved Zu Dissolved Zn	mg/L mg/L	0.003-0.02 Hg/L 0.02-0.03 mg/L	0.00132	0.00127	0.0084	0.0242	0.00297	0.00303	0.00906	
—	Total Phosphorus	mg/L mg/L	0.1-0.5 mg/L	0.388	0.496	0.945	0.739	0.751	0.715	1.92	
	•	mg/L	6 hours minimum with less than 0.04	0.500	0.170	0.2.10	0.757	0.751	0.,10	1.72	
Post Storm Data	Post Storm Dry Period > 6hr?	-	inches of rain	Y	Y	Y	Y	Y	Y	Y	Y
Sample Data	Temperature < 6°C	Celsius	Sample Temperature cannot exceed 6°C	3.2	2.2	4.2	9.9	1.5	6.7	6.5	

	TAPE Qualifying Parameters	Units	TAPE Guideline								
		Storm ID		29	4	5	11	13	14	22	25
	,			1/12/2021	7/24/2019	9/28/2019	2/23/2020	5/20/2020	5/31/2020	11/18/2020	12/22/2020
		Qualified?		Y	M	M	M	M	M	M	M
	Total Storm Depth	inches	0.15"	0.53	0.2	0.71	0.17	1.11	0.67	0.13	0.07
Storm Data	Total Storm Duration	hours	1 hour	15.50	10.58	37.42	6.33	18.50	9.42	6.08	5.92
Storm Data	Storm Average Intensity	in/hr		0.034	0.019	0.019	0.027	0.060	0.071	0.021	0.012
	Storm Peak Intensity	in/hr	Range of rainfall intensities	2.349	0.120	0.120	0.360	1.532	3.074	0.720	0.120
	Storm Antecedent Dry Period	hours	6 hrs w/ <0.04" rainfall before the storm start	115.00	176.42	432.42	179.42	5.17	129.92	40.08	11.92
	Influent	ft ³		467.660	207.084	2340.989	657.237	11386.908	3457.199	2607.043	80.104
T 4 1 1 7 1		$\frac{1}{\text{ft}^3}$									
Total Volume	12in Effluent		none	333.905	89.981	124.128	111.860	393.625	387.122	182.435	39.231
	18in Effluent	ft ³		232.068	109.733	158.591	113.090	352.704	229.710	285.220	56.293
	Influent	gpm		4.483	3.091	21.345	61.934	96.748	29.591	53.404	1.687
Average Flow Rate	12in Effluent	gpm	Range	2.684	1.061	0.636	2.935	2.651	4.162	3.737	0.826
	18in Effluent	gpm		1.866	1.297	0.573	2.349	2.376	2.594	5.843	1.186
	Influent	gpm		24.173	37.321	112.439	265.026	689.839	104.483	1756.638	10.350
Peak Flow Rate	12in Effluent	gpm	Range	4.726	3.350	2.404	7.794	4.163	9.078	8.563	1.899
	18in Effluent	gpm		3.256	3.164	2.897	5.030	3.845	5.208	9.610	1.768
	Influent	-		25	45	45	16	45	45	45	23
Aliquots	12in Effluent	-	10 aliquots minimum	37	45	16	38	31	45	45	23
	18in Effluent	-		25	45	41	38	28	28	45	33
	Influent	hours		9.42	6.08	3.58	1.25	8.25	3.67	3.67	2.58
Sample Duration		hours	36 hours maximum	14.25	6.42	8.33	3.08	15.92	5.42	3.67	5.42
	18in Effluent	hours		12.42	5.83	8.58	5.25	17.17	7.08	3.67	5.42
	% of Influent	%		96.34%	76.79%	27.17%	14.19%	9.94%	20.70%	8.66%	97.40%
Storm Volume Sampled	% of 12in Effluent	%	75% of storm for the first 24 hours	99.85%	88.36%	91.10%	99.63%	99.07%	92.42%	61.88%	99.44%
	% of 18in Effluent	%		97.07%	72.45%	91.35%	98.55%	99.86%	96.91%	39.58%	99.43%
90th Percentile Flow Rate	Influent	gpm	none	9.432	11.604	83.561	154.940	0.099	141.279	3.493	5.333
I	TSS	mg/L	≥20 mg/L	18	78	68	90		120	21	38
Influent Concentration	Dissolved Cu	mg/L	0.005-0.02 mg/L		0.00676	0.00133	0.00274		0.00119	0.0033	0.0018
I	Dissolved Zn		0.02-0.03 mg/L	5.75	0.0307 0.334	0.0599 0.0991	0.0398 0.153		0.0081	0.0151	0.0114 0.0917
	Total Phosphorus TSS	mg/L	0.1-0.5 mg/L	2.8	12	0.0771	2.7		12	9	14
I	Dissolved Cu		≥20 mg/L 0.005-0.02 mg/L	2.0	0.00608		0.00309		0.00344	0.00337	0.00615
12" Effluent Concentration	Dissolved Zn	mg/L mg/L	0.003-0.02 mg/L 0.02-0.03 mg/L		0.0008		0.00309		0.0143	0.00337	0.00013
 	Total Phosphorus		0.02-0.03 mg/L 0.1-0.5 mg/L	0.506	0.886		0.285		0.0173	0.656	0.62
	TSS	mg/L	20 mg/L	2.33	34	50	1.5		4	0.050	19
	Dissolved Cu	mg/L	0.005-0.02 mg/L	2.33	0.00515	0.00469	0.00228		0.00432	0.00326	0.00929
18" Effluent Concentration	Dissolved Zn	mg/L	0.003-0.02 mg/L 0.02-0.03 mg/L		0.0102	0.0181	0.00228		0.00432	0.00520	0.0123
 	Total Phosphorus	mg/L	0.1-0.5 mg/L	0.701	1.28	0.793	0.381		3.00.112	0.72	0.779
Post Storm Data	Post Storm Dry Period > 6hr?	-	6 hours minimum with less than 0.04 inches of rain	Y	Y	Y	Y	N	N/A	Y	Y
Sample Data	Temperature < 6°C	Celsius	Sample Temperature cannot exceed 6°C	0.3	14.4	1.5	4	14	5	3.3	1

	TAPE Qualifying Parameters	Units	TAPE Guideline							
		Storm ID		27	28	3	1	6	7	10
	``	Storm ID		1/4/2021	1/6/2021	1/17/2019	11/22/2018	11/19/2019	12/7/2019	1/30/2020
			Qualified?	M	N	N	N	N	N	N
Influent Concentration	Total Storm Depth	inches	0.15"	0.44	0.11	0.26	0.08	0.07	0.19	0.12
Storm Data	Total Storm Duration	hours	1 hour	12.08	7.42	9.75	5.83	4.58	7.58	6.75
Storm Data	Storm Average Intensity	in/hr		0.036	0.015	0.027	0.014	0.015	0.025	0.018
	Storm Peak Intensity	in/hr	Range of rainfall intensities	2.930	0.120	0.120	0.120	0.120	0.120	0.120
	Storm Antecedent Dry Period	hours	6 hrs w/ <0.04" rainfall before the storm start	24.00	34.75	171.75	432.50	44.83	420.25	25.00
	Influent	ft ³		1155.380	117.591	322.731	52.616	21.338	513.869	315.796
Total Volume	12in Effluent	ft ³	none	262.183	70.128	98.736	24.020	27.694	125.317	122.718
	18in Effluent	ft ³		188.030	75.779	75.990	27.287	0.351	3675.194	67.743
	Influent	gpm		11.915	1.976	4.007	7.153	0.003	12.197	11.244
Average Flow Rate	12in Effluent		Range	2.704	1.178	1.317	0.513	0.627	2.082	2.266
Tiverage Flow Rate	18in Effluent	gpm	i i i i i i i i i i i i i i i i i i i	1.939	1.273	1.021	0.648	0.006	60.393	1.251
	Influent	gpm		62.830	9.792	22.012	34.489	0.009	56.669	28.962
Peak Flow Rate	12in Effluent	gpm	Range	4.495	2.253	2.179	1.787	0.717	5.690	3.304
Peak Flow Rate	18in Effluent	gpm	, image	2.897	1.643	1.768	1.833	0.006	130.134	1.530
	Influent	-		45	15	30	6	2	45	43
Aliquots	12in Effluent	_	10 aliquots minimum	45	18	7	2	7	35	>45
1	18in Effluent	_	1	40	19	6	3	0	45	27
	Influent	hours		4.92	7.00	4.67	0.50	0.33	3.67	3.50
Sample Duration		hours	36 hours maximum	7.42	6.92	2.42	0.75	3.42	3.92	5.58
•	18in Effluent	hours		10.58	6.50	2.33	3.17	0.00	3.67	6.17
	% of Influent	%		35.78%	99.16%	98.54%	96.71%	69.55%	61.89%	67.36%
Storm Volume Sampled	% of 12in Effluent	%	75% of storm for the first 24 hours	78.84%	99.77%	37.58%	70.61%	93.78%	98.69%	90.70%
	% of 18in Effluent	%		97.72%	97.46%	41.85%	93.24%	0.00%	8.65%	98.59%
90th Percentile Flow Rate	Influent	<u> </u>	none	39.686	3.845	9.649	14.565	2.498	36.288	25.400
	TSS		≥20 mg/L	50	11	8	74.7	22	16	10
Influent Concentration	Dissolved Cu		0.005-0.02 mg/L	0.00124		0.00406	0.00321		0.00306	0.00118
	Dissolved Zn		0.02-0.03 mg/L	0.0054		0.0291	0.0385		0.024	0.00804
	Total Phosphorus		0.1-0.5 mg/L	0.0539	4.22	1	2.1	1	3	0.107 3.5
	TSS Dissolved Cu		≥20 mg/L	5.4 0.00395	4.33	0.00142	0.00434	0.00324	0.00255	0.00463
12" Effluent Concentration	Dissolved Cu Dissolved Zn		0.005-0.02 mg/L 0.02-0.03 mg/L	0.00395		0.00142	0.0434	0.00324	0.00255	0.00483
	Total Phosphorus		0.02-0.03 mg/L 0.1-0.5 mg/L	0.542		0.0134	0.0400	0.416	0.505	0.00483
	Total Phosphorus TSS	<u> </u>	0.1-0.3 mg/L ≥20 mg/L	3.4	2.75	5	36	0.710	8	0.372
<u> </u>	Dissolved Cu		0.005-0.02 mg/L	0.00542	2.13	0.00146	0.00416	+	0.00361	0.00648
18" Effluent Concentration	Dissolved Zn		0.003-0.02 mg/L 0.02-0.03 mg/L	0.00342		0.00146	0.00416	1	0.0133	0.00649
	Total Phosphorus		0.1-0.5 mg/L	0.831		0.0140	0.0217		0.576	0.911
	Î		6 hours minimum with less than 0.04	0.051					0.570	0.711
Post Storm Data	Post Storm Dry Period > 6hr?	-	inches of rain	Y	Y	N/A	No, 5 hours 20	N/A	Y	N/A
Sample Data	Temperature < 6°C	Celsius	Sample Temperature cannot exceed 6°C		0.4	6.4	6.4	2.4	2.8	5.8

	TAPE Qualifying Parameters	Units	TAPE Guideline						
		'4 ID		17	18	20	21	23	24
		Storm ID		10/11/2020	10/13/2020	11/13/2020	11/16/2020	12/19/2020	12/21/2020
			Qualified?	N	N	N	N	N	N
	Total Storm Depth	inches	0.15"	0.24	0.25	0.43	0.15	0.16	0.1
G. D.	Total Storm Duration	hours	1 hour	9.58	7.75	10.00	7.25	8.25	6.42
Storm Data	Storm Average Intensity	in/hr		0.025	0.032	0.043	0.021	0.019	0.016
	Storm Peak Intensity	in/hr	Range of rainfall intensities	3.162	0.240	3.213	0.240	0.120	0.120
	Storm Antecedent Dry Period	hours	6 hrs w/ <0.04" rainfall before the storm start	24.58	28.00	59.67	34.25	63.58	25.33
	Laftyont	ft ³	Storm Start						
	Influent			191.709	310.457	459.964	98.777	224.992	121.411
Total Volume	12in Effluent	ft ³	none	612592.933	603503.180	472.460	143.220	116.659	39.194
	18in Effluent	ft^3		1133901.413	1085944.876	615.278	346.979	111.120	68.359
	Influent	gpm		3.050	7.254	6.810	2.031	3.398	2.358
Average Flow Rate	12in Effluent	gpm	Range	7965.714	9703.919	5.888	2.591	1.762	0.761
	18in Effluent	gpm		14744.431	17461.252	7.667	6.155	1.678	1.328
	Influent	gpm		27.824	36.091	23.543	13.208	14.333	14.799
Peak Flow Rate	12in Effluent	gpm	Range	14030.383	14710.330	11.123	6.123	3.949	2.107
	18in Effluent	gpm		24229.855	25176.750	11.322	8.733	2.984	1.967
	Influent	-		11	20	28	23	45	17
Aliquots	12in Effluent	-	10 aliquots minimum	45	45	45	45	45	11
	18in Effluent	-		45	45	45	45	45	19
	Influent	hours		3.92	3.67	5.75	2.33	3.83	6.00
Sample Duration	12in Effluent	hours	36 hours maximum	3.75	3.67	4.83	3.67	4.33	5.67
	18in Effluent	hours		3.67	4.25	4.33	3.92	4.25	5.75
	% of Influent	%		96.10%	99.70%	98.95%	97.09%	67.85%	98.95%
Storm Volume Sampled	% of 12in Effluent	%	75% of storm for the first 24 hours	0.06%	0.06%	77.41%	65.50%	65.43%	99.17%
	% of 18in Effluent	%		0.03%	0.03%	59.44%	27.04%	68.69%	98.21%
90th Percentile Flow Rate	Influent	gpm	none	7.906	29.840	18.590	5.436	8.939	7.819
	TSS		≥20 mg/L	12.3		15	17	10.5	9
Influent Concentration	Dissolved Cu	mg/L	0.005-0.02 mg/L	0.00366		0.00198	0.00337	0.001	
	Dissolved Zn		0.02-0.03 mg/L	0.0244		0.0238	0.0248	0.0152	
	Total Phosphorus	mg/L	0.1-0.5 mg/L	0.148			0.552	0.005	
	TSS		≥20 mg/L	9.4		0.000.7.7	2.25	2.12	1.8
12" Effluent Concentration	Dissolved Cu		0.005-0.02 mg/L	0.00762		0.00255	0.00313	0.0028	0.00607
	Dissolved Zn		0.02-0.03 mg/L	0.0208		0.0125	0.00684	0.017	
	Total Phosphorus		0.1-0.5 mg/L	0.427			0.264	0.872	1.0
	TSS		≥20 mg/L	7.6		4	2.5	1.43	1.9
18" Effluent Concentration	Dissolved Cu	mg/L	0.005-0.02 mg/L	0.00648		0.00178	0.00243	0.0033	0.00743
	Dissolved Zn		0.02-0.03 mg/L	0.00719		0.00956	0.00727	0.017	0.015
	Total Phosphorus	mg/L	0.1-0.5 mg/L	0.45		0.3	0.664	0.292	
Post Storm Data	Post Storm Dry Period > 6hr?	-	6 hours minimum with less than 0.04 inches of rain	Y		Y	Y	Y	Y
Sample Data	Temperature < 6°C	Celsius	Sample Temperature cannot exceed 6°C	5.3		4.7	6.8		5.3

	Dissolved Copper										
			12" Effluent	18" Effluent							
				Analytical Result	12" Percent	18" Percent	Notes				
Qualifying?	Storm Event	(mg/L)	(mg/L)	(mg/L)	Reduction	Reduction	Notes				
Y	12/16/2018	0.00289	0.00149	0.00132	48.44%	54.33%					
Υ	12/19/2019	<u> </u>	0.001			40.93%					
Y	1/28/2020	0.00373	0.0067	0.0084	-79.62%	-125.20%	12" and 18" samples were switched				
Y	5/6/2020		0.00519								
Y	9/25/2020		0.00671	ļ		73.48%					
-	3/23/2020	0.0112	0.00071	0.00237	10.0370	73.1070					
Υ	10/10/2020	0.00491	0.00651	0.00563	-32.59%	-14.66%					
Υ	11/5/2020		0.00395								
Y	1/2/2021										
Υ	1/12/2021	0	0	0							
М	7/24/2019	0.00676	0.00608	0.00515	10.06%	23.82%					
							Influent and 18" inital concention =				
М	9/28/2019	0.00133	0	0.00469	100.00%	-252.63%	ND, used PQL limit = 0.001				
							12" and 18" samples were switched				
							Initial Infuent concentration =				
							<0.00007, used 0.00007				
							Initial 18" concentration = ND, used				
М	2/23/2020		0.00309			16.79%	PQL limit = 0.001				
М	5/20/2020	0	0	0							
							Initial Infuent, 12" and 18"				
	- /0 - /0 000						concentration = <0.00007, used				
M	5/31/2020		0.00344 0.00337	0.00432 0.00326		-263.03% 1.21%	10.00007				
M	11/18/2020 12/22/2020	0.0033	0.00337			-416.11%					
M	1/4/2021	0.0018	0.00395	0.00542							
N	1/6/2021	0.00124				337.1070					
N	1/17/2019	, and the same of	0.00142	0.00146		64.04%					
	2,2:,2020	0.00.100			55.5273		One dissolved metal blank sample,				
							used for all the samples				
							Initial concentration = ND, used PQL				
N	11/22/2018	0.00321	0.00434	0.00416	-35.20%	-29.60%	limit = 0.001				
N	11/19/2019	0	0.00324	0							
							Initial concentration = ND, used PQL				
N	12/7/2019		0.00255	<u> </u>			limit = 0.001				
N	1/30/2020	0.00118	0.00463	0.00648	-292.37%	-449.15%					
							Initial concentration = ND, used PQL				
N	10/11/2020		0.00762			-77.05%	limit = 0.001				
N	10/13/2020	0	0	0			Initial influent concentration - ND				
							Initial influent concentration = ND, used PQL limit = 0.001				
							Initial 12" and 18" concentration =				
N	11/13/2020	0.00198	0.00255	0.00178	-28.79%	10.10%					
N	11/16/2020		0.00233			27.89%	10.00003, 0300 0.00003				
-		0.00337	0.00313	0.00243	7.1270	27.0370	 Initial concentration = ND, used PQL				
N	12/19/2020	0.001	0.0028	0.0033	-180.00%	-230.00%	limit = 0.001				
N	12/21/2020										
-	- '		•		•		•				

Dissovled Copper Averages							
Averages	Influent	12" Effluent	18" Effluent	12" Percent Reduction	18" Percent Reduction		
Qualifying Average	0.004759	0.004507	0.003833	0.09%	14.06%		
Maybe Qualifying Average	0.002623	0.004347	0.004916	-109.02%	-175.29%		
Qualifying and Maybe Average	0.003445	0.004433	0.004416	-50.27%	-79.61%		

Dissovled Copper Averages - Opts Samples w/ Influent Concentrations less than 0.005 mg/L							
12" 18" 12" Percent 18"							
Averages	Influent	Effluent	Effluent	Reduction	Reduction		
Qualifying Average	0.00835	0.00595	0.00297	22.86%	73.48%		
Maybe Qualifying Average	0.00676	0.00608	0.00515	10.06%	23.82%		
Qualifying and Maybe Average	0.00782	0.005993	0.00406	18.59%	48.65%		

Cells highlighted in blue have calculations.

Cells highlighted in yellow are not included in the average
Cells highlighted in orange have an influent concentration of less than 0.005 mg/L
Cells highlighted in green have calculations for the adjusted values

	Dissolved Zinc									
			Dissolve	ed Zinc						
		Influent Analytical	Initial Influent	12" Effluent	18" Effluent					
		Result	Concentration		Analytical Result	12" Percent	18" Percent			
Qualifying?	Storm Event	(mg/L)	(mg/L)	(mg/L)	•	Reduction	Reduction	Notes		
Y	12/16/2018	0.0285	N/A	0.0129	0.0111	54.74%	61.05%			
Υ	12/19/2019		· ·	0.0091	0.00842	67.38%	69.82%			
Υ	1/28/2020		0.0147	0.0176	0.0192	8.33%	0.00%			
								Calculated 18" Effluent is		
								negative, the sampling		
Υ	5/6/2020	0.0355	N/A	0.0194	0.0242	45.35%	31.83%	bottles		
Υ	9/25/2020	0.0444	0.0743	0.00327	0.00323	92.64%	92.73%			
Υ	10/10/2020	0.0319	0.0654	0.0149	0.0223	53.29%	30.09%			
Υ	11/5/2020	0.0167	N/A	0.00883	0.00906	47.13%	45.75%			
Υ	1/2/2021	0	N/A	0	0					
Υ	1/12/2021	0	N/A	0	0					
M	7/24/2019	0.0307	N/A	0.0074	0.0102	75.90%	66.78%			
M	9/28/2019	0.0599	0.0419	0	0.0181	100.00%	69.78%			
M	2/23/2020	0.0398	0.0131	0.04	0.0279	-0.50%	29.90%			
М	5/20/2020	0	N/A	0	0					
M	5/31/2020	0.0081	0.0254	0.0143	0.00412	-76.54%	49.14%			
М	11/18/2020	0.0151	N/A	0.00484	0.00532	67.95%	64.77%			
М	12/22/2020	0.0114	N/A	0.00927	0.0123	18.68%	-7.89%			
М	1/4/2021	0.0054	•	0.00224	0.0116	58.52%	-114.81%			
N	1/6/2021		N/A	0	Ü					
N	1/17/2019	0.0291	N/A	0.0134	0.0146	53.95%	49.83%			
								One dissolved metal blank		
								sample, used for all the		
N	11/22/2018		0.0531	0.0406		-5.45%	27.53%	samples		
N	11/19/2019		N/A	0.0134	0					
N	12/7/2019		0.00778	0.0115	0.0133	52.08%	44.58%			
N	1/30/2020		•	0.00483	0.00649	39.93%	19.28%			
N	10/11/2020		0.0255	0.0208	0.00719	14.75%	70.53%			
N	10/13/2020		N/A	0						
N	11/13/2020			0.0125	0.00956	47.48%	59.83%			
N	11/16/2020			0.00684	0.00727	72.42%	70.69%			
N	12/19/2020		0.0178	0.017	0.017	-11.84%	-11.84%			
N	12/21/2020	0	N/A	0	0.015					

Dissolved Zinc Averages							
		12"	18"	12" Percent	18" Percent		
Averages	Influent	Effluent	Effluent	Reduction	Reduction		
Qualifying Average	0.029157	0.012286	0.01393	52.69%	47.32%		
Maybe Qualifying Average	0.024343	0.013008	0.012791	24.00%	22.52%		
Qualifying and Maybe Average	0.02675	0.012619	0.013361	39.45%	34.92%		

Dissolved Zinc Averages - Opts Samples w/ Influent Concentrations less than 0.02 mg/L							
Averages	Influent	Effluent	Effluent	Reduction	Reduction		
Qualifying Average	0.03364	0.011914	0.01385	62.68%	57.10%		
Maybe Qualifying Average	0.043467	0.0158	0.018733	37.70%	55.49%		
Qualifying and Maybe Average	0.037325	0.015281	0.015681	55.54%	56.50%		

Cells highlighted in blue have calculations. Cells highlighted in yellow are not included in the average Cells highlighted in orange have an influent concentration of less than 0.02 mg/L

			TP			
			12"	18"		
		Influent	Effluent	Effluent	12" Percent	18" Percent
Qualifying?	Storm Event	(mg/L)	(mg/L)	(mg/L)	Reduction	Reduction
Υ	12/16/2018	0.118	0.35	0.388	-196.61%	-228.81%
Υ	12/19/2019	0.19	0.409	0.496	-115.26%	-161.05%
Υ	1/28/2020	0.105	0.516	0.945	-391.43%	-800.00%
Υ	5/6/2020	0.358	0.505	0.739	-41.06%	-106.42%
Υ	9/25/2020	0.477	0.433	0.751	9.22%	-57.44%
Υ	10/10/2020	0.288	0.475	0.715	-64.93%	-148.26%
Υ	11/5/2020	0.6	0.232	1.92	61.33%	-220.00%
Υ	1/2/2021	0	0	0		
Υ	1/12/2021	5.75	0.506	0.701	91.20%	87.81%
М	7/24/2019	0.334	0.886	1.28	-165.27%	-283.23%
М	9/28/2019	0.0991	0	0.793	100.00%	-700.20%
M	2/23/2020	0.153	0.285	0.381	-86.27%	-149.02%
M	5/20/2020	0	0	0		
М	5/31/2020	0	0	0		
М	11/18/2020	0	0.656	0.72		
М	12/22/2020	0.0917	0.62	0.779	-576.12%	-749.51%
М	1/4/2021	0.0539	0.542	0.831	-905.57%	-1441.74%
Ν	1/6/2021	0	0	0		
N	1/17/2019	0	0	0		
N	11/22/2018	0	0	0		
N	11/19/2019	0	0.416	0		
N	12/7/2019	0	0.505	0.576		
N	1/30/2020	0.107	0.572	0.911	-434.58%	-751.40%
N	10/11/2020	0.148	0.427	0.45	-188.51%	-228.81%
N	10/13/2020	0	0	0		-161.05%
N	11/13/2020	0	0	0.3		
N	11/16/2020	0.552	0.264	0.664	52.17%	-20.29%
N	12/19/2020	0.005	0.872	0.292		
N	12/21/2020	0	0	0		

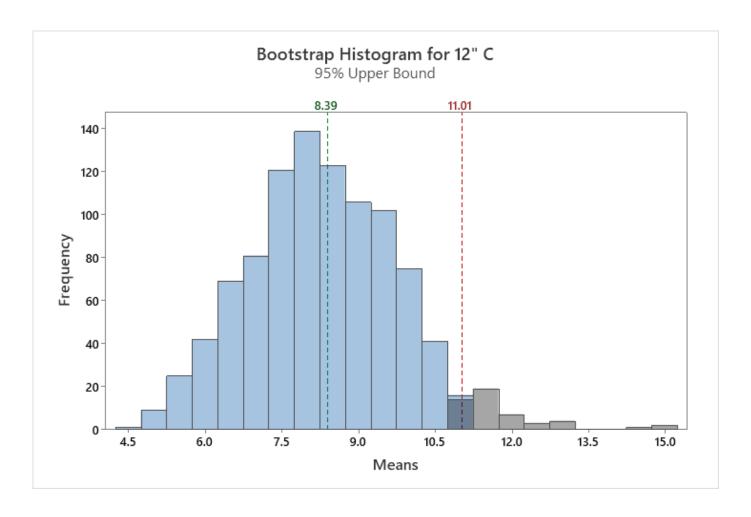
TP Averages							
Averages	Influent	12" Effluent		12" Percent Reduction	18" Percent Reduction		
Qualifying Average	0.986	0.428	0.832	-0.809	-2.043		
Maybe Qualifying Average	0.122	0.598	0.797	-433.31%	-664.74%		
Qualifying and Maybe Average	0.663	0.493	0.817	-198.40%	-381.38%		

Cells highlighted in blue have calculations.

Cells highlighted in yellow are not included in the average

No influent concentrations below 0.1 mg/L

			TSS			
		Influent	12" Effluent	18" Effluent	12" Percent	18" Percent
Qualifying?	Storm Event	(mg/L)	(mg/L)	(mg/L)	Reduction	Reduction
Υ	12/16/2018	9	5	7	44.44%	22.22%
Υ	12/19/2019	14	5	6	64.29%	
Υ	1/28/2020	11	3.5	1.5	68.18%	86.36%
Υ	5/6/2020	83	10	5	87.95%	93.98%
Υ	9/25/2020	153	25	36	30.56%	-325.00%
Υ	10/10/2020	12	4.4	4	63.33%	66.67%
Υ	11/5/2020	54	12	9	77.78%	83.33%
Υ	1/2/2021	13	3.8	3	70.77%	76.92%
Υ	1/12/2021	18	2.8	2.33	84.44%	87.06%
M	7/24/2019	78	12	34	84.62%	56.41%
M	9/28/2019	68	0	50	100.00%	26.47%
M	2/23/2020	90	2.7	1.5	97.00%	98.33%
M	5/20/2020	0	0	0		
M	5/31/2020	120	12	4	90.00%	96.67%
M	11/18/2020	21	9	0	57.14%	100.00%
M	12/22/2020	38	14	19	63.16%	50.00%
M	1/4/2021	50	5.4	3.4	89.20%	93.20%
N	1/6/2021	11	4.33	2.75	60.64%	75.00%
N	1/17/2019	8	1	5	87.50%	37.50%
N	11/22/2018	74.7	31	36	58.50%	51.81%
N	11/19/2019	22	1	0	95.45%	100.00%
N	12/7/2019	16	3	8	81.25%	50.00%
N	1/30/2020	10	3.5	2	65.00%	80.00%
N	10/11/2020	12.3	9.4	7.6	23.58%	38.21%
N	10/13/2020	0	0	0		
N	11/13/2020	15	0	4	100.00%	73.33%
N	11/16/2020	17	2.25	2.5	86.76%	85.29%
N	12/19/2020	10.5	2.12	1.43	79.81%	86.38%
N	12/21/2020	9	1.8	1.9	80.00%	78.89%

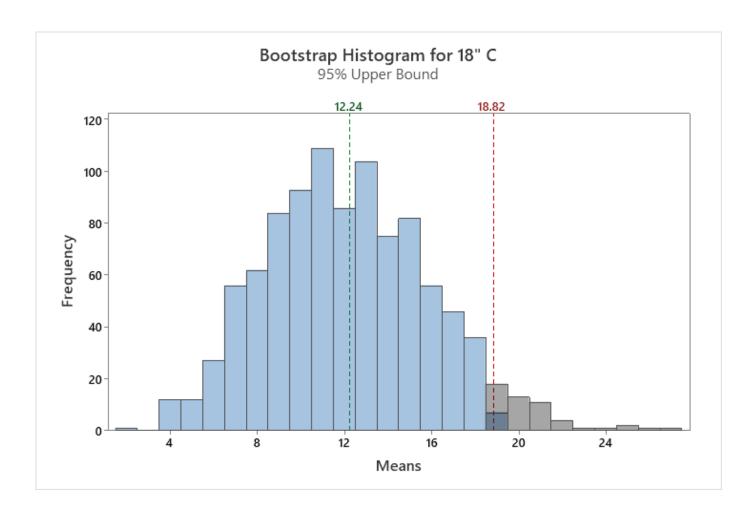

TSS Averages							
TSS Averages 12" 18" 12" Percent 18" Percent TSS Averages 16 17 18 18 18 18 18 18 18							
Qualifying Average	27.78	7.94	21.20	65.75%	27.63%		
Maybe Qualifying Average	66.43	9.18	18.65	80.19%	70.18%		
Qualifying and Maybe Average	44.69	8.44	20.18	71.52%	44.65%		

Cells highlighted in blue have calculations.

Cells highlighted in yellow are not included in the average

Appendix D.3 Ecology Bootstrapping Method

Bootstrapping for 1-Sample Mean: 12" BSM Effluent TSS Concentration

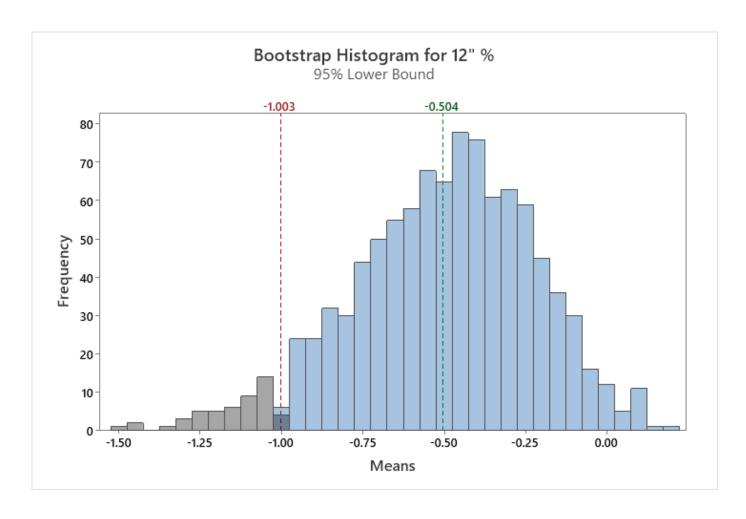


Observed Sample

Variable	N	Mean	StDev	Variance	Sum	Minimum	Median	Maximum
12" C	15	8.44	6.01	36.13	126.60	2.70	5.40	25.00

Number of	95% Upper Bound		
Resamples	Mean	StDev	for μ
1000	8.3894	1.5343	11.0133

Bootstrapping for 1-Sample Mean: 18" BSM Effluent TSS Concentration

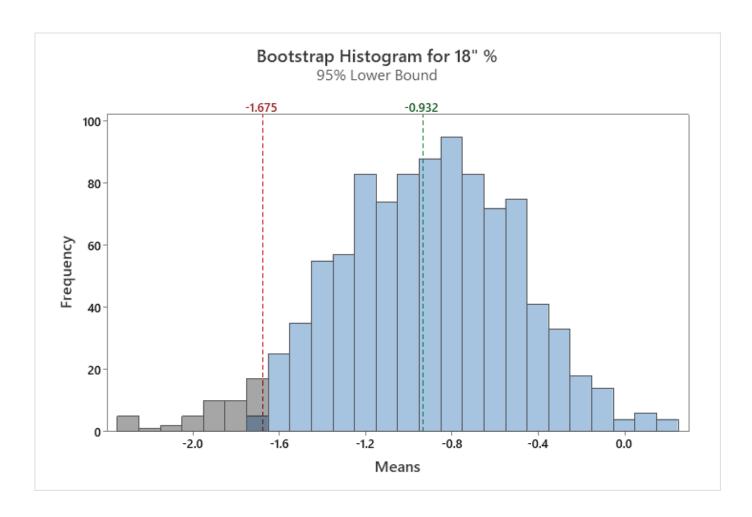


Observed Sample

Variable	N	Mean	StDev	Variance	Sum	Minimum	Median	Maximum
18" C	15	12.38	15.28	233.34	185.73	1.50	5.00	50.00

Number of	95% Upper Bound		
Resamples	Mean	StDev	for μ
1000	12.244	3.852	18.822

Bootstrapping for 1-Sample Mean: 12" BSM Dissolved Copper Removal

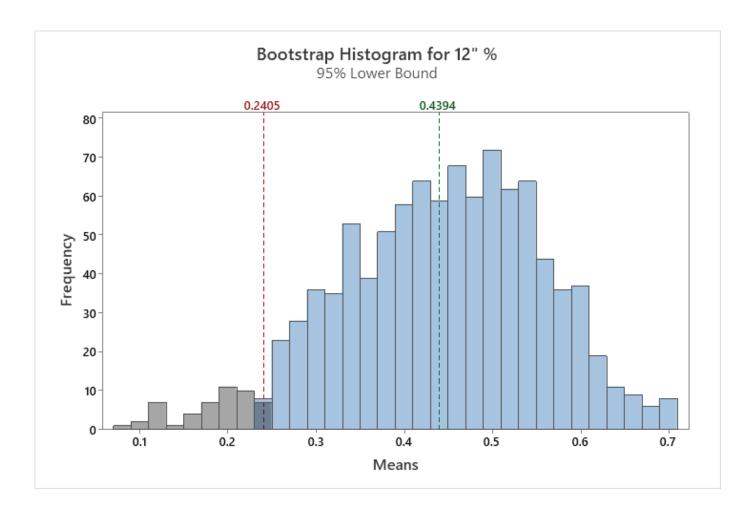


Observed Sample

Variable	N	Mean	StDev	Variance	Sum	Minimum	Median	Maximum
12" %	13	-0.503	1.020	1.040	-6.535	-2.417	-0.128	0.535

Number of			95% Lower Bound
Resamples	Mean	StDev	for μ
1000	-0.50439	0.28213	-1.00311

Bootstrapping for 1-Sample Mean: 18" BSM Dissolved Copper Removal

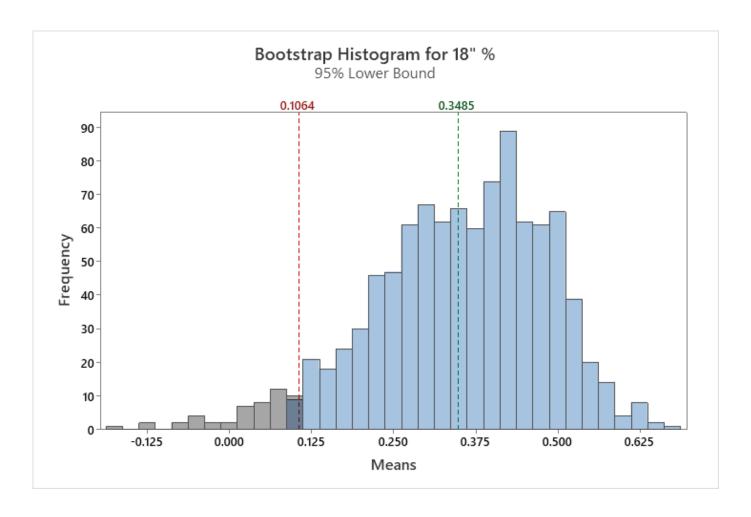


Observed Sample

Variable	N	Mean	StDev	Variance	Sum	Minimum	Median	Maximum
18" %	13	-0.934	1.667	2.778	-12.146	-4.161	-0.147	0.735

Number of	95% Lower Bound		
Resamples	Mean	StDev	for μ
1000	-0.9324	0.4331	-1.6752

Bootstrapping for 1-Sample Mean: 12" BSM Dissolved Zinc Removal



Observed Sample

Variable	N	Mean	StDev	Variance	Sum	Minimum	Median	Maximum
12" %	14	0.438	0.451	0.204	6.129	-0.765	0.540	1.000

	Number of			95% Lower Bound
_	Resamples	Mean	StDev	for μ
	1000	0.43943	0.11614	0.24054

Bootstrapping for 1-Sample Mean: 18" BSM Dissolved Zinc Removal

Observed Sample

Variable	N	Mean	StDev	Variance	Sum	Minimum	Median	Maximum
18" %	14	0.349	0.513	0.263	4.889	-1.148	0.474	0.927

Number of			95% Lower Bound
Resamples	Mean	StDev	for μ
1000	0.34852	0.13521	0.10636

Appendix E. TAG Comment Responses